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Summary. Probabilistic model checking is a formal verification framework for sys-
tems which exhibit stochastic behaviour. It has been successfully applied to a wide
range of domains, including security and communication protocols, distributed al-
gorithms and power management. In this chapter we demonstrate its applicabil-
ity to the analysis of biological pathways and show how it can yield a better un-
derstanding of the dynamics of these systems. Through a case study of the MAP
(Mitogen—Activated Protein) Kinase cascade, we explain how biological pathways
can be modelled in the probabilistic model checker PRISM and how this enables the
analysis of a rich selection of quantitative properties.

1 Introduction

Recent research has had considerable success adapting approaches from com-
puter science to the analysis of biological systems and, in particular, biochem-
ical pathways. The fundamental theory behind the majority of this work is
the simulation-based techniques for discrete stochastic models originally in-
troduced by Gillespie [9]. This models the evolution of individual molecules,
whose rates of interaction are controlled by exponential distributions, and
differs from the principal alternative modelling paradigm of pathways, using
ordinary differential equations to model the evolution of average molecular
concentrations over time. We adopt the stochastic modelling approach but,
by employing formal verification techniques, compute ezact quantitative mea-
sures as opposed to taking averages over sets of simulation runs.

In this chapter we demonstrate how probabilistic model checking [2, 20, 32]
and the probabilistic model checker PRISM [14, 27] can be employed as a
framework for the modelling and analysis of biological pathways. This ap-
proach is motivated by both the fact that PRISM has already been success-
fully applied to the study of biological pathways, see for example [11, 4, 30],
and previous work which has demonstrated the applicability of probabilistic
model checking to the analysis of a wide variety of complex stochastic systems,
see for example [18].
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This framework inherits many of the advantages of model checking, in-
cluding the use of a both a formal model and specification of the system
under study and the fact that the approach is exhaustive, analysing all possi-
ble behaviours of the system. We are also able to re-use existing technology,
exploiting the efficient implementations and tool support developed for prob-
abilistic model checkers such as PRISM. The intention is that probabilistic
model checking should be used in conjunction with other, well-established
approaches for analysing pathways based on simulation and differential equa-
tions. In combination, these techniques can offer greater insight into the com-
plex interactions present in biological pathways.

Outline. In the next section, we give an overview of probabilistic model check-
ing and the tool PRISM. Section 3 presents the MAPK cascade, discusses
how the pathway can be modelled in the PRISM language and demonstrates
how PRISM can be used to specify and analyse a wide range of quantita-
tive properties. In Sect. 4 we discuss related work and Sect. 5 concludes the
chapter.

2 Probabilistic Model Checking

Probabilistic model checking is a formal verification technique for the mod-
elling and analysis of systems that exhibit stochastic behaviour. This tech-
nique is a variant of model checking, a well-established and widely-used formal
method for ascertaining the correctness of real-life systems. Model checking
requires two inputs:

e a description of the system, usually given in some high-level modelling
formalism such as a Petri net or process algebraic expression;

e a specification of one or more desired properties of the system, normally
using temporal logics such as CTL (Computation Tree Logic) or LTL
(Linear-time Temporal Logic).

From these inputs, a model checker can construct a model of the system, typ-
ically a labelled state—transition system in which each state represents a pos-
sible configuration and each transition represents an evolution of the system
from one configuration to another over time. It is then possible to automat-
ically verify whether or not each property is satisfied, based on a systematic
and exhaustive exploration of the constructed state—transition system.

In probabilistic model checking, the models are augmented with quantita-
tive information regarding the likelihood that transitions occur and the times
at which they do so. In practice, these models are typically Markov chains
or Markov decision processes. To model biological pathways, the appropri-
ate model is continuous-time Markov chains (CTMCs), in which transitions
between states are assigned (positive, real-valued) rates. These values are in-
terpreted as the rates of negative exponential distributions.
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Formally, letting R>( denote the set of non-negative reals and AP be a
fixed, finite set of atomic propositions used to label states with properties of
interest, a CTMC is a tuple (S, R, L) where:

e S is a finite set of states;
R: (S x S) — Ry is a transition rate matriz;
L:S — 247 is a labelling function which associates each state with a set
of atomic propositions.

The transition rate matrix R assigns rates to each pair of states, which are
used as parameters of the exponential distribution. A transition can only occur
between states s and s’ if R(s, s’)>0 and, in this case, the probability of the
transition being triggered within ¢ time-units equals 1 — exp(—R(s, s') xt).
Typically, in a state s, there is more than one state s’ for which R(s, s’)>0; this
is known as a race condition and the first transition to be triggered determines
the next state. The time spent in state s before any such transition occurs is
exponentially distributed with the rate E(s) = > g R(s,s’), called the exit
rate of stat s. The probability of moving to state s’ is given by R(s, s’)/E(s).

A CTMC can be augmented with rewards, attached to states and/or tran-
sitions of the model. Formally, a reward structure for a CTMC is a pair (p,¢)
where:

o p:S—Rygis a state reward function;
o :(SxS)— Ry is a transition reward function.

State rewards can represent either a quantitative measure of interest at a
particular time instant (e.g. the number of phosphorylated proteins in the
system) or the rate at which some measure accumulates over time (e.g. en-
ergy dissipation). Transition rewards are accumulated each time a transition
occurs and can be used to compute, e.g. the number of protein bindings over
a particular time period.

Properties of CTMCs are, like in non-probabilistic model checking, ex-
pressed in temporal logic, but are now quantitative in nature. For this, we use
probabilistic temporal logics such as CSL [1, 2] and its extensions for reward-
based properties [20]. For example, rather than verifying that ‘the protein
always eventually degrades’, using CSL allows us to ask ‘what is the proba-
bility that the protein eventually degrades?’ or ‘what is the probability that
the protein degrades within ¢ hours?’. Reward-based properties include ‘what
is the expected number of phosphorylations within the first ¢ time units?’
and ‘what is the expected time that proteins spend bound before relocation
occurs?’. For further details on probabilistic model checking of CTMCs, see
for example [2, 20, 32].

PRISM [14, 27] is a probabilistic model checking tool developed at the
Universities of Birmingham and Oxford. It provides support for several types
of probabilistic models, including CTMCs. Models are specified in a sim-
ple, state-based language based on guarded commands. PRISM’s notation
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Fig. 1. A screenshot of the PRISM graphical user interface

for specifying properties of CTMCs incorporates the reward-based extension
([20]) of CSL. Figure 1 shows a screenshot of PRISM in action.
The underlying computation in PRISM involves a combination of:

e graph-theoretical algorithms, for conventional temporal logic model check-
ing and qualitative probabilistic model checking;

e numerical computation, for quantitative probabilistic model checking, i.e.
calculation of probabilities and reward values.

Graph-theoretical algorithms are comparable to the operation of a conven-
tional, non-probabilistic model checker. For numerical computation, PRISM
typically solves linear equation systems or performs transient analysis. Due to
the size of the models that need to be handled, the tool uses iterative methods
rather than direct methods. For solution of linear equation systems, it sup-
ports a range of well-known techniques including the Jacobi, Gauss-Seidel and
SOR (successive over-relaxation) methods; for transient analysis of CTMCs,
it employs uniformisation.

One of the most notable features of PRISM is that it uses state-of-the-art
symbolic approaches, using data structures based on binary decision diagrams
[17, 25]. These allow for compact representation and efficient manipulation
of large, structured models by exploiting regularities exhibited in the high-
level modelling language descriptions. The tool actually provides three distinct
engines for numerical solution: the first is purely symbolic; the second uses
sparse matrices; and the third is a hybrid, using a combination of the two.
The result is a flexible implementation which can be adjusted to improve
performance depending on the type of models and properties being analysed.

PRISM also incorporates a discrete-event simulation engine. This allows
approximate solutions to be generated for the numerical computations that
underlie the model checking process, by applying Monte Carlo methods and
sampling. These techniques offer increased scalability, at the expense of nu-
merical accuracy. Using the same underlying engine, PRISM includes a tool
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Fig. 2. MAPK cascade pathway

to perform manual execution and debugging of models. Other functionality
provided by the user interface of the tool includes a graph-plotting component
for visualisation of numerical results and editors for the model and property
specification languages.

3 Case Study: MAPK Cascade

We demonstrate the application of probabilistic model checking to the mod-
elling, specification and analysis of biological pathways through a case study:
the MAPK cascade.

The MAP (Mitogen—Activated Protein) Kinases are involved in a pathway
through which information is sent to the nucleus. It is one of the most impor-
tant signalling pathways, playing a pivotal role in the molecular signalling that
governs the growth, proliferation and survival of many cell types. The MAPK
cascade consists of a MAPK Kinase Kinase (MAPKKK), a MAPK Kinase
(MAPKK) and a MAPK. The cascade is initialised through the phosphory-
lation of MAPKKK, which then activates MAPKK through phosphorylation
at two serine residues. This then activates MAPK through phosphorylation
at theronine and tyrosine residues. The initialisation of the pathway can be
caused by a diverse set of stimuli including growth factors, neurotransmitters
and cytokines.

Figure 2 gives an overview of the structure of the pathway and Fig. 3 de-
tails the reactions that form the cascade, as taken from [15]. In the reactions
presented in Fig. 3, it is assumed that the phosphorylation of both MAPK
and MAPKK occur in two distributed steps. For example, when MAPK col-
lides with its activator (MAPKK-PP) the first phosphorylation (MAPK-P)
occurs and the activator is released. The phosphorylated MAPK must then
collide again with its activator for the second phosphorylation (MAPK-PP)
to occur. The deactivation of phosphorylated MAPK and MAPKK is caused
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1. MAPKKK is activated through enzyme E1
KKK + E1 — KKK:E1 a1=1nM"1ts7!
KKK + El1 «— KKK:E1 dy=150s"1
KKK:E1 — KKK* + E1 k1=150s"1

2. MAPKKK is deactivated through enzyme E2
KKK* + E2 — KKK*:E2 as=1nM"ts!
KKK* + E2 «— KKK*:E2 da=150s"1
KKK*:E2 — KKK + E2 ko=150s"1

3. MAPKK is activated by MAPKKK*
KK + KKK* — KK:KKK* az=1nM " ts!
KK + KKK* « KK:KKK* d3=150s"1
KK:KKK* — KK-P + KKK* k3=150s"1

4. MAPKK-P is deactivated by MAPKK phosphatase
KK-P + KK-Ptase — KK-P:KK-Ptase ag=1nM"1ts7?!
KK-P + KK-Ptase «+— KK-P:KK-Ptase ds=150s"1
KK-P:KK-Ptase — KK + KK-Ptase k4=150 st

5. MAPKK-P is activated by MAPKKK*
KK-P + KKK* — KK-P:KKK* as=1nM~1s7?!
KK-P + KKK* — KK-P:KKK* ds=150s"1
KK-P:KKK* — KK-PP 4+ KKK* ks=150s"1

6. MAPKK-PP is deactivated by MAPKK phosphatase
KK-PP 4+ KK-Ptase — KK-PP:KK-Ptase ag=1nM 17!
KK-PP + KK-Ptase «— KK-PP:KK-Ptase de=150 st
KK-PP:KK-Ptase — KK-P 4+ KK-Ptase k=150 st

7. MAPK is activated by MAPKK-PP
K 4+ KK-PP — K:KK-PP ar=1nM~1ts7?!
K + KK-PP «— K:KK-PP d7=150s"1
K:KK-PP — K-P + KK-PP kr=150s"1

8. MAPK-P is deactivated by MAPK phosphatase
K-P + K-Ptase — K-P:K-Ptase ag=1nM"ts!
K-P + K-Ptase — K-P:K-Ptase dg=150s"1
K-P:K-Ptase — K + K-Ptase kg=150s"1

9. MAPK-P is activated by MAPKK-PP
K-P + KK-PP — K-P:KK-PP ag=1nM~ts7?!
K-P 4+ KK-PP — K-P:KK-PP dg=150s""1
K-P:KK-PP — K-PP + KK-PP ko=150s"1

10. MAPK-P is deactivated by MAPK phosphatase
K-PP + K-Ptase — K-PP:K-Ptase ajo=1nM~1s?!
K-PP + K-Ptase «— K-PP:K-Ptase d1p=150s"1
K-PP:K-Ptase — K-P + K-Ptase k10=150s"1

Fig. 3. MAPK cascade reactions

by the corresponding phosphatase, while the activation and deactivation of
MAPKKK is through the enzymes E1 and E2 respectively. To simplify the
presentation in Fig. 3 we denote MAPK, MAPKK and MAPKKK by K, KK
and KKK respectively.

The kinetic rates given in Fig. 3 are based on the data presented in [15]
where it is assumed that the K, values (K, = (d, + km)/am) for phospho-
rylation and dephosphorylation of MAPK, MAPKK and MAPKKK all equal
300 nM.

3.1 Specifying the Model

We now outline how to construct a discrete stochastic model of the MAPK
cascade reactions from Fig. 3 in the modelling language of the PRISM tool.
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The applicability of probabilistic model checking and PRISM follows from
the fact that the underlying model can be shown to be a CTMC, in which
the stochastic rates associated with each transition can be derived from the
kinetic rates of the reactions. In the case of unary reactions, the stochastic
rate equals the kinetic rate. On the other hand, for binary reactions, if the
kinetic rate is given in terms of molar concentrations, then the stochastic
rate can be obtained by dividing by Vol x N4 where Vol is the volume and
N4 is Avogadro’s number. For a more detailed discussion of the relationship
between kinetic and stochastic rates, see for example [36, 9].

A model described in the PRISM language comprises a set of modules,
the state of each being represented by a valuation over a set of finite-ranging
variables. The global state of the model is determined by a valuation over the
union of all variables (denoted V). The atomic propositions of the model are
given by predicates over the variables V' and the labelling function assigns to
each state the predicates that it satisfies.

The behaviour of a module, i.e. the changes in state which it can undergo,
is specified by a number of guarded commands of the form:

[act] guard — rate : update;

where act is an (optional) action label, guard is a predicate over the variables
V, rate is a (non-negative) real-valued expression and update is of the form:

(rh=w1) & (zh=us) & ... & (x},=un)

where uy, us, . .., ur are functions over V and 1, xs, . . ., z,, are variables of the
module. Intuitively, in global state s (i.e. a valuation over the variables V') of
the PRISM model, the command is enabled if s satisfies the predicate guard.
If a command is enabled, a transition that updates the module’s variables
according to update (i.e. for 1 < i < n the variable z; is updated to the value
u;(s)) can occur with rate rate. When multiple commands with the same
update are enabled, the corresponding transitions are combined into a single
transition whose rate is the sum of the individual rates.

To model interactions where the state of several modules changes simulta-
neously, we use synchronisation, through the action labels that can be included
in the guarded commands. The rate of the combined transition is defined as
the product of the rates for each command. As we will see below, the rate of
the combined transition is often fully specified in one module and rates omit-
ted from the other modules (this yields the correct rate since PRISM assigns
a rate of 1 to any command for which none is specified).

When building a PRISM model of a biological pathway, it is possible to
construct an individual-based model which provides a detailed model of the
evolution of individual molecular components. However, taking this approach
comes at a cost: it will inevitably suffer from the well known state-space
explosion problem where, as the complexity of the system increases, the state
space of the underlying model grows exponentially.
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An alternative is to employ a population-based approach where the num-
ber of each type of molecule or species is modelled, rather than the state of
each individual component. Such an approach leads to a much smaller state-
space (see for example [11]) while still including sufficient detail to express
the properties of interest. For these reasons, it is this approach that we use
here.

For the PRISM language, a population-based model can be expressed nat-
urally by using the variables of modules as counters, i.e. there is a variable for
each of the possible species in the system which keeps count of the number of
that species that are currently present.

In Fig. 4, we present the module representing quantities of the species re-
lating to MAPK and, in Fig. 5, the module representing MAPK phosphatase.
The whole cascade could have been specified in one single large PRISM mod-
ule. However, there is a natural separation of the different elements in the cas-
cade (those relating to MAPKKK, MAPKK, MAPK, MAPKK phosphatase,
MAPK phosphatase, E1 and E2) and defining the system using individual
modules based on this separation makes the description simpler, easier to un-
derstand and less prone to modelling errors. This fact can be seen in other
PRISM language models of biological pathways, see for example [11, 4, 27].
The complete PRISM description of the MAPK cascade is available from the
case study repository on the PRISM website [27].

As can be seen in Figs. 4 and 5, we have specified that there are initially
N inactive MAPKs (the initial value of the variable k£ is N) and M MAPK
phosphatases (the initial value of kptase is M). The actual values of N and
M have been left undefined since, as will be seen later, this allows these
parameters to be varied during model checking.

The values for stochastic reaction rates of the system are defined as con-
stants (see the top of Fig. 4). Notice that the stochastic rates of the binary
reactions (i.e. those specified by the constants a7, a8, a9 and al0) are ob-
tained from the kinetic rates by dividing by the initial number of MAPKs
(i.e. N). This is because (recall the discussion of computing stochastic reac-
tion rates earlier in this section) we make the assumption that the volume
of the system is proportional to the initial number of MAPKs. It would also
have been possible to leave some of the constants for the stochastic rates
unspecified and then vary these during verification.

Figures 4 and 5 also show that the modules for MAPK and MAPK phos-
phatase synchronise through the actions a_k_ptase, d_k_ptase and k_k_ptase,
which correspond to the deactivation of MAPK (as described in reactions 8
and 10 of Fig. 3). The actions a_k_kk, d_k_kk and k_k_kk, which appear in
the module for MAPK (Fig. 4), correspond to the activation of MAPK by
MAPKK-PP (see reactions 7 and 9 of Fig. 3), and there are corresponding
commands in the module for MAPKK.

When using a population-based approach, we must ensure that the rates of
the CTMC take into account the different possible interactions that can occur.
For example, if there are three activated MAPKs (k_pp,, k-pp, and k_pp3)
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const int N; // initial amount of MAPK

// stochastic reaction rates

const double a7=1/N; const double d7=150; const double k7=150;
const double a8=1/N; const double d8=150; const double k8=150;
const double a9=1/N; const double d9=150; const double k9=150;
const double al0=1/N; const double d10=150; const double k10=150;

module MAPK

k : [0..N] init N; // quantity of MAPK

k_kkpp : [0..N] init 0; // quantity of MAPK:MAPKK-PP

kp : [0..N] init 0; // quantity of MAPK-P

kp_kkpp : [0..N] init 0; // quantity of MAPK-P:MAPKK-PP

kp_ptase : [0..N] init 0; // quantity of MAPK-P:MAPK phosphatase
kpp : [0..N] init 0; // quantity of MAPK-PP

kpp_ptase : [0..N] init 0; // quantity of MAPK-PP:MAPK phosphatase

// reaction 7 (MAPK 1is activated by MAPKK-PP)
la_k_kk] k>0 & k_kkpp<N

— a7k : (k_kkpp'=k_kkpp + 1) & (k'=k — 1);
[d-k_kk] k<N & k_kkpp>0

— d7 % k_kkpp : (k_kkpp'=k_kkpp — 1) & (k'=k + 1);
[k_k_kk] k_kkpp>0 & kp<N

— k7 x k_kkpp : (k_-kkpp'=k_kkpp — 1) & (kp’=kp + 1);
// reaction 8 (MAPK-P is deactivated by MAPK phosphatase)
la_k_ptase] kp>0 & kp_ptase<N

— a8 * kp : (kp_ptase’=kp_ptase + 1) & (kp'=kp — 1);
[d_k_ptase] kp<N & kp_ptase>0

— d8 * kp_ptase : (kp_ptase’=kp_ptase — 1) & (kp'=kp + 1);
[k-k_ptase] kp_ptase>0 & k<N

— k8 * kp_ptase : (kp_ptase’=kp_ptase — 1) & (k'=k + 1);
// reaction 9 (MAPK-P is activated by MAPKK-PP)
la-k_kk] kp>0 & kp_kkpp<N

— a9 * kp : (kp-kkpp'=kp_kkpp + 1) & (kp’=kp — 1);
[d_k_kk] kp<N & kp_kkpp>0

— d9 * kp_kkpp : (kp_kkpp'=kp_kkpp — 1) & (kp'=kp + 1);
k-k_kk] kp_kkpp>0 & kpp<N

— k9 x kp_kkpp : (kp_kkpp'=kp_kkpp — 1) & (kpp'=kpp + 1);
// reaction 10 (MAPK-PP is deactivated by MAPK phosphatase)
la-k_ptase] kpp>0 & kpp_ptase<N

— al0 * kpp : (kpp-ptase’=kpp_ptase + 1) & (kpp’=kpp — 1);
[d_k_ptase] kpp<N & kpp_ptase>0

— d10 * kpp_ptase : (kpp_ptase’=kpp_ptase — 1) & (kpp’=kpp + 1);
[k-k_ptase] kpp_ptase>0 & kp<N

— k10 * kpp_ptase : (kpp_ptase’=kpp_ptase — 1) & (kp'=kp + 1);

endmodule

Fig. 4. PRISM module representing quantities of species relating to MAPK

and two MAPK phosphatases (kptase,; and kptases) then there are six differ-
ent species that can be formed: k_pp,: kptase,, k_pp,: kptases, k_ppy: kptase,,
k_ppy: kptaseq, k_pps: kptase, and k_pps: kptases. The reaction rate is thus
proportional to both the number of activated MAPKs and the number of
MAPK phosphatases. This is straightforward to achieve in the PRISM mod-
elling language since PRISM multiplies rates when modules synchronise: in
this case, we set the rates to al0xkpp and kptase in the modules MAPK
(Fig. 4) and KPTASE (Fig. 5), respectively.
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const int M; // initial amount of MAPK phosphatase
module KPTASE
kptase : [0..M] init M; // amount of MAPK phosphatase
// reactions 8 and 10 (MAPK/MAPK-P is deactivated by MAPK phosphatase)
la_k_ptase] kptase>0 — kptase : (kptase’=kptase — 1);
[d_k_ptase] kptase<M — 1 : (kptase’=kptase + 1);
[k-k_ptase] kptase<M — 1 : (kptase’=kptase + 1);

endmodule

Fig. 5. PRISM module representing quantity of MAPK phosphatase

rewards “activated” rewards “percentage” rewards “reactions” rewards “time”
la-k_kk] true : 1;
true : kpp; true : 100%(kpp/N); [d_k_kK] true : 1; true : 1;
[k_k_kk] true : 1;
endrewards endrewards endrewards endrewards

Fig. 6. Reward structures for the cascade

3.2 Specifying Rewards

Rewards are PRISM’s mechanism for describing additional quantitative mea-
sures of probabilistic models. In this section we explain how to specify reward
structures for the PRISM model of the MAPK cascade presented in the pre-
vious section. Reward structures in PRISM are described using the construct:

rewards “reward_name” ... endrewards
comprising one or more state-reward items of the form:
guard : reward;
and/or transition-reward items of the form:
[act] guard : reward;

where guard is a predicate (over the variables V' of the model), act is an
action label appearing in the commands of the model and reward is a real-
valued expression (which can contain variables and constants from the model).
A state-reward item assigns a state reward of reward to all states satisfying
guard and a transition-reward item assigns a transition reward of reward to all
act-labelled transitions from states satisfying guard. Multiple rewards (from
different reward items) for a single state or transition are summed and states
or transitions with no assigned reward are assumed to have reward 0.

In Fig. 6, we present four different reward structures for the PRISM model
of the cascade. The first reward structure (“activated”) assigns a state re-
ward equal to the amount of MAPK that is activated while the second re-
ward structure (“percentage”) assigns a state reward equal to the percent-
age of MAPK that is activated. These can be used to compute the expected
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amount/percentage of activated MAPK at some time instant or in the long
run. The third reward structure “reactions” assigns a reward of 1 to all tran-
sitions which correspond to a reaction between MAPK and MAPKK. This
can be used to compute the expected number of such reactions within a par-
ticular period of time or on average (in the long run). The final reward struc-
ture (“téme”) simply assigns a state reward of 1 to all states in the model
which can be used, for example, to analyse the total expected time before an
event/reaction occurs or a certain configuration is reached.

3.3 Specifying Properties

The temporal logic CSL, originally introduced by Aziz et al. [1] and since
extended by Baier et al. [2], is based on the temporal logics CTL [5] and
PCTL [10]. It provides a powerful means of specifying a variety of performance
measures on CTMCs. PRISM use an extended version [20] which also allows
for the specification of reward properties. We now give a number of examples
of such specifications relating to the PRISM model and reward structures
for the MAPK cascade presented in the previous sections. Recall that, in a
PRISM model, atomic propositions are given by predicates over the variables
of the model.

o (kkpp=N A kpp=0) — P>o.12] (kkpp>0) U (kpp>0) ] - if all MAPKKs are
activated and none of the MAPKs are activated, then the probability that,
while some MAPKKSs remain activated, a MAPK becomes activated is at
least 0.12.

o P_;| true U ((kpp+kkpp)=l) ] - what is the probability that the total
number of MAPKs and MAPKKs activated at time instant ¢ equals {7

o (kkkp>0Akpp=0) — P<q.7[ (kpp=0) Ul'+*2] (kpp>0) ] - if some MAPKKKs
are activated and no MAPKs are activated, then the probability that the
first time a MAPK gets activated is within the time interval [t1,ts] is at
most 0.7.

o (k=0) — P<go1| (k=0) U">) (k>0) ] - if there are no inactive MAPKs,
then the probability that some MAPK is deactivated for the first time
after time ¢ is at most 0.01.

e S_¢[ (kpp=l) ] - what is the probability that in the long run there are
precisely | MAPKs activated?

®  R{“reactions”}=2[ C <t ] - what is the expected number of reactions between
MAPKs and MAPKKSs during the first ¢ seconds?

o (kpp=N) — Ry«activatea’}>N/2| Z=" ] - if all MAPKSs are activated, then
after ¢ seconds the expected number of activated MAPK is at least half of
the total number of MAPK.

®  Ri<reactions’}=2[ F (kpp=N) | - what is the expected number of reactions
between MAPK and MAPKK before all MAPKs are activated at the same
time instant?
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Fig. 8. Simulation results for amount of activated MAPK at time ¢

o (kpp>0) — Ry<imery<i2o0l F (k=N) | - if some MAPKSs are activated, the
expected time until all of the MAPKs become deactivated at the same
time instant at most 120 seconds.

R {“percentage”}>98[ S | - in the long run, at least 98% of MAPK is activated.

R{“reactions”y=2| S | - what is the long-run average rate of reactions be-
tween MAPK and MAPKK?

3.4 Results and Analysis

When analysing quantitative properties such as those listed above, it is often
beneficial to study trends resulting from variations in parameters either from
the model (e.g. initial species concentrations or reaction rates) or from the
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Fig. 9. Expected activated MAPK at time ¢ and corresponding standard deviation
values

property specification (e.g. a time bound). Performing analysis in this way is
more likely to provide insight into the dynamics of the model or to identify
interesting or anomalous behaviour.

To illustrate this, Fig. 7 shows results obtained with PRISM for the MAPK
cascade case study when considering the expected amount of activated MAPK
at time instant ¢, as ¢t varies. The initial quantities of MAPK, MAPKK and
MAPKKK (denoted N) are 4 for Fig. 7(a) and 8 for Fig. 7(b). The initial
quantity of all remaining species in the cascade (the enzymes E1 and E2
and the phosphatases for MAPK and MAPKK) is 1. The plots in Fig. 7
also show the standard deviation of the random variable for the amount of
activated MAPK at time ¢, drawn as a pair of dotted lines. Since, the standard
deviation of a random variable X equals the square root of its variance which
equals E(X?)—E(X)2, the standard deviation (and variance) is calculated by
additionally computing the expected value at time ¢ for the reward structure:

rewards “activated_squared”
true : kpp * kpp;
endrewards

i.e. the square of the reward structure “activated” given in Fig. 6.

For the purposes of comparison, we also show results for the expected
amount of activated MAPK computed using PRISM’s discrete-event simula-
tion engine. These results are presented in Fig. 8 (for the same initial configu-
rations as those used in Fig. 7). These are generated using very small numbers
of simulation runs (10 and 100). Smoother approximations for the plots from
Fig. 7 can be obtained with higher numbers of runs.

Since it is also easy to change the initial amount N of MAPK, MAPKK
and MAPKKK in our model, we also show how the expected amount of acti-
vated MAPK over time varies for different values of N. Figure 9(a) shows the



14 Marta Kwiatkowska, Gethin Norman, and David Parker

Ml
MR
AAxxnb
TR

expected rea
u
o

30

5 8
N 10 t (seconds) N 6 10° L
(a) MAPK-MAPKK reactions (b) Time until MAPK activated

Fig. 10. Expected MAPK-MAPK reactions by t and time until all MAPK activated

expected percentage of of activated MAPK at time ¢ for values of N from 2
up to 8, and Fig. 9(b) the standard deviation for the amount of MAPK over
the same parameters.

Using the other reward structures from Fig. 6, we also presents results
for the expected number of reactions between MAPK and MAPKK up until
time ¢ (Fig. 10(a)) and the expected time until all MAPKs are activated at
the same time (Fig. 10(b)). In both cases, we vary the initial amount N of
MAPK, MAPKK and MAPKKK and, in Fig. 10(b), we also vary the initial
quantity (denoted L) of the enzyme E1.

The results demonstrate that, as N grows, the percentage of MAPK that
is eventually activated increases and the time until all MAPKs are activated
decreases. They also show the (expected) dynamics that raising species quan-
tities increases the number of reactions that occur between them. We also ob-
serve that, as NV increases, the behaviour of the PRISM model demonstrates
the same behaviour as that presented in [15] (computed through ODEs and
the reactions given in Fig. 3) where, in response to an external stimulus (E1),
the cascade acts as a switch for the activation of MAPK.

4 Related Work

In this section, we briefly review some other applications of probabilistic ver-
ification techniques to systems biology. We also describe the connections that
exist between these approaches and the PRISM tool. Figure 11 illustrates
the ways in which PRISM can interact with other tools and specification for-
malisms.

PRISM has been applied to a variety of biological case studies. In [11], it
is used to study a model of the FGF (Fibroblast Growth Factor) signalling
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Fig. 11. Language and tool connections for PRISM

pathway. The model corresponds to a single instance of the pathway, i.e. there
is at most one of each molecule or species, which has the advantage that the
resulting state space is relatively small. However, the model is still highly
complex due to the large number of different interactions that can occur in
the pathway and is sufficiently rich to explain the roles of each component
and how they interact. In [4], PRISM is used to model the RKIP-inhibited
ERK pathway where concentrations of each protein are modelled as discrete
abstract quantities. Through comparisons with simulations for a traditional
differential equation model, the authors show that accurate results can be
obtained with relatively small sets of discrete values. PRISM is used in [30] to
model codon bias, studying a range of quantitative properties of the system.
Finally, [31] uses PRISM, in combination with several other tools, to analyse
gene expression modelled using P-Systems.

Another formalism that has proved popular for modelling biological sys-
tems is stochastic process algebra. For example, PEPA [13] is used in [3] to
study the effect of RKIP on the ERK signalling pathway. The stochastic 7-
calculus [28], an extension of the m-calculus with CTMC semantics, has been
used to model many systems, see for example [29, 21]. Various tools for con-
struction and verification of PEPA models are available and, for the stochas-
tic m-calculus, simulators such as BioSpi [29] and SPiM (the Stochastic Pi-
Machine) [26] have been developed, but no model checkers. Both formalisms
can also be used in conjunction with PRISM, through language translators.
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@model:2.3.1=MAPK "MAPK"
Q@compartments
cell=1
@species
cell:el=1 "Enzyme E1"
cell:kkk=3 "MAPKKK"
cell:kkk e1=0 "MAPKKK:E1"
cell:kkkp=0 "MAPKKKx*"

@parameters
al1=0.3333333333333333
d1=150
k1=150

Q@reactions

@r=rla "MAPKKK is activated through enzyme E1 - 1a"
kkk+el -> kkk el

alxkkk*el

@r=r1d "MAPKKK is activated through enzyme E1 - 1d"
kkk_el -> kkktel

dixkkk_el

@r=r1k "MAPKKK is activated through enzyme E1 - 1k"
kkk_el-> kkkp+el

kilxkkk el

Fig. 12. Fragment of SBML-shorthand code for the MAPK cascade of Fig. 3

The PEPA translator is part of PRISM [27] and a prototype stochastic -
calculus translator has been built based on the techniques in [24].

An alternative format for representing biological models is SBML (Sys-
tems Biology Markup Language) [34], a computer-readable language based
on XML. This is intended to facilitate exchanging models between different
systems biology software tools. Biochemical reaction networks are described by
specifying the set of species in the system, the reactions they can undergo, and
the kinetic laws and parameters which govern these reactions. Again, support
for PRISM is provided through a language translator [33]. For illustration,
Fig. 12 shows a fragment of the “SBML-shorthand” [35] code which describes
the set of MAPK reactions used throughout this chapter. This simple textual
language can be automatically translated [35] into SBML. When the SBML
model produced is then converted into PRISM code [33], the resulting CTMC
is identical to the one used in this chapter.

Further mechanisms are also available for input of models into PRISM. The
tool includes a simple pre-processing language (PRISM-PP) which can be used
to automatically generate model and property specifications that contain a lot
of repetition. Markov chains can also be imported directly (through an explicit
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list of their states, transitions and rates) allowing models to be generated in
other tools and then analysed in PRISM.

Conversely, it is also possible to use external tools to analyse PRISM
models. One example is the statistical based model-checker Ymer [37], which
performs approximate CSL model checking of CTMCs expressed as PRISM
models, using discrete-event simulation and sequential acceptance sampling
(for a detailed comparison of the merits of this approach and the probabilis-
tic model checking techniques used by PRISM, see [38]). Another example
is the tool GRIP (Generic Representatives In PRISM) [7], which performs
language-level symmetry reduction of PRISM models based on the generic
representatives approach of [8]. Further support for symmetry reduction is
provided by PRISM-symm [19], a prototype extension of PRISM which uses
an efficient symbolic (MTBDD-based) implementation.

Finally, models that have been specified in the PRISM modelling language
can be constructed in PRISM, and then exported to an explicit representa-
tion of the Markov chain for analysis in other tools. In particular, this output
can be customised for the probabilistic model checkers MRMC (Markov Re-
ward Model Checker) [16] and ETMCC (the Erlangen-Twente Markov Chain
Checker) [12] which can both be used for verifying CTMCs against CSL speci-
fications. MRMC also supports rewards-based property specifications through
the logic CSRL [6]. Models, in addition to other PRISM outputs such as
numerical results or simulation traces, can be imported into more general-
purpose tools such as MATLAB [23] and MAPLE [22].

5 Conclusions

We have illustrated how probabilistic model checking and, in particular, the
probabilistic model checker PRISM can be employed as a framework for the
analysis of biological pathways. One of the key strengths of this approach
is that it allows for the computation of exact quantitative measures relating
to the evolution of the system over time. Since, as we have demonstrated, it
is possible to specify and verify a wide variety of such measures, a detailed,
quantitative analysis of the interactions between the components of a pathway
is possible.

The principal challenge remaining for the application of probabilistic
model checking to biological systems, as in so many other domains, is the
scalability of the techniques to ever larger systems and models. There is hope
that some of the techniques that have already been developed in the field of
formal verification, such as symmetry reduction, bisimulation minimisation
and abstraction, will prove beneficial in this area. For further details on such
approaches and pointers to related work, see for example [11].

Acknowledgement. This work was supported in part by EPSRC grants EP/D07956X
and EP/D076625.
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