CATEGORIES AND NONASSOCIATIVE C*-ALGEBRAS
IN QUANTUM FIELD THEORY

Keith Hannabuss (Oxford)

Categories, Logic, and Foundations of Physics,
Computing Laboratory, Oxford,

23 August 2008



=~ W

OUTLINE

. Quantum mechanics and C*-algebras.

Gel'fand’s Theorem and the Dixmier-Douady obstruction.
Twisted compact operators.

T-duality.

5. Monoidal categories.

. Nonassociative C*-algebras.



C*-ALGEBRAS AND QUANTUM MECHANICS

The observables generate an algebra of operators on a Hilbert space H,
closed under addition, multiplication, and adjoints.

One can restrict to bounded operators B(H):
1Al = sup{[[A9 ]| : [[9[| = 1} < o0

A C*-algebra is a norm-closed subalgebra of B(H) for some Hilbert space H.



EXAMPLE: THE COMPACT OPERATORS ~ THE CCR ALGEBRA

The compact operators KC(H) are the C*-algebra generated by the rank-one
operators in B(H), i.e. those of the form

€)Yl = ¥ = &n, ).

If H = L?(X), (normalisable wave functions on X, the compact operators K
can be represented as integral operators

(K)(x) = /X K (2, 9)6(y) dy

where the integral kernel K(z,y) is a limit of separable kernels

Kn(z,y) = Z aj(z)B;(y).



THE COMPOSITION AND ADJOINT OF COMPACT OPERATORS

The composition is then
(£1 0 K3)(x, 2) =/ Ki(z,y)Ka(y, 2)) dy
X

The adjoint is

K*(z,y) = K(y,z)

cf matrices when integral is replaced by a sum.



EXAMPLE: FUNCTION ALGEBRAS

Take E a locally compact Hausdorff topological space with a measure p,
let H = L?(E, p),

multiplication by compactly supported, continuous, complex-valued functions
f c CK(E)

(f- ) (@) = fla)p(x)
forx € E, v € L*(FE, i) gives a subalgebra of B(H), with

(fro fo)(z) = fi@) f2(z),  f7(z) = f(z)



GEL’FAND’S THEOREM

Every commutative C*-algebra is C'x (F) for some locally compact Hausdorff

space F, and

the category of commutative C*-algebras is contravariantly equivalent to the

category of locally compact Hausdorff spaces, via the functors
spec(A) — A

where the spectrum of A

spec(A) = equivalence classes of irreducible representations ~ maximal ideals.



CONTINUOUS TRACE ALGEBRAS

What if A is not commutative?

There is a broader class, the continuous trace C*-algebras which are given by
algebra-valued functions over the spectrum.

Continuous trace C*-algebra A ~ sections of K(H)-bundle over spectrum
E = specA (equivalence classes of irreducible representations).

The bundle structure is trivial if and only if the Dixmier—Douady obstruction
6 € H*(E,T) = H3(E,Z) is trivial, (Brauer 1927, ..., Dixmier—-Douady
1964)



DIXMIER—DOUADY THEOREM.

For every such E/ and § € H?(E,Z) there is a C*-algebra A = CT(E, )
with spectrum E and Dixmier—Douady obstruction ¢, and it is unique up to
Morita equivalence.



DIXMIER—DOUADY THEOREM.

For every such E/ and § € H?(E,Z) there is a C*-algebra A = CT(E, )
with spectrum E and Dixmier—Douady obstruction ¢, and it is unique up to

Morita equivalence.

Algebras A; and A5 are Morita equivalent if there is an additive equivalence

between the categories of A;-modules and A5-modules.

Raeburn, Kumjian, Muhly, Renault, Williams: groupoid C* algebra proof.



MORITA EQUIVALENCE

THEOREM (MORITA-RIEFFEL) For each additive equivalence from
Ai-modules to As-modules there exists a left As-right A;-bimodule E such
that the equivalence is given by F ® 4, -.

The compact operators KC(H) are Morita equivalent to C via the left
IC(H)-right C-bimodule H.

(Uniquenes of the Canonical Commutation Relations)



SUMMARY

loc. cpt Hausdorff space  «— comm. C*-algebra
cpt Hausdorff space — comm. C*-algebra with 1
b — Co(E)
spectrum spec(.A) — algebra A

noncommutative geometry «—  continuous trace C*-algebra

flux H € H3(E,7Z) e DD class § € H*(E, T)



TWISTED COMPACT OPERATORS

Take the same integral operators K(L?(X)), but with a composition

Ky« Ko)(a,2) = [ FHED0 020

for a scalar function ¢p: X x X x X - U(1) ={z€C:|z| =1}.

Problem this is not generally associative:
(K1 * KQ) *Kg 7£ Kl * (K2 *Kg)

unless ¢($,y, Z)¢(IE, va) - ¢($7y7w)¢(y7 Z,’LU)



EINSTEIN’S PRINCIPLE OF GENERAL COVARIANCE:

Physical theories should be completely invariant under coordinate
transformations.

QUANTUM FIELD THEORY AND STRING THEORY:

Symmetries extend to phase space.

configuration space R” «— momentum space R”



T-DUALITY: R < R~! PRESERVES THE PHYSICS

Y

Y

Y

STRING THEORY (HULL AND TOWNSEND)

T-duality: Momentum and winding number interchange

Added ingredient: flux H € H3(FE)




ROUGH PICTURE OF T-DUALITY

T-duality interchanges two principal torus bundles over the same base, and
interchanges the curvature of each with the H-flux (H € Q°(F) or
H € Q3(F)) of the other.

(E,H) (E, H) dual

T T
M base M = E/T ~ E/T

T=TF=RF/ZF =T



EXAMPLES

It will suffice to consider E = T3, T =T* (k < 3), and M = T3~*, with H
k times the volume 3-form.



KNOWN GEOMETRIC DUAL PRINCIPAL TORUS BUNDLES
H = Hs + Hy + Hy + Hy where H, € QP (M, A>7PY)
with t the dual of the Lie algebra of T..

dim T’ H

1 arbitrary Bouwknegt, Evslin, Mathai | 2004
arbitrary | Hi, Hy = 0 | Bouwknegt, KCH, Mathai 2004
arbitrary | Hyp =0 Mathai, Rosenberg 2004
arbitrary | arbitrary Bouwknegt, KCH, Mathai | 2005,6




EXAMPLE

T3 with volume form: volume is generated by a,b,c € R? is
la,b,c] = a.b x c. for a,b,c € R

e as a T-bundle over T?: H = H, geometric dual;



EXAMPLE

T3 with volume form: volume is generated by a,b,c € R? is
la,b,c] = a.b x c. for a,b,c € R

e as a T-bundle over T?: H = H, geometric dual;

e as a T?-bundle over T: H = Hy: noncommutative dual
(Mathai—Rosenberg 2004)



EXAMPLE

T3 with volume form: volume is generated by a,b,c € R? is
la,b,c] = a.b x c. for a,b,c € R

e as a T-bundle over T?: H = H, geometric dual;

e as a T?-bundle over T: H = Hy: noncommutative dual
(Mathai—Rosenberg 2004)

e as a T2 bundle over a point: H = Hy: nonassociative dual (Bouwknegt,
KCH, Mathai 2005,6).



H-FLUX

Gel'fand’s theorem allows one to replace E' by a C*-algebra.

The exact sequence of groups

0O —-Z—-R—-T—0

gives an isomorphism H?(E,7) =~ H*(E,T):
Identify H with the Dixmier—Douady class 6 and replace (E, H) by CT(FE, ).



AUTOMORPHISM GROUPS

Now consider a principal T'= G/N-bundle E over M.
Does GG act as automorphisms of CT(FE,)?

Suppose « : G — Aut(.A), and the same subgroup NN stabilises each

irreducible.

Then E = spec(A) is a T = G/N-bundle over M = spec(A)/G.

If G = R every principal G/N-bundle arises in this way, but for general

groups G this is not always true.



CROSSED PRODUCTS

Crossed product A x G = Cy(G, A)
9@ = [ fwelat@dy. 1 (@) = aclf )

FACTS.

1. Under suitable assumptions A= Ax G is also a continuous trace
algebra with an action of the dual group G;

2. (TAKAI-TAKESAKI DUALITY) AxG=2 A K(L?(G)) ~p A.



DUuALITY

spec(A x N)
T T
(spec(A),9) (spec(A x G), )
T
spec(A)/G

T is isomorphic to the group-theoretic dual of V.

Connes’ Thom isomorphism theorem: K, (A x RP) =~ K, p(A).



DUuALITY

spec(A)/G

T is isomorphic to the group-theoretic dual of V.

Connes’ Thom isomorphism theorem: K, (A x RP) =~ K, p(A).



REMAINING CASE

PuzzLE:

Hy # 0 never seems to show up in C*-algebra literature.

There are spaces with any H, so problem must lie with group action.



NONASSOCIATIVE CASE

Inner automorphisms act trivially on spectrum.

G — Out(A) = Aut(A)/Inn(A)

Lift to o : G — Aut(A): azay, = ad(u(z,y))og,



NONASSOCIATIVE CASE

Inner automorphisms act trivially on spectrum.

G — Out(A) = Aut(A)/Inn(A)
Lift to o : G — Aut(A): azay, = ad(u(z,y))am,

ad(u(z,y))ad(u(zy, 2))(ay). = ad(az[uly, 2)])ad(u(z, yz)agzy.)



NONASSOCIATIVE CASE

Inner automorphisms act trivially on spectrum.

G — Out(A) = Aut(A)/Inn(A)
Lift to o : G — Aut(A): azay, = ad(u(z,y))am,
ad(u(z,y))ad(u(zy, 2))a(zy). = ad(az[uy, 2)])ad(u(z, yz) o)

O, y, 2)u(z, y))u(ry, 2) = azlu(y, 2)|u(z, yz)



PROPERTIES OF ¢

Central, and satisfies pentagonal cocycle identity
o(z,y,2)p(x, yz, w)P(y, z,w) = d(xy, 2, w)P(z, y, z2w)
@ is independent of liftings up to coboundaries

n(z, y)n(zy, z)/ny, z)n(z, yz)

so only H?(G,T) class of ¢ matters (but cf. Majid)

d(exp(X),exp(Y),exp(Z)) = exp(iHo(€x, &y, €2))

where £x is vector field generated by X.

For T3 with k x vol: ¢(a,b,c) = exp(2mik|a, b, c])



MONOIDAL CATEGORIES

T-Category Cg of G-modules ~ Co(G)-modules with G-morphisms, and

e module tensor product (f € Cy(G) acting via comultiplication
(Af)(z,y) = f(zy)), T action multiplies by f*(z) = f(z);




MONOIDAL CATEGORIES

T-Category Cg of G-modules ~ Co(G)-modules with G-morphisms, and

e module tensor product (f € Cy(G) acting via comultiplication

(Af)(z,y) = f(wy)), T action multiplies by f*(x) = f(x);

e identity object: trivial module C (action by the counit e(f) = f(1));



MONOIDAL CATEGORIES

T-Category Cg of G-modules ~ Co(G)-modules with G-morphisms, and

e module tensor product (f € Cy(G) acting via comultiplication

(Af)(x,y) = f(zy)), T action multiplies by f*(z) = f(x);
e identity object: trivial module C (action by the counit e(f) = f(1));

e associator ®: A® (B®(C) — (A® B) ® C ~ the action of

b OGxGxG)=0(G)e0(G) 2 C(Q).



THE PENTAGONAL IDENTITY

The pentagonal cocycle identity for ¢ gives

A® (B® (C®D)) — (A® B)® (C® D)
/ N\
AR (BeC)®D) (A®B)®C)®D
N\ /

(A® (B®C))®D



ALGEBRAS

DEF. An algebra in Cg is an object A with a morphism A® A — A
consistent with ®:

A (ARA) — AA — A

¢ | |
A A A — AA — A

The action of G is automatically by automorphisms.

Cc is a star/bar/dagger category and so one can also define C*-algebras and

Hilbert spaces in Cg.



EXAMPLES

e Torus bundle T? over a point, with Hy = kvol

Associated antisymmetric form on a,b,c € t = R? is then given by

#(a, b, ¢) = exp(—2rif(a, b, c)) = exp(—2knifa, b, ]



EXAMPLES

e Torus bundle T% over a point, with Hy = kvol

Associated antisymmetric form on a,b,c € t = R? is then given by

® .AO:(C, G:ZQXZQXZQN{O,].}BgRg
gb(avbve) - (_1)[a,b,c]7

suitable u gives the octonions (cf Albuquerque and Majid).



FADEEV/GAUSS ASSOCIATIVE ANOMALY

Magnetic translations T, = exp(27mia - V)

Ta

T, and Ty, fail to commute by a factor exp(mi®), where ® is the flux
through face spanned by a and b.

Ta, Ty, and T fail to associate by a factor exp(7wi®), where ® is the flux out
of the tetrahedron spanned by a, b, and c.

Dirac’'s monopole argument.

But cf. Carey/Mickelsson



MODULES

DEF. An A-module in Cq is an object M with a morphism A® M — M

consistent with ®:

AQ(AQM) — AM — M

¢ | |
AA) M — ARXM — M

The actions of A and G on M are automatically consistent in that
glam] = (gla])(g|m]), for all a € A and m € M, that is one has a covariant

AN

representation of (G, .A), which is really a representation of A x G.



THE TWISTED COMPACT OPERATORS

Let H be a Hilbert space, as right C-module (with C the identity object).

Use the Rieffel construction to obtain rank-one operators

1€)(nl¢ = P&, )

These rank-one operators generate the twisted compact operators having H

as a module.



THE TWISTED COMPACT OPERATORS

When H = L?(X) these twisted compact operators can be represented as
integral operators with product

X, y)KQ (y7 Z)
d(x, Y, 2)

(Kl*K2)($aZ):/XK1( dy



THE TWISTED BOUNDED OPERATORS

In the usual case the bounded operators can be characterised as the

adjointable operators.

Now an adjointable operator A is one for which there exists
A* £ — A*E = €A satisfying

(A%, m) = (A, n) = (&, An)



