Categories and nonassociative C*-ALgebras
in Quantum Field Theory

Keith Hannabuss (Oxford)

Categories, Logic, and Foundations of Physics, Computing Laboratory, Oxford,

23 August 2008

Outline

1. Quantum mechanics and C^{*}-algebras.
2. Gel'fand's Theorem and the Dixmier-Douady obstruction.
3. Twisted compact operators.
4. T-duality.
5. Monoidal categories.
6. Nonassociative C*-algebras.

C*-ALGEBRAS AND QUANTUM MECHANICS

The observables generate an algebra of operators on a Hilbert space \mathcal{H}, closed under addition, multiplication, and adjoints.
One can restrict to bounded operators $\mathcal{B}(\mathcal{H})$:

$$
\|A\|=\sup \{\|A \psi\|:\|\psi\|=1\}<\infty
$$

A C*-algebra is a norm-closed subalgebra of $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H}.

The compact operators $\mathcal{K}(\mathcal{H})$ are the C^{*}-algebra generated by the rank-one operators in $\mathcal{B}(\mathcal{H})$, i.e. those of the form

$$
|\xi\rangle\langle\eta|: \psi \mapsto \xi\langle\eta, \psi\rangle .
$$

If $\mathcal{H}=L^{2}(X)$, (normalisable wave functions on X, the compact operators K can be represented as integral operators

$$
(K \psi)(x)=\int_{X} K(x, y) \psi(y) d y
$$

where the integral kernel $K(x, y)$ is a limit of separable kernels

$$
K_{N}(x, y)=\sum_{j=1}^{N} \alpha_{j}(x) \beta_{j}(y)
$$

The composition and adjoint of compact operators

The composition is then

$$
\left.\left(K_{1} \circ K_{2}\right)(x, z)=\int_{X} K_{1}(x, y) K_{2}(y, z)\right) d y
$$

The adjoint is

$$
K^{*}(x, y)=\overline{K(y, x)}
$$

cf matrices when integral is replaced by a sum.

Take E a locally compact Hausdorff topological space with a measure μ, let $\mathcal{H}=L^{2}(E, \mu)$,
multiplication by compactly supported, continuous, complex-valued functions $f \in C_{K}(E)$

$$
(f . \psi)(x)=f(x) \psi(x)
$$

for $x \in E, \psi \in L^{2}(E, \mu)$ gives a subalgebra of $\mathcal{B}(\mathcal{H})$, with

$$
\left(f_{1} \circ f_{2}\right)(x)=f_{1}(x) f_{2}(x), \quad f^{*}(x)=\overline{f(x)}
$$

Every commutative C^{*}-algebra is $C_{K}(E)$ for some locally compact Hausdorff space E, and
the category of commutative C^{*}-algebras is contravariantly equivalent to the category of locally compact Hausdorff spaces, via the functors

$$
\begin{aligned}
\operatorname{spec}(\mathcal{A}) & \rightarrow \mathcal{A} \\
E & \leftarrow C_{K}(E)
\end{aligned}
$$

where the spectrum of \mathcal{A}
$\operatorname{spec}(\mathcal{A})=$ equivalence classes of irreducible representations \sim maximal ideals.

What if \mathcal{A} is not commutative?
There is a broader class, the continuous trace C^{*}-algebras which are given by algebra-valued functions over the spectrum.

Continuous trace \mathcal{C}^{*}-algebra $\mathcal{A} \sim$ sections of $\mathcal{K}(\mathcal{H})$-bundle over spectrum $E=\operatorname{spec} \mathcal{A}$ (equivalence classes of irreducible representations).

The bundle structure is trivial if and only if the Dixmier-Douady obstruction $\delta \in H^{2}(E, \mathbb{T}) \cong H^{3}(E, \mathbb{Z})$ is trivial, (Brauer 1927, ..., Dixmier-Douady 1964)

Dixmier-Douady Theorem.

For every such E and $\delta \in H^{3}(E, \mathbb{Z})$ there is a C*-algebra $\mathcal{A}=C T(E, \delta)$ with spectrum E and Dixmier-Douady obstruction δ, and it is unique up to Morita equivalence.

For every such E and $\delta \in H^{3}(E, \mathbb{Z})$ there is a C^{*}-algebra $\mathcal{A}=C T(E, \delta)$ with spectrum E and Dixmier-Douady obstruction δ, and it is unique up to Morita equivalence.

Algebras \mathcal{A}_{1} and \mathcal{A}_{2} are Morita equivalent if there is an additive equivalence between the categories of \mathcal{A}_{1}-modules and \mathcal{A}_{2}-modules.

Raeburn, Kumjian, Muhly, Renault, Williams: groupoid C* algebra proof.

Morita Equivalence

Theorem (Morita-Rieffel) For each additive equivalence from \mathcal{A}_{1}-modules to \mathcal{A}_{2}-modules there exists a left \mathcal{A}_{2}-right \mathcal{A}_{1}-bimodule E such that the equivalence is given by $E \otimes_{\mathcal{A}_{1}} \cdot$

The compact operators $\mathcal{K}(\mathcal{H})$ are Morita equivalent to \mathbb{C} via the left $\mathcal{K}(\mathcal{H})$-right \mathbb{C}-bimodule \mathcal{H}.
(Uniquenes of the Canonical Commutation Relations)

loc. cpt Hausdorff space cpt Hausdorff space		comm. C^{*}-algebra comm. C*-algebra with 1
E	\longrightarrow	$C_{0}(E)$
spectrum $\operatorname{spec}(\mathcal{A})$	\longleftarrow	algebra \mathcal{A}
noncommutative geometry $\text { flux } H \in H^{3}(E, \mathbb{Z})$	\longrightarrow	continuous trace C^{*}-algebra DD class $\delta \in H^{2}(E, \mathbb{T})$

Twisted COMPACT OPERATORS

Take the same integral operators $\mathcal{K}\left(L^{2}(X)\right)$, but with a composition

$$
\left(K_{1} * K_{2}\right)(x, z)=\int_{X} \frac{\left.K_{1}(x, y) K_{2}(y, z)\right)}{\phi(x, y, z)} d y
$$

for a scalar function $\phi: X \times X \times X \rightarrow U(1)=\{z \in \mathbb{C}:|z|=1\}$.
Problem this is not generally associative:

$$
\left(K_{1} * K_{2}\right) * K_{3} \neq K_{1} *\left(K_{2} * K_{3}\right)
$$

unless $\phi(x, y, z) \phi(x, z, w)=\phi(x, y, w) \phi(y, z, w)$

Einstein's principle of General Covariance:

Physical theories should be completely invariant under coordinate transformations.

Quantum Field Theory and String Theory:
Symmetries extend to phase space.

$$
\text { configuration space } \mathbb{R}^{D} \longleftrightarrow \text { momentum space } \widehat{\mathbb{R}}^{D}
$$

T-Duality: $R \leftrightarrow R^{-1}$ PRESERVES THE PHYsics

String theory (Hull and Townsend)
T-duality: Momentum and winding number interchange

Added ingredient: flux $H \in H^{3}(E)$

T-duality interchanges two principal torus bundles over the same base, and interchanges the curvature of each with the H-flux $\left(H \in \Omega^{3}(E)\right.$ or $\left.\widehat{H} \in \Omega^{3}(\widehat{E})\right)$ of the other.

$$
T=\mathbb{T}^{k}=\mathbb{R}^{k} / \mathbb{Z}^{k} \cong \widehat{T}
$$

It will suffice to consider $E=\mathbb{T}^{3}, T=\mathbb{T}^{k}(k \leq 3)$, and $M=\mathbb{T}^{3-k}$, with H k times the volume 3-form.

$$
\mathbb{T}^{k} \begin{gathered}
\mathbb{T}^{3} \\
\downarrow \\
\mathbb{T}^{3-k}
\end{gathered}
$$

Known geometric dual principal torus bundles

$$
H=H_{3}+H_{2}+H_{1}+H_{0} \text { where } H_{p} \in \Omega^{p}\left(M, \wedge^{3-p} \widehat{\mathfrak{t}}\right)
$$

with $\widehat{\mathfrak{t}}$ the dual of the Lie algebra of T.

$\operatorname{dim} T$	H		
1	arbitrary	Bouwknegt, Evslin, Mathai	2004
arbitrary	$H_{1}, H_{0}=0$	Bouwknegt, KCH, Mathai	2004
arbitrary	$H_{0}=0$	Mathai, Rosenberg	2004
arbitrary	arbitrary	Bouwknegt, KCH, Mathai	2005,6

\mathbb{T}^{3} with volume form: volume is generated by $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{3}$ is $[\mathbf{a}, \mathbf{b}, \mathbf{c}]=\mathbf{a} . \mathbf{b} \times \mathbf{c}$. for $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{3}$.

- as a \mathbb{T}-bundle over $\mathbb{T}^{2}: H=H_{2}$ geometric dual;
\mathbb{T}^{3} with volume form: volume is generated by $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{3}$ is $[\mathbf{a}, \mathbf{b}, \mathbf{c}]=\mathbf{a} . \mathbf{b} \times \mathbf{c}$. for $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{3}$.
- as a \mathbb{T}-bundle over $\mathbb{T}^{2}: H=H_{2}$ geometric dual;
- as a \mathbb{T}^{2}-bundle over $\mathbb{T}: H=H_{1}$: noncommutative dual (Mathai-Rosenberg 2004)
\mathbb{T}^{3} with volume form: volume is generated by $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{3}$ is
$[\mathbf{a}, \mathbf{b}, \mathbf{c}]=\mathbf{a} . \mathbf{b} \times \mathbf{c}$. for $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{3}$.
- as a \mathbb{T}-bundle over $\mathbb{T}^{2}: H=H_{2}$ geometric dual;
- as a \mathbb{T}^{2}-bundle over $\mathbb{T}: H=H_{1}$: noncommutative dual (Mathai-Rosenberg 2004)
- as a \mathbb{T}^{3} bundle over a point: $H=H_{0}$: nonassociative dual (Bouwknegt, KCH, Mathai 2005,6).

Gel'fand's theorem allows one to replace E by a C*-algebra.
The exact sequence of groups

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathbb{R} \rightarrow \mathbb{T} \rightarrow 0
$$

gives an isomorphism $H^{3}(E, \mathbb{Z}) \cong H^{2}(E, \mathbb{T})$:
Identify H with the Dixmier-Douady class δ and replace (E, H) by $C T(E, \delta)$.

Automorphism groups

Now consider a principal $T=G / N$-bundle E over M.
Does G act as automorphisms of $C T(E, \delta)$?

Suppose $\alpha: G \rightarrow \operatorname{Aut}(\mathcal{A})$, and the same subgroup N stabilises each irreducible.

Then $E=\operatorname{spec}(\mathcal{A})$ is a $T=G / N$-bundle over $M=\operatorname{spec}(\mathcal{A}) / G$.

If $G=\mathbb{R}$ every principal G / N-bundle arises in this way, but for general groups G this is not always true.

Crossed product $\mathcal{A} \rtimes G=C_{0}(G, \mathcal{A})$

$$
(f * g)(x)=\int_{G} f(y) \alpha_{y}\left[g\left(y^{-1} x\right)\right] d y, \quad f^{*}(x)=\alpha_{x}\left[f\left(x^{-1}\right)\right]^{*}
$$

FACTS.

1. Under suitable assumptions $\widehat{\mathcal{A}}=\mathcal{A} \rtimes G$ is also a continuous trace algebra with an action of the dual group \widehat{G};
2. (Takai-Takesaki duality) $\widehat{\mathcal{A}} \rtimes \widehat{G} \cong \mathcal{A} \otimes \mathcal{K}\left(L^{2}(G)\right) \sim_{M} \mathcal{A}$.

DuAlity

\widehat{T} is isomorphic to the group-theoretic dual of N.

Connes' Thom isomorphism theorem: $K_{*}\left(\mathcal{A} \rtimes \mathbb{R}^{D}\right) \cong K_{*+D}(\mathcal{A})$.

DuAlity

\widehat{T} is isomorphic to the group-theoretic dual of N.

Connes' Thom isomorphism theorem: $K_{*}\left(\mathcal{A} \rtimes \mathbb{R}^{D}\right) \cong K_{*+D}(\mathcal{A})$.

Remaining case

PuZzLE:
$H_{0} \neq 0$ never seems to show up in C^{*}-algebra literature.

There are spaces with any H, so problem must lie with group action.

Nonassociative case

Inner automorphisms act trivially on spectrum.

$$
G \rightarrow \operatorname{Out}(\mathcal{A})=\operatorname{Aut}(\mathcal{A}) / \operatorname{Inn}(\mathcal{A})
$$

Lift to $\alpha: G \rightarrow \operatorname{Aut}(\mathcal{A}): \alpha_{x} \alpha_{y}=\operatorname{ad}(u(x, y)) \alpha_{x y}$

Nonassociative case

Inner automorphisms act trivially on spectrum.

$$
G \rightarrow \operatorname{Out}(\mathcal{A})=\operatorname{Aut}(\mathcal{A}) / \operatorname{Inn}(\mathcal{A})
$$

Lift to $\alpha: G \rightarrow \operatorname{Aut}(\mathcal{A}): \alpha_{x} \alpha_{y}=\operatorname{ad}(u(x, y)) \alpha_{x y}$

$$
\operatorname{ad}(u(x, y)) \operatorname{ad}(u(x y, z)) \alpha_{(x y) z}=\operatorname{ad}\left(\alpha_{x}[u(y, z)]\right) \operatorname{ad}\left(u(x, y z) \alpha_{x(y z)}\right.
$$

Nonassociative case

Inner automorphisms act trivially on spectrum.

$$
G \rightarrow \operatorname{Out}(\mathcal{A})=\operatorname{Aut}(\mathcal{A}) / \operatorname{Inn}(\mathcal{A})
$$

Lift to $\alpha: G \rightarrow \operatorname{Aut}(\mathcal{A}): \alpha_{x} \alpha_{y}=\operatorname{ad}(u(x, y)) \alpha_{x y}$

$$
\begin{gathered}
\operatorname{ad}(u(x, y)) \operatorname{ad}(u(x y, z)) \alpha_{(x y) z}=\operatorname{ad}\left(\alpha_{x}[u(y, z)]\right) \operatorname{ad}\left(u(x, y z) \alpha_{x(y z)}\right. \\
\phi(x, y, z) u(x, y)) u(x y, z)=\alpha_{x}[u(y, z)] u(x, y z)
\end{gathered}
$$

Properties of ϕ

Central, and satisfies pentagonal cocycle identity

$$
\phi(x, y, z) \phi(x, y z, w) \phi(y, z, w)=\phi(x y, z, w) \phi(x, y, z w)
$$

ϕ is independent of liftings up to coboundaries

$$
\eta(x, y) \eta(x y, z) / \eta(y, z) \eta(x, y z)
$$

so only $H^{3}(G, \mathbb{T})$ class of ϕ matters (but cf. Majid)

$$
\phi(\exp (X), \exp (Y), \exp (Z))=\exp \left(i H_{0}\left(\xi_{X}, \xi_{Y}, \xi_{Z}\right)\right)
$$

where ξ_{X} is vector field generated by X.
For \mathbb{T}^{3} with $k \times$ vol: $\quad \phi(\mathbf{a}, \mathbf{b}, \mathbf{c})=\exp (2 \pi i k[\mathbf{a}, \mathbf{b}, \mathbf{c}])$
\dagger-Category \mathcal{C}_{G} of \widehat{G}-modules $\sim C_{0}(G)$-modules with G-morphisms, and

- module tensor product $\left(f \in C_{0}(G)\right.$ acting via comultiplication
$(\Delta f)(x, y)=f(x y)), \dagger$ action multiplies by $f^{*}(x)=\overline{f(x)}$;
\dagger-Category \mathcal{C}_{G} of \widehat{G}-modules $\sim C_{0}(G)$-modules with G-morphisms, and
- module tensor product ($f \in C_{0}(G)$ acting via comultiplication
$(\Delta f)(x, y)=f(x y)), \dagger$ action multiplies by $f^{*}(x)=\overline{f(x)}$;
- identity object: trivial module \mathbb{C} (action by the counit $\epsilon(f)=f(1)$);
\dagger-Category \mathcal{C}_{G} of \widehat{G}-modules $\sim C_{0}(G)$-modules with G-morphisms, and
- module tensor product $\left(f \in C_{0}(G)\right.$ acting via comultiplication
$(\Delta f)(x, y)=f(x y)), \dagger$ action multiplies by $f^{*}(x)=\overline{f(x)}$;
- identity object: trivial module \mathbb{C} (action by the counit $\epsilon(f)=f(1)$);
- associator $\Phi: A \otimes(B \otimes C) \rightarrow(A \otimes B) \otimes C \sim$ the action of

$$
\phi \in C(G \times G \times G)=C(G) \otimes C(G) \otimes C(G)
$$

The Pentagonal identity

The pentagonal cocycle identity for ϕ gives

```
    A \otimes(\mathcal{B}\otimes(\mathcal{C}\otimes\mathcal{D}))\quad\longrightarrow\quad(\mathcal{A}\otimes\mathcal{B})\otimes(\mathcal{C}\otimes\mathcal{D})
A}\otimes((\mathcal{B}\otimes\mathcal{C})\otimes\mathcal{D})\quad((\mathcal{A}\otimes\mathcal{B})\otimes\mathcal{C})\otimes\mathcal{D
(\mathcal{A}\otimes(\mathcal{B}\otimes\mathcal{C}))\otimes\mathcal{D}
```


Algebras

DEF. An algebra in \mathcal{C}_{G} is an object \mathcal{A} with a morphism $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ consistent with Φ :

$$
\begin{array}{cccc}
\mathcal{A} \otimes(\mathcal{A} \otimes \mathcal{A}) & \longrightarrow \mathcal{A} \otimes \mathcal{A} & \longrightarrow & \mathcal{A} \\
\Phi \downarrow & & & \\
(\mathcal{A} \otimes \mathcal{A}) \otimes \mathcal{A} & \longrightarrow \mathcal{A} \otimes \mathcal{A} & \longrightarrow & \mathcal{A}
\end{array}
$$

The action of \widehat{G} is automatically by automorphisms.
\mathcal{C}_{G} is a star/bar/dagger category and so one can also define C^{*}-algebras and Hilbert spaces in \mathcal{C}_{G}.

- Torus bundle \mathbb{T}^{3} over a point, with $H_{0}=k \mathrm{vol}$

Associated antisymmetric form on $\mathbf{a}, \mathbf{b}, \mathbf{c} \in t=\mathbb{R}^{3}$ is then given by

$$
\phi(\mathbf{a}, \mathbf{b}, \mathbf{c})=\exp (-2 \pi i f(\mathbf{a}, \mathbf{b}, \mathbf{c}))=\exp (-2 k \pi i[\mathbf{a}, \mathbf{b}, \mathbf{c}])
$$

- Torus bundle \mathbb{T}^{3} over a point, with $H_{0}=k \mathrm{vol}$

Associated antisymmetric form on $\mathbf{a}, \mathbf{b}, \mathbf{c} \in t=\mathbb{R}^{3}$ is then given by

$$
\phi(\mathbf{a}, \mathbf{b}, \mathbf{c})=\exp (-2 \pi i f(\mathbf{a}, \mathbf{b}, \mathbf{c}))=\exp (-2 k \pi i[\mathbf{a}, \mathbf{b}, \mathbf{c}])
$$

- $\mathcal{A}_{0}=\mathbb{C}, G=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \sim\{0,1\}^{3} \subseteq \mathbb{R}^{3}$

$$
\phi(\mathbf{a}, \mathbf{b}, \mathbf{c})=(-1)^{[\mathbf{a}, \mathbf{b}, \mathbf{c}]}
$$

suitable u gives the octonions (cf Albuquerque and Majid).

Magnetic translations $T_{\mathbf{a}}=\exp (2 \pi i \mathbf{a} \cdot \nabla)$

$T_{\mathbf{a}}$ and $T_{\mathbf{b}}$ fail to commute by a factor $\exp (\pi i \Phi)$, where Φ is the flux through face spanned by \mathbf{a} and \mathbf{b}.
$T_{\mathbf{a}}, T_{\mathbf{b}}$, and $T_{\mathbf{c}}$ fail to associate by a factor $\exp (\pi i \Phi)$, where Φ is the flux out of the tetrahedron spanned by \mathbf{a}, \mathbf{b}, and \mathbf{c}.
Dirac's monopole argument.
But cf. Carey/Mickelsson

Modules

DEF. An \mathcal{A}-module in \mathcal{C}_{G} is an object M with a morphism $\mathcal{A} \otimes M \rightarrow M$ consistent with Φ :

The actions of \mathcal{A} and \widehat{G} on M are automatically consistent in that $g[a m]=(g[a])(g[m])$, for all $a \in \mathcal{A}$ and $m \in M$, that is one has a covariant representation of $(\widehat{G}, \mathcal{A})$, which is really a representation of $\mathcal{A} \rtimes \widehat{G}$.

Let \mathcal{H} be a Hilbert space, as right \mathbb{C}-module (with \mathbb{C} the identity object).

Use the Rieffel construction to obtain rank-one operators

$$
|\xi\rangle\langle\eta| \zeta=\Phi(\xi\langle\eta, \zeta\rangle)
$$

These rank-one operators generate the twisted compact operators having \mathcal{H} as a module.

The Twisted compact operators

When $\mathcal{H}=L^{2}(X)$ these twisted compact operators can be represented as integral operators with product

$$
\left(K_{1} * K_{2}\right)(x, z)=\int_{X} \frac{K_{1}(x, y) K_{2}(y, z)}{\phi(x, y, z)} d y
$$

The Twisted bounded operators

In the usual case the bounded operators can be characterised as the adjointable operators.

Now an adjointable operator A is one for which there exists $A^{*}: \xi \rightarrow A^{*} \xi \equiv \xi A$ satisfying

$$
\left\langle A^{*} \xi, \eta\right\rangle \equiv\langle\xi A, \eta\rangle=\Phi(\langle\xi, A \eta\rangle
$$

