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C∗-algebras and quantum mechanics

The observables generate an algebra of operators on a Hilbert space H,

closed under addition, multiplication, and adjoints.

One can restrict to bounded operators B(H):

‖A‖ = sup{‖Aψ‖ : ‖ψ‖ = 1} <∞

A C∗-algebra is a norm-closed subalgebra of B(H) for some Hilbert space H.



Example: the compact operators ∼ the CCR Algebra

The compact operators K(H) are the C∗-algebra generated by the rank-one

operators in B(H), i.e. those of the form

|ξ〉〈η| : ψ 7→ ξ〈η, ψ〉.

If H = L2(X), (normalisable wave functions on X, the compact operators K

can be represented as integral operators

(Kψ)(x) =
∫

X

K(x, y)ψ(y) dy

where the integral kernel K(x, y) is a limit of separable kernels

KN (x, y) =
N∑

j=1

αj(x)βj(y).



The composition and adjoint of compact operators

The composition is then

(K1 ◦K2)(x, z) =
∫

X

K1(x, y)K2(y, z)) dy

The adjoint is

K∗(x, y) = K(y, x)

cf matrices when integral is replaced by a sum.



Example: function algebras

Take E a locally compact Hausdorff topological space with a measure µ,

let H = L2(E,µ),

multiplication by compactly supported, continuous, complex-valued functions

f ∈ CK(E)
(f.ψ)(x) = f(x)ψ(x)

for x ∈ E, ψ ∈ L2(E,µ) gives a subalgebra of B(H), with

(f1 ◦ f2)(x) = f1(x)f2(x), f∗(x) = f(x)



Gel’fand’s Theorem

Every commutative C∗-algebra is CK(E) for some locally compact Hausdorff

space E, and

the category of commutative C*-algebras is contravariantly equivalent to the

category of locally compact Hausdorff spaces, via the functors

spec(A) → A

E ← CK(E)

where the spectrum of A

spec(A) = equivalence classes of irreducible representations ∼ maximal ideals.



Continuous trace algebras

What if A is not commutative?

There is a broader class, the continuous trace C∗-algebras which are given by

algebra-valued functions over the spectrum.

Continuous trace C∗-algebra A ∼ sections of K(H)-bundle over spectrum

E = specA (equivalence classes of irreducible representations).

The bundle structure is trivial if and only if the Dixmier–Douady obstruction

δ ∈ H2(E,T) ∼= H3(E,Z) is trivial, (Brauer 1927, . . ., Dixmier–Douady

1964)



Dixmier–Douady Theorem.

For every such E and δ ∈ H3(E,Z) there is a C∗-algebra A = CT (E, δ)
with spectrum E and Dixmier–Douady obstruction δ, and it is unique up to

Morita equivalence.

Algebras A1 and A2 are Morita equivalent if there is an additive equivalence

between the categories of A1-modules and A2-modules.

Raeburn, Kumjian, Muhly, Renault, Williams: groupoid C∗ algebra proof.
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Morita Equivalence

Theorem (Morita–Rieffel) For each additive equivalence from

A1-modules to A2-modules there exists a left A2-right A1-bimodule E such

that the equivalence is given by E ⊗A1 ·.

The compact operators K(H) are Morita equivalent to C via the left

K(H)-right C-bimodule H.

(Uniquenes of the Canonical Commutation Relations)



Summary

loc. cpt Hausdorff space ←→ comm. C∗-algebra

cpt Hausdorff space ←→ comm. C∗-algebra with 1

E −→ C0(E)

spectrum spec(A) ←− algebra A

noncommutative geometry ←→ continuous trace C∗-algebra

flux H ∈ H3(E,Z) ←→ DD class δ ∈ H2(E,T)



Twisted compact operators

Take the same integral operators K(L2(X)), but with a composition

(K1 ∗K2)(x, z) =
∫

X

K1(x, y)K2(y, z))
φ(x, y, z)

dy

for a scalar function φ : X ×X ×X → U(1) = {z ∈ C : |z| = 1}.

Problem this is not generally associative:

(K1 ∗K2) ∗K3 6= K1 ∗ (K2 ∗K3)

unless φ(x, y, z)φ(x, z, w) = φ(x, y, w)φ(y, z, w)



Einstein’s principle of General Covariance:

Physical theories should be completely invariant under coordinate

transformations.

Quantum Field Theory and String Theory:

Symmetries extend to phase space.

configuration space RD ←→ momentum space R̂D



T-duality: R↔ R−1 preserves the physics
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String theory (Hull and Townsend)

T-duality: Momentum and winding number interchange

Added ingredient: flux H ∈ H3(E)



Rough picture of T-duality

T-duality interchanges two principal torus bundles over the same base, and

interchanges the curvature of each with the H-flux (H ∈ Ω3(E) or

Ĥ ∈ Ω3(Ê)) of the other.
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M base M = E/T ∼= Ê/T̂

T = Tk = Rk/Zk ∼= T̂



Examples

It will suffice to consider E = T3, T = Tk (k ≤ 3), and M = T3−k, with H

k times the volume 3-form.

T3

Tk ↓
T3−k



Known geometric dual principal torus bundles

H = H3 +H2 +H1 +H0 where Hp ∈ Ωp(M,∧3−pt̂)

with t̂ the dual of the Lie algebra of T .

dimT H

1 arbitrary Bouwknegt, Evslin, Mathai 2004

arbitrary H1,H0 = 0 Bouwknegt, KCH, Mathai 2004

arbitrary H0 = 0 Mathai, Rosenberg 2004

arbitrary arbitrary Bouwknegt, KCH, Mathai 2005,6



Example

T3 with volume form: volume is generated by a,b, c ∈ R3 is

[a,b, c] = a.b× c. for a,b, c ∈ R3.

• as a T-bundle over T2: H = H2 geometric dual;

• as a T2-bundle over T: H = H1: noncommutative dual

(Mathai–Rosenberg 2004)

• as a T3 bundle over a point: H = H0: nonassociative dual (Bouwknegt,

KCH, Mathai 2005,6).
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H-flux

Gel’fand’s theorem allows one to replace E by a C∗-algebra.

The exact sequence of groups

0→ Z→ R→ T→ 0

gives an isomorphism H3(E,Z) ∼= H2(E,T):

Identify H with the Dixmier–Douady class δ and replace (E,H) by CT (E, δ).



Automorphism groups

Now consider a principal T = G/N -bundle E over M .

Does G act as automorphisms of CT (E, δ)?

Suppose α : G→ Aut(A), and the same subgroup N stabilises each

irreducible.

Then E = spec(A) is a T = G/N -bundle over M = spec(A)/G.

If G = R every principal G/N -bundle arises in this way, but for general

groups G this is not always true.



Crossed products

Crossed product AoG = C0(G,A)

(f ∗ g)(x) =
∫

G

f(y)αy[g(y−1x)] dy, f∗(x) = αx[f(x−1)]∗

Facts.

1. Under suitable assumptions Â = AoG is also a continuous trace

algebra with an action of the dual group Ĝ;

2. (Takai-Takesaki duality) Âo Ĝ ∼= A⊗K(L2(G)) ∼M A.



Duality
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T̂ is isomorphic to the group-theoretic dual of N .

Connes’ Thom isomorphism theorem: K∗(Ao RD) ∼= K∗+D(A).
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Remaining case

Puzzle:

H0 6= 0 never seems to show up in C∗-algebra literature.

There are spaces with any H, so problem must lie with group action.



Nonassociative case

Inner automorphisms act trivially on spectrum.

G→ Out(A) = Aut(A)/Inn(A)

Lift to α : G→ Aut(A): αxαy = ad(u(x, y))αxy

ad(u(x, y))ad(u(xy, z))α(xy)z = ad(αx[u(y, z)])ad(u(x, yz)αx(yz)

φ(x, y, z)u(x, y))u(xy, z) = αx[u(y, z)]u(x, yz)
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Properties of φ

Central, and satisfies pentagonal cocycle identity

φ(x, y, z)φ(x, yz, w)φ(y, z, w) = φ(xy, z, w)φ(x, y, zw)

φ is independent of liftings up to coboundaries

η(x, y)η(xy, z)/η(y, z)η(x, yz)

so only H3(G,T) class of φ matters (but cf. Majid)

φ(exp(X), exp(Y ), exp(Z)) = exp(iH0(ξX , ξY , ξZ))

where ξX is vector field generated by X.

For T3 with k × vol: φ(a,b, c) = exp(2πik[a,b, c])



Monoidal categories

†-Category CG of Ĝ-modules ∼ C0(G)-modules with G-morphisms, and

• module tensor product (f ∈ C0(G) acting via comultiplication

(∆f)(x, y) = f(xy)), † action multiplies by f∗(x) = f(x);

• identity object: trivial module C (action by the counit ε(f) = f(1));

• associator Φ : A⊗ (B ⊗ C)→ (A⊗B)⊗ C ∼ the action of

φ ∈ C(G×G×G) = C(G)⊗ C(G)⊗ C(G).
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The pentagonal identity

The pentagonal cocycle identity for φ gives

A⊗ (B ⊗ (C ⊗ D)) −→ (A⊗ B)⊗ (C ⊗ D)
↙ ↘

A⊗ ((B ⊗ C)⊗D) ((A⊗ B)⊗ C)⊗D
↘ ↗

(A⊗ (B ⊗ C))⊗D



Algebras

Def. An algebra in CG is an object A with a morphism A⊗A → A
consistent with Φ:

A⊗ (A⊗A) −→ A⊗A −→ A
Φ ↓ ↓

(A⊗A)⊗A −→ A⊗A −→ A

The action of Ĝ is automatically by automorphisms.

CG is a star/bar/dagger category and so one can also define C∗-algebras and

Hilbert spaces in CG.



Examples

• Torus bundle T3 over a point, with H0 = kvol

Associated antisymmetric form on a,b, c ∈ t = R3 is then given by

φ(a,b, c) = exp(−2πif(a,b, c)) = exp(−2kπi[a,b, c])

• A0 = C, G = Z2 × Z2 × Z2 ∼ {0, 1}3 ⊆ R3

φ(a,b, c) = (−1)[a,b,c],

suitable u gives the octonions (cf Albuquerque and Majid).
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Fadeev/Gauss associative anomaly

Magnetic translations Ta = exp(2πia · ∇)
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Ta and Tb fail to commute by a factor exp(πiΦ), where Φ is the flux

through face spanned by a and b.

Ta, Tb, and Tc fail to associate by a factor exp(πiΦ), where Φ is the flux out

of the tetrahedron spanned by a, b, and c.

Dirac’s monopole argument.

But cf. Carey/Mickelsson



Modules

Def. An A-module in CG is an object M with a morphism A⊗M →M

consistent with Φ:

A⊗ (A⊗M) −→ A⊗M −→ M

Φ ↓ ↓
(A⊗A)⊗M −→ A⊗M −→ M

The actions of A and Ĝ on M are automatically consistent in that

g[am] = (g[a])(g[m]), for all a ∈ A and m ∈M , that is one has a covariant

representation of (Ĝ,A), which is really a representation of Ao Ĝ.



The twisted compact operators

Let H be a Hilbert space, as right C-module (with C the identity object).

Use the Rieffel construction to obtain rank-one operators

|ξ〉〈η|ζ = Φ(ξ〈η, ζ〉)

These rank-one operators generate the twisted compact operators having H
as a module.



The twisted compact operators

When H = L2(X) these twisted compact operators can be represented as

integral operators with product

(K1 ∗K2)(x, z) =
∫

X

K1(x, y)K2(y, z)
φ(x, y, z)

dy



The twisted bounded operators

In the usual case the bounded operators can be characterised as the

adjointable operators.

Now an adjointable operator A is one for which there exists

A∗ : ξ → A∗ξ ≡ ξA satisfying

〈A∗ξ, η〉 ≡ 〈ξA, η〉 = Φ(〈ξ, Aη〉


