Categories and nonassociative C*-algebras in Quantum Field Theory

Keith Hannabuss (Oxford)

Categories, Logic, and Foundations of Physics, Computing Laboratory, Oxford,

23 August 2008

OUTLINE

- 1. Quantum mechanics and C*-algebras.
- 2. Gel'fand's Theorem and the Dixmier-Douady obstruction.
- 3. Twisted compact operators.
- 4. T-duality.
- 5. Monoidal categories.
- 6. Nonassociative C^* -algebras.

C*-ALGEBRAS AND QUANTUM MECHANICS

The observables generate an algebra of operators on a Hilbert space \mathcal{H} , closed under addition, multiplication, and adjoints.

One can restrict to bounded operators $\mathcal{B}(\mathcal{H})$:

$$||A|| = \sup\{||A\psi|| : ||\psi|| = 1\} < \infty$$

A C*-algebra is a norm-closed subalgebra of $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} .

Example: the compact operators \sim the CCR Algebra

The compact operators $\mathcal{K}(\mathcal{H})$ are the C*-algebra generated by the rank-one operators in $\mathcal{B}(\mathcal{H})$, i.e. those of the form

$$|\xi\rangle\langle\eta|:\psi\mapsto\xi\langle\eta,\psi\rangle.$$

If $\mathcal{H}=L^2(X)$, (normalisable wave functions on X, the compact operators K can be represented as integral operators

$$(K\psi)(x) = \int_X K(x,y)\psi(y) \, dy$$

where the integral kernel $K(\boldsymbol{x},\boldsymbol{y})$ is a limit of separable kernels

$$K_N(x,y) = \sum_{j=1}^{N} \alpha_j(x)\beta_j(y).$$

The composition and adjoint of compact operators

The composition is then

$$(K_1 \circ K_2)(x,z) = \int_X K_1(x,y)K_2(y,z) dy$$

The adjoint is

$$K^*(x,y) = \overline{K(y,x)}$$

cf matrices when integral is replaced by a sum.

EXAMPLE: FUNCTION ALGEBRAS

Take E a locally compact Hausdorff topological space with a measure $\mu,$ let $\mathcal{H}=L^2(E,\mu),$

multiplication by compactly supported, continuous, complex-valued functions $f \in C_K(E)$

$$(f.\psi)(x) = f(x)\psi(x)$$

for $x \in E$, $\psi \in L^2(E,\mu)$ gives a subalgebra of $\mathcal{B}(\mathcal{H})$, with

$$(f_1 \circ f_2)(x) = f_1(x)f_2(x), \qquad f^*(x) = \overline{f(x)}$$

Gel'fand's Theorem

Every commutative C*-algebra is ${\cal C}_K(E)$ for some locally compact Hausdorff space E, and

the category of commutative C^* -algebras is contravariantly equivalent to the category of locally compact Hausdorff spaces, via the functors

$$\operatorname{spec}(\mathcal{A}) \to \mathcal{A}$$

$$E \leftarrow C_K(E)$$

where the spectrum of ${\cal A}$

 $\operatorname{spec}(\mathcal{A}) = \operatorname{equivalence} \operatorname{classes} \operatorname{of} \operatorname{irreducible} \operatorname{representations} \sim \operatorname{maximal} \operatorname{ideals}.$

CONTINUOUS TRACE ALGEBRAS

What if A is not commutative?

There is a broader class, the continuous trace C^* -algebras which are given by algebra-valued functions over the spectrum.

Continuous trace C*-algebra $\mathcal{A} \sim$ sections of $\mathcal{K}(\mathcal{H})$ -bundle over spectrum $E = \operatorname{spec} \mathcal{A}$ (equivalence classes of irreducible representations).

The bundle structure is trivial if and only if the Dixmier–Douady obstruction $\delta \in H^2(E,\mathbb{T}) \cong H^3(E,\mathbb{Z})$ is trivial, (Brauer 1927, . . ., Dixmier–Douady 1964)

DIXMIER-DOUADY THEOREM.

For every such E and $\delta \in H^3(E,\mathbb{Z})$ there is a C*-algebra $\mathcal{A}=CT(E,\delta)$ with spectrum E and Dixmier–Douady obstruction δ , and it is unique up to Morita equivalence.

DIXMIER-DOUADY THEOREM.

For every such E and $\delta \in H^3(E,\mathbb{Z})$ there is a C*-algebra $\mathcal{A}=CT(E,\delta)$ with spectrum E and Dixmier–Douady obstruction δ , and it is unique up to Morita equivalence.

Algebras A_1 and A_2 are Morita equivalent if there is an additive equivalence between the categories of A_1 -modules and A_2 -modules.

Raeburn, Kumjian, Muhly, Renault, Williams: groupoid C* algebra proof.

MORITA EQUIVALENCE

Theorem (Morita-Rieffel) For each additive equivalence from \mathcal{A}_1 -modules to \mathcal{A}_2 -modules there exists a left \mathcal{A}_2 -right \mathcal{A}_1 -bimodule E such that the equivalence is given by $E\otimes_{\mathcal{A}_1}\cdot$.

The compact operators $\mathcal{K}(\mathcal{H})$ are Morita equivalent to $\mathbb C$ via the left $\mathcal{K}(\mathcal{H})$ -right $\mathbb C$ -bimodule $\mathcal{H}.$

(Uniquenes of the Canonical Commutation Relations)

SUMMARY

TWISTED COMPACT OPERATORS

Take the same integral operators $\mathcal{K}(L^2(X))$, but with a composition

$$(K_1 * K_2)(x, z) = \int_X \frac{K_1(x, y)K_2(y, z)}{\phi(x, y, z)} dy$$

for a scalar function $\phi: X \times X \times X \to U(1) = \{z \in \mathbb{C}: |z| = 1\}.$

Problem this is not generally associative:

$$(K_1 * K_2) * K_3 \neq K_1 * (K_2 * K_3)$$

unless
$$\phi(x,y,z)\phi(x,z,w)=\phi(x,y,w)\phi(y,z,w)$$

EINSTEIN'S PRINCIPLE OF GENERAL COVARIANCE:

Physical theories should be completely invariant under coordinate transformations.

QUANTUM FIELD THEORY AND STRING THEORY:

Symmetries extend to phase space.

configuration space $\mathbb{R}^D \longleftrightarrow \mathsf{momentum} \ \mathsf{space} \ \widehat{\mathbb{R}}^D$

T-duality: $R \leftrightarrow R^{-1}$ preserves the physics

STRING THEORY (HULL AND TOWNSEND)

T-duality: Momentum and winding number interchange

Added ingredient: flux $H \in H^3(E)$

ROUGH PICTURE OF T-DUALITY

T-duality interchanges two principal torus bundles over the same base, and interchanges the curvature of each with the H-flux $(H \in \Omega^3(E))$ or $\widehat{H} \in \Omega^3(\widehat{E})$) of the other.

$$T = \mathbb{T}^k = \mathbb{R}^k / \mathbb{Z}^k \cong \widehat{T}$$

EXAMPLES

It will suffice to consider $E=\mathbb{T}^3$, $T=\mathbb{T}^k$ $(k\leq 3)$, and $M=\mathbb{T}^{3-k}$, with H k times the volume 3-form.

KNOWN GEOMETRIC DUAL PRINCIPAL TORUS BUNDLES

 $H = H_3 + H_2 + H_1 + H_0$ where $H_p \in \Omega^p(M, \wedge^{3-p}\widehat{\mathfrak{t}})$

with $\widehat{\mathfrak{t}}$ the dual of the Lie algebra of T.

$\dim T$	H		
1	arbitrary	Bouwknegt, Evslin, Mathai	2004
arbitrary	$H_1, H_0 = 0$	Bouwknegt, KCH, Mathai	2004
arbitrary	$H_0 = 0$	Mathai, Rosenberg	2004
arbitrary	arbitrary	Bouwknegt, KCH, Mathai	2005,6

EXAMPLE

 \mathbb{T}^3 with volume form: volume is generated by $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$ is $[\mathbf{a}, \mathbf{b}, \mathbf{c}] = \mathbf{a}.\mathbf{b} \times \mathbf{c}$. for $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$.

ullet as a ${\mathbb T}$ -bundle over ${\mathbb T}^2\colon H=H_2$ geometric dual;

EXAMPLE

 \mathbb{T}^3 with volume form: volume is generated by $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$ is $[\mathbf{a}, \mathbf{b}, \mathbf{c}] = \mathbf{a}.\mathbf{b} \times \mathbf{c}$. for $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$.

- ullet as a ${\mathbb T}$ -bundle over ${\mathbb T}^2\colon H=H_2$ geometric dual;
- ullet as a \mathbb{T}^2 -bundle over \mathbb{T} : $H=H_1$: noncommutative dual (Mathai–Rosenberg 2004)

EXAMPLE

 \mathbb{T}^3 with volume form: volume is generated by $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$ is $[\mathbf{a}, \mathbf{b}, \mathbf{c}] = \mathbf{a}.\mathbf{b} \times \mathbf{c}$. for $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$.

- as a \mathbb{T} -bundle over \mathbb{T}^2 : $H=H_2$ geometric dual;
- ullet as a \mathbb{T}^2 -bundle over \mathbb{T} : $H=H_1$: noncommutative dual (Mathai–Rosenberg 2004)
- \bullet as a \mathbb{T}^3 bundle over a point: $H=H_0$: nonassociative dual (Bouwknegt, KCH, Mathai 2005,6).

H-FLUX

Gel'fand's theorem allows one to replace E by a C^* -algebra.

The exact sequence of groups

$$0 \to \mathbb{Z} \to \mathbb{R} \to \mathbb{T} \to 0$$

gives an isomorphism $H^3(E,\mathbb{Z})\cong H^2(E,\mathbb{T})$:

Identify H with the Dixmier–Douady class δ and replace (E,H) by $CT(E,\delta)$.

AUTOMORPHISM GROUPS

Now consider a principal T=G/N-bundle E over M.

Does G act as automorphisms of $CT(E, \delta)$?

Suppose $\alpha:G\to \operatorname{Aut}(\mathcal{A})$, and the same subgroup N stabilises each irreducible.

Then $E = \operatorname{spec}(A)$ is a T = G/N-bundle over $M = \operatorname{spec}(A)/G$.

If $G=\mathbb{R}$ every principal G/N-bundle arises in this way, but for general groups G this is not always true.

CROSSED PRODUCTS

Crossed product $\mathcal{A} \rtimes G = C_0(G, \mathcal{A})$

$$(f * g)(x) = \int_G f(y)\alpha_y[g(y^{-1}x)] dy, \qquad f^*(x) = \alpha_x[f(x^{-1})]^*$$

FACTS.

- 1. Under suitable assumptions $\widehat{\mathcal{A}}=\mathcal{A}\rtimes G$ is also a continuous trace algebra with an action of the dual group \widehat{G} ;
- 2. (Takai-Takesaki duality) $\widehat{\mathcal{A}} \rtimes \widehat{G} \cong \mathcal{A} \otimes \mathcal{K}(L^2(G)) \sim_M \mathcal{A}$.

DUALITY

 \widehat{T} is isomorphic to the group-theoretic dual of N.

Connes' Thom isomorphism theorem: $K_*(\mathcal{A} \rtimes \mathbb{R}^D) \cong K_{*+D}(\mathcal{A})$.

DUALITY

 \widehat{T} is isomorphic to the group-theoretic dual of N.

Connes' Thom isomorphism theorem: $K_*(\mathcal{A} \rtimes \mathbb{R}^D) \cong K_{*+D}(\mathcal{A})$.

REMAINING CASE

 $H_0 \neq 0$ never seems to show up in C*-algebra literature.

There are spaces with any H, so problem must lie with group action.

Nonassociative case

Inner automorphisms act trivially on spectrum.

$$G \to \operatorname{Out}(\mathcal{A}) = \operatorname{Aut}(\mathcal{A})/\operatorname{Inn}(\mathcal{A})$$

Lift to $\alpha: G \to \operatorname{Aut}(\mathcal{A}): \ \alpha_x \alpha_y = \operatorname{ad}(u(x,y))\alpha_{xy}$

Nonassociative case

Inner automorphisms act trivially on spectrum.

$$G \to \operatorname{Out}(\mathcal{A}) = \operatorname{Aut}(\mathcal{A})/\operatorname{Inn}(\mathcal{A})$$

Lift to
$$\alpha: G \to \operatorname{Aut}(\mathcal{A}): \ \alpha_x \alpha_y = \operatorname{ad}(u(x,y))\alpha_{xy}$$

$$\operatorname{ad}(u(x,y))\operatorname{ad}(u(xy,z))\alpha_{(xy)z} = \operatorname{ad}(\alpha_x[u(y,z)])\operatorname{ad}(u(x,yz)\alpha_{x(yz)})$$

Nonassociative case

Inner automorphisms act trivially on spectrum.

$$G \to \operatorname{Out}(\mathcal{A}) = \operatorname{Aut}(\mathcal{A})/\operatorname{Inn}(\mathcal{A})$$
 Lift to $\alpha: G \to \operatorname{Aut}(\mathcal{A})$: $\alpha_x \alpha_y = \operatorname{ad}(u(x,y))\alpha_{xy}$
$$\operatorname{ad}(u(x,y))\operatorname{ad}(u(xy,z))\alpha_{(xy)z} = \operatorname{ad}(\alpha_x[u(y,z)])\operatorname{ad}(u(x,yz)\alpha_{x(yz)})$$

$$\phi(x,y,z)u(x,y))u(xy,z) = \alpha_x[u(y,z)]u(x,yz)$$

Properties of ϕ

Central, and satisfies pentagonal cocycle identity

$$\phi(x, y, z)\phi(x, yz, w)\phi(y, z, w) = \phi(xy, z, w)\phi(x, y, zw)$$

 ϕ is independent of liftings up to coboundaries

$$\eta(x,y)\eta(xy,z)/\eta(y,z)\eta(x,yz)$$

so only $H^3(G,\mathbb{T})$ class of ϕ matters (but cf. Majid)

$$\phi(\exp(X), \exp(Y), \exp(Z)) = \exp(iH_0(\xi_X, \xi_Y, \xi_Z))$$

where ξ_X is vector field generated by X.

For
$$\mathbb{T}^3$$
 with $k \times \text{vol}$: $\phi(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \exp(2\pi i k [\mathbf{a}, \mathbf{b}, \mathbf{c}])$

MONOIDAL CATEGORIES

†-Category \mathcal{C}_G of \widehat{G} -modules $\sim C_0(G)$ -modules with G-morphisms, and

• module tensor product $(f \in C_0(G))$ acting via comultiplication $(\Delta f)(x,y) = f(xy)$, † action multiplies by $f^*(x) = \overline{f(x)}$;

MONOIDAL CATEGORIES

†-Category \mathcal{C}_G of \widehat{G} -modules $\sim C_0(G)$ -modules with G-morphisms, and

- module tensor product $(f \in C_0(G))$ acting via comultiplication $(\Delta f)(x,y) = f(xy)$, \dagger action multiplies by $f^*(x) = \overline{f(x)}$;
- ullet identity object: trivial module $\mathbb C$ (action by the counit $\epsilon(f)=f(1)$);

MONOIDAL CATEGORIES

†-Category \mathcal{C}_G of \widehat{G} -modules $\sim C_0(G)$ -modules with G-morphisms, and

- module tensor product $(f \in C_0(G))$ acting via comultiplication $(\Delta f)(x,y) = f(xy)$, \dagger action multiplies by $f^*(x) = \overline{f(x)}$;
- identity object: trivial module $\mathbb C$ (action by the counit $\epsilon(f)=f(1)$);
- associator $\Phi:A\otimes (B\otimes C)\to (A\otimes B)\otimes C\sim$ the action of

$$\phi \in C(G \times G \times G) = C(G) \otimes C(G) \otimes C(G).$$

THE PENTAGONAL IDENTITY

The pentagonal cocycle identity for ϕ gives

ALGEBRAS

DEF. An *algebra* in C_G is an object \mathcal{A} with a morphism $\mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ consistent with Φ :

The action of \widehat{G} is automatically by automorphisms.

 \mathcal{C}_G is a star/bar/dagger category and so one can also define C*-algebras and Hilbert spaces in \mathcal{C}_G .

EXAMPLES

• Torus bundle \mathbb{T}^3 over a point, with $H_0=k\mathrm{vol}$ Associated antisymmetric form on $\mathbf{a},\mathbf{b},\mathbf{c}\in t=\mathbb{R}^3$ is then given by

$$\phi(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \exp(-2\pi i f(\mathbf{a}, \mathbf{b}, \mathbf{c})) = \exp(-2k\pi i [\mathbf{a}, \mathbf{b}, \mathbf{c}])$$

EXAMPLES

• Torus bundle \mathbb{T}^3 over a point, with $H_0=k\mathrm{vol}$ Associated antisymmetric form on $\mathbf{a},\mathbf{b},\mathbf{c}\in t=\mathbb{R}^3$ is then given by

$$\phi(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \exp(-2\pi i f(\mathbf{a}, \mathbf{b}, \mathbf{c})) = \exp(-2k\pi i [\mathbf{a}, \mathbf{b}, \mathbf{c}])$$

•
$$\mathcal{A}_0=\mathbb{C}$$
, $G=\mathbb{Z}_2 imes\mathbb{Z}_2 imes\mathbb{Z}_2\sim\{0,1\}^3\subseteq\mathbb{R}^3$

$$\phi(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (-1)^{[\mathbf{a}, \mathbf{b}, \mathbf{c}]},$$

suitable u gives the octonions (cf Albuquerque and Majid).

FADEEV/GAUSS ASSOCIATIVE ANOMALY

Magnetic translations $T_{\mathbf{a}} = \exp(2\pi i \mathbf{a} \cdot \nabla)$

 $T_{\bf a}$ and $T_{\bf b}$ fail to commute by a factor $\exp(\pi i \Phi)$, where Φ is the flux through face spanned by ${\bf a}$ and ${\bf b}$.

 $T_{\bf a}$, $T_{\bf b}$, and $T_{\bf c}$ fail to associate by a factor $\exp(\pi i \Phi)$, where Φ is the flux out of the tetrahedron spanned by ${\bf a}$, ${\bf b}$, and ${\bf c}$.

Dirac's monopole argument.

But cf. Carey/Mickelsson

Modules

DEF. An \mathcal{A} -module in \mathcal{C}_G is an object M with a morphism $\mathcal{A}\otimes M\to M$ consistent with Φ :

The actions of $\mathcal A$ and $\widehat G$ on M are automatically consistent in that g[am]=(g[a])(g[m]), for all $a\in \mathcal A$ and $m\in M,$ that is one has a covariant representation of $(\widehat G,\mathcal A),$ which is really a representation of $\mathcal A\rtimes\widehat G.$

THE TWISTED COMPACT OPERATORS

Let $\mathcal H$ be a Hilbert space, as right $\mathbb C$ -module (with $\mathbb C$ the identity object).

Use the Rieffel construction to obtain rank-one operators

$$|\xi\rangle\langle\eta|\zeta = \Phi(\xi\langle\eta,\zeta\rangle)$$

These rank-one operators generate the twisted compact operators having $\ensuremath{\mathcal{H}}$ as a module.

THE TWISTED COMPACT OPERATORS

When $\mathcal{H}=L^2(X)$ these twisted compact operators can be represented as integral operators with product

$$(K_1 * K_2)(x, z) = \int_X \frac{K_1(x, y)K_2(y, z)}{\phi(x, y, z)} dy$$

The twisted bounded operators

In the usual case the bounded operators can be characterised as the $adjointable\ operators.$

Now an adjointable operator A is one for which there exists $A^*:\xi\to A^*\xi\equiv\xi A$ satisfying

$$\langle A^*\xi, \eta \rangle \equiv \langle \xi A, \eta \rangle = \Phi(\langle \xi, A\eta \rangle)$$