
Qubits vs. bits: a naive account

A bit:

• admits two values 0 and 1,

• admits arbitrary transformations.

• is freely readable,

A qubit:

• a sphere of values, which is ‘spanned’ in projec-
tive sense by two quantum states |0〉 and |1〉.

• only admits special transformations which preserve
the angles, and hence opposites on the sphere; hence
these transformations are reversible.

• only admits ‘reading’ through so-called quantum
measurements M(|+〉, |−〉) which

– only have two possible outcomes |+〉 and |−〉,
– change the initial state |ψ〉 to either |+〉 or |−〉,

so in a sense a measurement M(|+〉, |−〉) does
not tell us |ψ〉 but destroys |ψ〉!



|ψ〉

|+〉

|−〉
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The two transitions

P+ :: |ψ〉 7→ |+〉 P− :: |ψ〉 7→ |−〉
have respective chance prob(θ+) and prob(θ−) with

prob(θ+) + prob(θ−) = 1

with
prob(θ) = cos2

θ

2
.

Due to impossible transitions (prob(180o) = 0), we
obtain two ‘partial constant maps’ on the sphere Q

P+ : Q \ {|− 〉} → Q :: |ψ〉 7→ |+ 〉.
P− : Q \ {|+ 〉} → Q :: |ψ〉 7→ |− 〉

capturing the dynamics of measurement.

This can be used as a dynamic resource when design-
ing algorithms and protocols.



The state of a qubit is described by a pair of complex

numbers
(
z1
z2

)
up to a non-zero complex multiple.

Hence for any z ∈ C0(
z1
z2

)
and z ·

(
z1
z2

)
:=

(
z · z1
z · z2

)
both define the same state. Typically one writes

|ψ〉 := z · |0〉 + z′ · |1〉
to emphasise a connection with bits.

Measurements are special families of projectors e.g.

P0 :=

(
1 0
0 0

)
and P1 :=

(
0 0
0 1

)

They induce a change of state

|ψ〉 7→ P0(|ψ〉) =

(
1 0
0 0

) (
z1
z2

)
=

(
z1
0

)
∼

(
1
0

)
|ψ〉 7→ P1(|ψ〉) =

(
0 0
0 1

) (
z1
z2

)
=

(
0
z2

)
∼

(
0
1

)



What can we do with multiple qubits?

1. Quantum teleportation
theory: 1993; 1st experimental realisation: 1997
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⇒ Transmit continuous data by finite means



What can we do with multiple qubits?

2. Entanglement swapping
theory: 1993; 1st experimental realisation: 2007

Pi

UiUi

⇒ Entangle without touching



What can we do with multiple qubits?

3. Public key exchange
theory: 1984, ’91; you can buy one online

⇒ Can’t be cracked

4. Fast algorithms
theory: 1992, ’94, ’96; science fiction

⇒ Brings in research money and jobs!



Why this sudden new activity?

A bug became a feature, ...

after experimental confirmation of violation of the
Bell inequalities by aspect and Gragnier in 1982.

Note in particular the time it took to discover quan-
tum teleportation! (people weren’t looking for it)

Exposing quantum phenomena is a ‘balancing act’:

• Exploit enlarged state space

• Avoid destruction of data by measurement

Most interesting are things which can’t be done:

• No faster than light communication

• No hyper-entanglement (e.g. non-local boxes)



von Neumann’s pure state formalism

What we won’t talk about:

• Continuous time Schrödinger evolution.

• Continuous observable quantities.

• Spaces of observable values

pure state ≡ ‘closed system’

Definition. A finite-dimensional Hilbert space is a
fd vector space H over the complex number field C
with a sesquilinear inner-product i.e. a map

〈− | −〉 : H×H → C

which satisfies

〈ψ|c1 · ψ1 + c2 · ψ2〉 = c1〈ψ|ψ1〉 + c2〈ψ|ψ2〉

〈c1 · ψ1 + c2 · ψ2|ψ〉 = c̄1〈ψ1|ψ〉 + c̄2〈ψ2|ψ〉

〈ψ|φ〉 = 〈φ|ψ〉 〈ψ|ψ〉 ∈ R+ 〈ψ|ψ〉 = 0 ⇔ ψ = 0

for all c1, c2 ∈ C and all ψ, ψ1, ψ2 ∈ H.



The condition

∀ψ ∈ H1, φ ∈ H2 : 〈f†(φ)|ψ〉 = 〈φ|f (ψ)〉
defines the (always existing and unique) adjoint

f† : H2 → H1 of f : H1 → H2.

We have (g ◦ f )† = f† ◦ g† i.e. (−)† is contravariant.

A linear operator is unitary if, equivalently,

• its inverse exist and is equal to its adjoint,

• it preserves the inner-product.

Rays are subspaces spanned by a single vector i.e.

span(ψ) = {c · ψ | c ∈ C} .

Postulate 1. [states and transformations] The state
of a quantum system S is described by a ray in a
Hilbert space H. Deterministic transformations of S
are described by unitary operators acting on H.



Self-adjoint operators satisfy H† = H i.e.

〈H(φ)|ψ〉 = 〈φ|H(ψ)〉.

Self-adjoint idempotent operators P : H → H, i.e.

P ◦ P = P = P† ,

are called projectors.

Special examples of projectors on H are the identity

1H : H → H :: ψ 7→ ψ

and the zero-operator

OH : H → H :: ψ 7→ 0 .

Proposition. Each self-adjoint operator H : H → H
admits a so-called spectral decomposition

H =
∑
i

ai · Pi

where all ai ∈ R and all Pi : H → H are projectors
which are mutually orthogonal i.e.

Pi ◦ Pj = OH for i 6= j.



Postulate 2. [measurements] A measurement on a
quantum system is described by a self-adjoint opera-
tor. The set {ai} in the operator’s spectral decompo-
sition are the measurement outcomes while the set of
projectors {Pi} describes the change of the state that
takes place during a measurement.

In particular, when a measurement takes place:

1. The initial state ψ undergoes one of the transitions
Pi :: ψ 7→ Pi(ψ)

and the probability of the possible transitions is
prob(Pi, ψ) = 〈ψ|Pi(ψ)〉

where ψ needs to be normalized.

2. The observer which performs the measurement re-
ceives the value ai as a token-witness of that fact.

Remark. The measurements represented by∑
i

ai · Pi and
∑
i

i · Pi

are ‘equivalent’, in particular, the latter is completely
determined by the set {Pi}i.



The direct sum
H1 ⊕H2 := {(ψ, φ) | ψ ∈ H1, φ ∈ H2}

enables embedding of states of subsystems via
ι1 : H1 → H1 ⊕H2 :: ψ 7→ (ψ,0)

ι2 : H2 → H1 ⊕H2 :: ψ 7→ (0, ψ) .

A base for H1 ⊕H2 arises canonically as

{(e1,0), . . . , (en,0), (0, e′1), . . . , (0, e
′
n)} .

The tensor product

H1⊗H2 :=
{
∑
iαi(ψi, φi) | ψi ∈ H1, φi ∈ H2}∑

iαi((
∑
j βjψij), φi) ∼

∑
ij αiβj(ψij, φi)

enables embedding of subsystems (but not states!) via

H1 ×H2
ξ (bilinear)

-H1 ⊗H2

H

∃!h (bilinear)

?

∀ζ (bilinear)
-

A base for H1 ⊗H2 arises canonically as

{e1, . . . , en} × {e′1, . . . , e
′
n} .



dim(H1 ⊕H2) = dim(H1) + dim(H2),

dim(H1 ⊗H2) = dim(H1)× dim(H2).

Inner product for ⊕ is:

〈(ψ, ψ′)|(φ, φ′)〉 = 〈ψ|φ〉 + 〈ψ′|φ′〉 .

On pure tensors ψ ⊗ ψ′ = (ψ, ψ′) for ⊗ it is:

〈ψ ⊗ ψ′ | φ⊗ φ′〉 = 〈ψ|φ〉 × 〈ψ′|φ′〉 .

Map-state duality

H∗
1 ⊗H2 ' H1 ( H2

shows that ⊗ describes functions, not pairs!

Postulate 3. [compound systems] The joint state
of a compound quantum system consisting of two
subsystems is described by the tensor product of the
Hilbert spaces which describe the two subsystems.



Non-local correlations

The Bell-state and EPR-state
Bell := e1⊗ e1 + e2⊗ e2 EPR := e1⊗ e2− e2⊗ e1
respectively correspond to the matrices(

1 0
0 1

)
and

(
0 −1
1 0

)
.

i.e. the Bell-state corresponds to the identity.

Since there are no a1, a2, a3, a4 ∈ C such that either(
a1

a2

) (
b1 b2

)
=

(
1 0
0 1

) (
a1

a2

) (
b1 b2

)
=

(
0 −1
1 0

)
the Bell-state and the EPR-state are truly entangled.

But if we measure the left system i.e. we apply
{P1 ⊗ id,P2 ⊗ id}

to the whole system we obtain
(P1⊗id)(Bell) = e1⊗e1 (P1⊗id)(EPR) = e1⊗e2
(P2⊗id)(Bell) = e2⊗e2 (P2⊗id)(EPR) = e2⊗e1
that is, we get a certain answer if next we apply

{id⊗ P1, id⊗ P2} .
Hence we witness here a ‘non-local’ spatial effect.



The no-cloning ‘theorem’

For an initial state ψ ⊗ φ0 ∈ H, by means of some
U : H⊗H → H⊗H

we wish to obtain ψ ⊗ ψ, clone the state of the first
quantum system to the second quantum system.

Assume we can do this for ψ := ψ1 and ψ := ψ2 i.e.

U(ψ1⊗φ0) = ψ1⊗ψ1 and U(ψ2⊗φ0) = ψ2⊗ψ2.

Taking the inner-product of the above equalities yields

〈U(ψ1 ⊗ φ0)|U(ψ2 ⊗ φ0)〉 = 〈ψ1 ⊗ ψ1|ψ2 ⊗ ψ2〉 ,

that is, by U† = U−1,
〈ψ1|ψ2〉〈ψ0|ψ0〉 = 〈ψ1|ψ2〉〈ψ1|ψ2〉

and hence, assuming that all vectors are normalized,
〈ψ1|ψ2〉 = 〈ψ1|ψ2〉2

which forces
〈ψ1|ψ2〉 = 0 or 〈ψ1|ψ2〉 = 1

i.e. ψ1 and ψ2 need to be either equal or orthogonal,

so we cannot clone arbitrary states!



Dirac notation
In literature:

• ‘merely’ a quite convenient notation,

• too informal and mathematically unsound.

For us

• step-stone to high-level formalism,

• initiates purely graphical notation,

When representing ψ ∈ H to be
ψ : C → H :: 1 7→ ψ

Dirac notation is formally justified by letting

• |ψ〉 := ψ and called KET ,

• 〈ψ| := ψ† and called BRA,

• concatenation be composition,

so the inner-product is a BRA-KET:

linear map matrix Dirac notation

ψ† ◦ φ
(
c̄1 . . . c̄m

)  c′1...
c′m

 〈ψ |φ〉



A projector on the ray spanned by |ψ〉 is a KET-BRA:

linear map matrix Dirac

ψ ◦ ψ†
 c1

...
cm

 (
c̄1 . . . c̄m

)
Pψ := |ψ〉〈ψ|

linear map matrix Dirac

f ◦ ψ

 m11. . .m1m
... ...

mn1. . .mnm

  c′1...
c′m

 f |ψ〉

φ† ◦ f
(
c̄1 . . . c̄m

)  m11. . .m1m
... ...

mn1. . .mnm

 〈φ|f

φ† ◦ f ◦ ψ ... =
∑
i c
′
imijcj ∈ C 〈φ|f |ψ〉



For projectors on a ray Pφ = |φ〉〈φ| probabilities are

〈ψ|Pφ|ψ〉 = 〈ψ|φ〉〈φ|ψ〉 = |〈φ|ψ〉|2 .

Also,
Pψ ◦ Pφ = |ψ〉〈ψ|φ〉〈φ| = OH

if and only if 〈ψ|φ〉 = 0 i.e. ψ and φ are orthogonal.

Base for H⊗H′ iss | i 〉 ⊗ | j 〉, | i 〉| j 〉 or | ij 〉. Is

(|ψ〉〈ψ|)(|φ〉〈φ|)

either as a composition or a tensor i.e.
|ψ〉〈ψ|φ〉〈φ| or |ψ ⊗ φ〉〈ψ ⊗ φ| ?

Examples are:
Bell := | 00〉 + | 11〉
EPR := | 01〉 − | 10〉
GHZ := | 000〉 + | 111〉

W := | 100〉 + | 010〉 + | 001〉

Usually one introduces a normalization e.g.
1√
2

(| 00〉 + | 11〉) and
1√
2

(| 000〉 + | 111〉)



Bell-base and Bell/‘Pauli’-matrices
While a standard 2-qubit measurement

{|00〉〈00| , |01〉〈01| , |10〉〈10| , |11〉〈11|}
is against the computational base

|00〉 |01〉 |10〉 |11〉
a Bell-base measurement is against the Bell-base
|00〉 + |11〉 |00〉 − |11〉 |01〉 + |10〉 |01〉 − |10〉.

It can be obtained by respectively applying Bell-matrices(
1 0
0 1

) (
1 0
0 −1

) (
0 1
1 0

) (
0 −1
1 0

)
to the second qubit of the Bell-state.

Quantum teleportation
The 1st qubit is in state

|ψ〉 = c0 · | 0〉 + c1 · | 1〉 ,
and the 2nd and 3rd one are in the Bell-state.

Perform Bell-base measurement on 1st and 2nd qubit.

When obtaining the i-th outcome perform the trans-
posed to the i-th Bell-matrix on the 3rd qubit.







Trace

For f : H → H there exists a unique scalar

Tr(f ) =
∑
i

〈i |f | i〉 =
∑
i

fii

which is independent of the choice of the base.

tr(f ) = 〈Bell|(1H ⊗ f )|Bell〉.

〈Bell|(1H ⊗ (f ◦ g))|Bell〉
= 〈Bell|(1H ⊗ (g ◦ f ))|Bell〉 .

For

f : H⊗H1 → H⊗H2

we can now also define

trHH1,H2
(f ) := (〈Bell|⊗1H2

)(1H⊗f )(|Bell〉⊗1H1
).

trHH1,H2
(|Ψg〉〈Ψf |) = g ◦ f†.



von Neumann’s mixed state formalism

A more general notion is needed to describe:

1. Lack of complete knowledge on actual state.

2. Large statistical ensembles of systems.

3. Subsystems of a bigger entangled systems.

4. Non-isolated (=open) quantum systems.

A density operator is a linear map which is:

• positive i.e. of form ρ = g† ◦ g – so self-adjoint;

• has trace equal to one.

Postulate [extension to mixed states]. The state of
a system is a density operator ρ : H → H.

Deterministic transformations correspond to
ρ 7→ U ◦ ρ ◦ U† where U : H → H is unitary. Pure
measurements are described by a set of projectors
{Pi : H → H}i with

∑
iPi = 1H and they cause a

state transition

ρ 7→ Pi ◦ ρ ◦ Pi
Tr(Pi ◦ ρ)



and this transition happens with probability
Tr(Pi ◦ ρ).



Probabilistic lack of knowledge. Consider a family
of pure states {ψi}i with probabilistic weights {ωi}i.

The probability for a certain outcome in a
measurement is the weighted sum of individual

probabilities:∑
j

ωj〈ψj|Pi|ψj〉=
∑
j

ωjTr
(
Pi ◦ |ψj〉〈ψj|

)
=Tr(Pi ◦ (

∑
j

ωj|ψj〉〈ψj|))

=Tr(Pi ◦ ρ) .

∑
j ωj|ψj〉〈ψj| is indeed a density matrix:

• Since 〈φ|ψj〉〈ψj|φ〉 = |〈φ|ψj〉|2 ≥ 0 hence∑
j

ωj〈φ|ψj〉〈ψj|φ〉 = 〈φ|(
∑
j

ωj|ψj〉〈ψj|)|φ〉 ≥ 0

• Tr(
∑
j ωj|ψj〉〈ψj|) =

∑
j ωjTr(|ψj〉〈ψj|) = 1

Conversely, all mixed states clearly arise in this way.



Part of a larger system. We now have
|Φ〉 ∈ K ⊗H.

A measurement of H ‘alone’ is realised by
{1K ⊗ Pi}i where {Pi : H → H}i a measurement of

H. Hence the respective probabilities are

〈Φ|(1K ⊗ Pi)|Φ〉=〈Bell|(1K ⊗ (f† ◦ Pi ◦ f ))|Bell〉
=Tr(f† ◦ Pi ◦ f )

=Tr(Pi ◦ f ◦ f†)
=Tr(Pi ◦ ρ)

f ◦ f† is indeed a density matrix:

• It is positive.

• Tr(f ◦ f†) = 〈Φ|Φ〉 = 1 for |Φ〉 is normalised.

All mixed states arise in this way by setting
f :=

√
ρ.


