Qubits vs. bits: a naive account

A bit:

- admits two values 0 and 1 ,
- admits arbitrary transformations.
- is freely readable,

A qubit:

- a sphere of values, which is 'spanned' in projective sense by two quantum states $|0\rangle$ and $|1\rangle$.
- only admits special transformations which preserve the angles, and hence opposites on the sphere; hence these transformations are reversible.
- only admits 'reading' through so-called quantum measurements $M(|+\rangle,|-\rangle)$ which
- only have two possible outcomes $|+\rangle$ and $|-\rangle$,
- change the initial state $|\psi\rangle$ to either $|+\rangle$ or $|-\rangle$, so in a sense a measurement $M(|+\rangle,|-\rangle)$ does not tell us $|\psi\rangle$ but destroys $|\psi\rangle$!

The two transitions

$$
\mathrm{P}_{+}::|\psi\rangle \mapsto|+\rangle \quad \mathrm{P}_{-}::|\psi\rangle \mapsto|-\rangle
$$

have respective chance $\operatorname{prob}\left(\theta_{+}\right)$and $\operatorname{prob}\left(\theta_{-}\right)$with

$$
\operatorname{prob}\left(\theta_{+}\right)+\operatorname{prob}\left(\theta_{-}\right)=1
$$

with

$$
\operatorname{prob}(\theta)=\cos ^{2} \frac{\theta}{2} .
$$

Due to impossible transitions (prob $\left(180^{\circ}\right)=0$), we obtain two 'partial constant maps' on the sphere Q

$$
\begin{aligned}
& \mathrm{P}_{+}: Q \backslash\{|-\rangle\} \rightarrow Q::|\psi\rangle \mapsto|+\rangle . \\
& \mathrm{P}_{-}: Q \backslash\{|+\rangle\} \rightarrow Q::|\psi\rangle \mapsto|-\rangle
\end{aligned}
$$

capturing the dynamics of measurement.
This can be used as a dynamic resource when designing algorithms and protocols.

The state of a qubit is described by a pair of complex numbers $\binom{z_{1}}{z_{2}}$ up to a non-zero complex multiple.

Hence for any $z \in \mathbb{C}_{0}$

$$
\binom{z_{1}}{z_{2}} \quad \text { and } \quad z \cdot\binom{z_{1}}{z_{2}}:=\binom{z \cdot z_{1}}{z \cdot z_{2}}
$$

both define the same state. Typically one writes

$$
|\psi\rangle:=z \cdot|0\rangle+z^{\prime} \cdot|1\rangle
$$

to emphasise a connection with bits.

Measurements are special families of projectors e.g.

$$
P_{0}:=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad P_{1}:=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

They induce a change of state
$|\psi\rangle \mapsto \mathrm{P}_{0}(|\psi\rangle)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\binom{z_{1}}{z_{2}}=\binom{z_{1}}{0} \sim\binom{1}{0}$
$|\psi\rangle \mapsto \mathrm{P}_{1}(|\psi\rangle)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\binom{z_{1}}{z_{2}}=\binom{0}{z_{2}} \sim\binom{0}{1}$

What can we do with multiple qubits?

1. Quantum teleportation theory: 1993; 1st experimental realisation: 1997

\Rightarrow Transmit continuous data by finite means

What can we do with multiple qubits?

2. Entanglement swapping

 theory: 1993; 1st experimental realisation: 2007

What can we do with multiple qubits?

3. Public key exchange

 theory: 1984, '91; you can buy one online$$
\Rightarrow \text { Can't be cracked }
$$

4. Fast algorithms

theory: 1992, '94, '96; science fiction
\Rightarrow Brings in research money and jobs!

Why this sudden new activity?

A bug became a feature, ...

after experimental confirmation of violation of the Bell inequalities by aspect and Gragnier in 1982.

Note in particular the time it took to discover quantum teleportation! (people weren't looking for it)

Exposing quantum phenomena is a 'balancing act':

- Exploit enlarged state space
- Avoid destruction of data by measurement

Most interesting are things which can't be done:

- No faster than light communication
- No hyper-entanglement (e.g. non-local boxes)

vol Neumann's pure state formalism

What we won't talk about:

- Continuous time Schrödinger evolution.
- Continuous observable quantities.
- Spaces of observable values

pure state \equiv 'closed system'

Definition. A finite-dimensional Hilbert space is a fd vector space \mathcal{H} over the complex number field \mathbb{C} with a sesquilinear inner-product i.e. a map

$$
\langle-\mid-\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}
$$

which satisfies

$$
\begin{gathered}
\left\langle\psi \mid c_{1} \cdot \psi_{1}+c_{2} \cdot \psi_{2}\right\rangle=c_{1}\left\langle\psi \mid \psi_{1}\right\rangle+c_{2}\left\langle\psi \mid \psi_{2}\right\rangle \\
\left\langle c_{1} \cdot \psi_{1}+c_{2} \cdot \psi_{2} \mid \psi\right\rangle=\bar{c}_{1}\left\langle\psi_{1} \mid \psi\right\rangle+\bar{c}_{2}\left\langle\psi_{2} \mid \psi\right\rangle \\
\langle\psi \mid \phi\rangle=\overline{\langle\phi \mid \psi\rangle} \quad\langle\psi \mid \psi\rangle \in \mathbb{R}^{+} \quad\langle\psi \mid \psi\rangle=0 \Leftrightarrow \psi=\mathbf{0}
\end{gathered}
$$

for all $c_{1}, c_{2} \in \mathbb{C}$ and all $\psi, \psi_{1}, \psi_{2} \in \mathcal{H}$.

The condition

$$
\forall \psi \in \mathcal{H}_{1}, \phi \in \mathcal{H}_{2}: \quad\left\langle f^{\dagger}(\phi) \mid \psi\right\rangle=\langle\phi \mid f(\psi)\rangle
$$

defines the (always existing and unique) adjoint

$$
f^{\dagger}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1} \quad \text { of } \quad f: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}
$$

We have $(g \circ f)^{\dagger}=f^{\dagger} \circ g^{\dagger}$ i.e. $(-)^{\dagger}$ is contravariant.

A linear operator is unitary if, equivalently,

- its inverse exist and is equal to its adjoint,
- it preserves the inner-product.

Rays are subspaces spanned by a single vector i.e.

$$
\operatorname{span}(\psi)=\{c \cdot \psi \mid c \in \mathbb{C}\}
$$

Postulate 1. [states and transformations] The state of a quantum system \mathcal{S} is described by a ray in a Hilbert space \mathcal{H}. Deterministic transformations of \mathcal{S} are described by unitary operators acting on \mathcal{H}.

Self-adjoint operators satisfy $H^{\dagger}=H$ i.e.

$$
\langle H(\phi) \mid \psi\rangle=\langle\phi \mid H(\psi)\rangle
$$

Self-adjoint idempotent operators $\mathrm{P}: \mathcal{H} \rightarrow \mathcal{H}$, i.e.

$$
\mathrm{P} \circ \mathrm{P}=\mathrm{P}=\mathrm{P}^{\dagger}
$$

are called projectors.
Special examples of projectors on \mathcal{H} are the identity

$$
1_{\mathcal{H}}: \mathcal{H} \rightarrow \mathcal{H}:: \psi \mapsto \psi
$$

and the zero-operator

$$
O_{\mathcal{H}}: \mathcal{H} \rightarrow \mathcal{H}:: \psi \mapsto \mathbf{0} .
$$

Proposition. Each self-adjoint operator $H: \mathcal{H} \rightarrow \mathcal{H}$ admits a so-called spectral decomposition

$$
H=\sum_{i} a_{i} \cdot \mathrm{P}_{i}
$$

where all $a_{i} \in \mathbb{R}$ and all $\mathrm{P}_{i}: \mathcal{H} \rightarrow \mathcal{H}$ are projectors which are mutually orthogonal i.e.

$$
\mathrm{P}_{i} \circ \mathrm{P}_{j}=O_{\mathcal{H}} \quad \text { for } \quad i \neq j
$$

Postulate 2. [measurements] A measurement on a quantum system is described by a self-adjoint operator. The set $\left\{a_{i}\right\}$ in the operator's spectral decomposition are the measurement outcomes while the set of projectors $\left\{\mathrm{P}_{i}\right\}$ describes the change of the state that takes place during a measurement.

In particular, when a measurement takes place:

1. The initial state ψ undergoes one of the transitions

$$
\mathrm{P}_{i}:: \psi \mapsto \mathrm{P}_{i}(\psi)
$$

and the probability of the possible transitions is

$$
\operatorname{prob}\left(\mathrm{P}_{i}, \psi\right)=\left\langle\psi \mid \mathrm{P}_{i}(\psi)\right\rangle
$$

where ψ needs to be normalized.
2. The observer which performs the measurement receives the value a_{i} as a token-witness of that fact.

Remark. The measurements represented by

$$
\sum_{i} a_{i} \cdot \mathrm{P}_{i} \quad \text { and } \quad \sum_{i} i \cdot \mathrm{P}_{i}
$$

are 'equivalent', in particular, the latter is completely determined by the set $\left\{\mathrm{P}_{i}\right\}_{i}$.

The direct sum

$$
\mathcal{H}_{1} \oplus \mathcal{H}_{2}:=\left\{(\psi, \phi) \mid \psi \in \mathcal{H}_{1}, \phi \in \mathcal{H}_{2}\right\}
$$

enables embedding of states of subsystems via

$$
\begin{aligned}
& \iota_{1}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1} \oplus \mathcal{H}_{2}:: \psi \mapsto(\psi, \mathbf{0}) \\
& \iota_{2}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1} \oplus \mathcal{H}_{2}:: \psi \mapsto(\mathbf{0}, \psi) .
\end{aligned}
$$

A base for $\mathcal{H}_{1} \oplus \mathcal{H}_{2}$ arises canonically as

$$
\left\{\left(e_{1}, \mathbf{0}\right), \ldots,\left(e_{n}, \mathbf{0}\right),\left(\mathbf{0}, e_{1}^{\prime}\right), \ldots,\left(\mathbf{0}, e_{n}^{\prime}\right)\right\}
$$

The tensor product
$\mathcal{H}_{1} \otimes \mathcal{H}_{2}:=\frac{\left\{\sum_{i} \alpha_{i}\left(\psi_{i}, \phi_{i}\right) \mid \psi_{i} \in \mathcal{H}_{1}, \phi_{i} \in \mathcal{H}_{2}\right\}}{\sum_{i} \alpha_{i}\left(\left(\sum_{j} \beta_{j} \psi_{i j}\right), \phi_{i}\right) \sim \sum_{i j} \alpha_{i} \beta_{j}\left(\psi_{i j}, \phi_{i}\right)}$
enables embedding of subsystems (but not states!) via

A base for $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ arises canonically as

$$
\left\{e_{1}, \ldots, e_{n}\right\} \times\left\{e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\}
$$

$$
\begin{aligned}
& \operatorname{dim}\left(\mathcal{H}_{1} \oplus \mathcal{H}_{2}\right)=\operatorname{dim}\left(\mathcal{H}_{1}\right)+\operatorname{dim}\left(\mathcal{H}_{2}\right) \\
& \operatorname{dim}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)=\operatorname{dim}\left(\mathcal{H}_{1}\right) \times \operatorname{dim}\left(\mathcal{H}_{2}\right)
\end{aligned}
$$

Inner product for \oplus is:

$$
\left\langle\left(\psi, \psi^{\prime}\right) \mid\left(\phi, \phi^{\prime}\right)\right\rangle=\langle\psi \mid \phi\rangle+\left\langle\psi^{\prime} \mid \phi^{\prime}\right\rangle .
$$

On pure tensors $\psi \otimes \psi^{\prime}=\left(\psi, \psi^{\prime}\right)$ for \otimes it is:

$$
\left\langle\psi \otimes \psi^{\prime} \mid \phi \otimes \phi^{\prime}\right\rangle=\langle\psi \mid \phi\rangle \times\left\langle\psi^{\prime} \mid \phi^{\prime}\right\rangle .
$$

Map-state duality

$$
\mathcal{H}_{1}^{*} \otimes \mathcal{H}_{2} \simeq \mathcal{H}_{1} \multimap \mathcal{H}_{2}
$$

shows that \otimes describes functions, not pairs!

Postulate 3. [compound systems] The joint state of a compound quantum system consisting of two subsystems is described by the tensor product of the Hilbert spaces which describe the two subsystems.

Non-local correlations

The Bell-state and EPR-state
Bell $:=e_{1} \otimes e_{1}+e_{2} \otimes e_{2} \quad$ EPR $:=e_{1} \otimes e_{2}-e_{2} \otimes e_{1}$ respectively correspond to the matrices

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

i.e. the Bell-state corresponds to the identity.

Since there are no $a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{C}$ such that either

$$
\binom{a_{1}}{a_{2}}\left(\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\binom{a_{1}}{a_{2}}\left(\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

the Bell-state and the EPR-state are truly entangled.
But if we measure the left system i.e. we apply

$$
\left\{\mathrm{P}_{1} \otimes \mathrm{id}, \mathrm{P}_{2} \otimes \mathrm{id}\right\}
$$

to the whole system we obtain
$\left(\mathrm{P}_{1} \otimes \mathrm{id}\right)(\mathrm{Bell})=e_{1} \otimes e_{1} \quad\left(\mathrm{P}_{1} \otimes \mathrm{id}\right)(\mathrm{EPR})=e_{1} \otimes e_{2}$
$\left(\mathrm{P}_{2} \otimes \mathrm{id}\right)($ Bell $)=e_{2} \otimes e_{2} \quad\left(\mathrm{P}_{2} \otimes \mathrm{id}\right)(\mathrm{EPR})=e_{2} \otimes e_{1}$ that is, we get a certain answer if next we apply

$$
\left\{\text { id } \otimes \mathrm{P}_{1}, \text { id } \otimes \mathrm{P}_{2}\right\} .
$$

Hence we witness here a 'non-local' spatial effect.

The no-cloning 'theorem'

For an initial state $\psi \otimes \phi_{0} \in \mathcal{H}$, by means of some

$$
U: \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}
$$

we wish to obtain $\psi \otimes \psi$, clone the state of the first quantum system to the second quantum system.

Assume we can do this for $\psi:=\psi_{1}$ and $\psi:=\psi_{2}$ i.e. $U\left(\psi_{1} \otimes \phi_{0}\right)=\psi_{1} \otimes \psi_{1} \quad$ and $\quad U\left(\psi_{2} \otimes \phi_{0}\right)=\psi_{2} \otimes \psi_{2}$.

Taking the inner-product of the above equalities yields

$$
\left\langle U\left(\psi_{1} \otimes \phi_{0}\right) \mid U\left(\psi_{2} \otimes \phi_{0}\right)\right\rangle=\left\langle\psi_{1} \otimes \psi_{1} \mid \psi_{2} \otimes \psi_{2}\right\rangle
$$

that is, by $U^{\dagger}=U^{-1}$,

$$
\left\langle\psi_{1} \mid \psi_{2}\right\rangle\left\langle\psi_{0} \mid \psi_{0}\right\rangle=\left\langle\psi_{1} \mid \psi_{2}\right\rangle\left\langle\psi_{1} \mid \psi_{2}\right\rangle
$$

and hence, assuming that all vectors are normalized,

$$
\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\left\langle\psi_{1} \mid \psi_{2}\right\rangle^{2}
$$

which forces

$$
\left\langle\psi_{1} \mid \psi_{2}\right\rangle=0 \quad \text { or } \quad\left\langle\psi_{1} \mid \psi_{2}\right\rangle=1
$$

i.e. ψ_{1} and ψ_{2} need to be either equal or orthogonal, so we cannot clone arbitrary states!

Dirac notation

In literature:

- 'merely' a quite convenient notation,
- too informal and mathematically unsound.

For us

- step-stone to high-level formalism,
- initiates purely graphical notation,

When representing $\psi \in \mathcal{H}$ to be

$$
\psi: \mathbb{C} \rightarrow \mathcal{H}:: 1 \mapsto \psi
$$

Dirac notation is formally justified by letting

- $|\psi\rangle:=\psi$ and called $K E T$,
- $\langle\psi|:=\psi^{\dagger}$ and called $B R A$,
- concatenation be composition,
so the inner-product is a $B R A-K E T$:

linear map	matrix	Dirac notation
$\psi^{\dagger} \circ \phi$	$\left(\bar{c}_{1} \ldots \bar{c}_{m}\right)\left(\begin{array}{c}c_{1}^{\prime} \\ \vdots \\ c_{m}^{\prime}\end{array}\right)$	$\langle\psi \mid \phi\rangle$

A projector on the ray spanned by $|\psi\rangle$ is a $K E T-B R A$:

linear map	matrix	Dirac
$\psi \circ \psi^{\dagger}$	$\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{m}\end{array}\right)\left(\bar{c}_{1} \ldots \bar{c}_{m}\right)$	$\mathrm{P}_{\psi}:=\|\psi\rangle\langle\psi\|$

linear map	matrix	Dirac
$f \circ \psi$	$\left(\begin{array}{c}m_{11} \ldots m_{1 m} \\ \vdots \\ m_{n 1} \ldots m_{n m}\end{array}\right)\left(\begin{array}{c}c_{1}^{\prime} \\ \vdots \\ c_{m}^{\prime}\end{array}\right)$	$f\|\psi\rangle$
$\phi^{\dagger} \circ f$	$\left(\bar{c}_{1} \ldots \bar{c}_{m}\right)\left(\begin{array}{c}m_{11} \ldots m_{1 m} \\ \vdots \\ m_{n 1} \ldots m_{n m}\end{array}\right)$	$\langle\phi\| f$
$\phi^{\dagger} \circ f \circ \psi$	$\ldots=\sum_{i} \bar{c}_{i}^{\prime} m_{i j} c_{j} \in \mathbb{C}$	$\langle\phi\| f\|\psi\rangle$

For projectors on a ray $\mathrm{P}_{\phi}=|\phi\rangle\langle\phi|$ probabilities are

$$
\langle\psi| \mathrm{P}_{\phi}|\psi\rangle=\langle\psi \mid \phi\rangle\langle\phi \mid \psi\rangle=|\langle\phi \mid \psi\rangle|^{2} .
$$

Also,

$$
\mathrm{P}_{\psi} \circ \mathrm{P}_{\phi}=|\psi\rangle \underline{\langle\psi \mid \phi\rangle}\langle\phi|=O_{\mathcal{H}}
$$

if and only if $\langle\psi \mid \phi\rangle=\mathbf{0}$ i.e. ψ and ϕ are orthogonal.
Base for $\mathcal{H} \otimes \mathcal{H}^{\prime}$ iss $|i\rangle \otimes|j\rangle,|i\rangle|j\rangle$ or $|i j\rangle$. Is

$$
(|\psi\rangle\langle\psi|)(|\phi\rangle\langle\phi|)
$$

either as a composition or a tensor i.e.

$$
|\psi\rangle\langle\psi \mid \phi\rangle\langle\phi| \quad \text { or } \quad|\psi \otimes \phi\rangle\langle\psi \otimes \phi| ?
$$

Examples are:

$$
\begin{gathered}
\text { Bell }:=|00\rangle+|11\rangle \\
E P R:=|01\rangle-|10\rangle \\
G H Z:=|000\rangle+|111\rangle \\
W:=|100\rangle+|010\rangle+|001\rangle
\end{gathered}
$$

Usually one introduces a normalization e.g.

$$
\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \quad \text { and } \quad \frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)
$$

Bell-base and Bell/‘Pauli'-matrices

While a standard 2-qubit measurement

$$
\{|00\rangle\langle 00|,|01\rangle\langle 01|,|10\rangle\langle 10|,|11\rangle\langle 11|\}
$$

is against the computational base

$$
|00\rangle \quad|01\rangle \quad|10\rangle \quad|11\rangle
$$

a Bell-base measurement is against the Bell-base

$$
|00\rangle+|11\rangle \quad|00\rangle-|11\rangle \quad|01\rangle+|10\rangle \quad|01\rangle-|10\rangle .
$$

It can be obtained by respectively applying Bell-matrices

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

to the second qubit of the Bell-state.

Quantum teleportation

The 1st qubit is in state

$$
|\psi\rangle=c_{0} \cdot|0\rangle+c_{1} \cdot|1\rangle,
$$

and the 2 nd and 3 rd one are in the Bell-state.
Perform Bell-base measurement on 1st and 2nd qubit.
When obtaining the i-th outcome perform the transposed to the i-th Bell-matrix on the 3rd qubit.

Trace

For $f: \mathcal{H} \rightarrow \mathcal{H}$ there exists a unique scalar

$$
\operatorname{Tr}(f)=\sum_{i}\langle i| f|i\rangle=\sum_{i} f_{i i}
$$

which is independent of the choice of the base.

$$
\left.\operatorname{tr}(f)=\langle\text { Bell }|\left(1_{\mathcal{H}} \otimes f\right) \mid \text { Bell }\right\rangle
$$

$$
\begin{aligned}
& \left.\langle\text { Bell }|\left(1_{\mathcal{H}} \otimes(f \circ g)\right) \mid \text { Bell }\right\rangle \\
& \left.\quad=\langle\text { Bell }|\left(1_{\mathcal{H}} \otimes(g \circ f)\right) \mid \text { Bell }\right\rangle .
\end{aligned}
$$

For

$$
f: \mathcal{H} \otimes \mathcal{H}_{1} \rightarrow \mathcal{H} \otimes \mathcal{H}_{2}
$$

we can now also define

$$
\left.\operatorname{tr}_{\mathcal{H}_{1}, \mathcal{H}_{2}}^{\mathcal{H}}(f):=\left(\langle\text { Bell }| \otimes 1_{\mathcal{H}_{2}}\right)\left(1_{\mathcal{H}} \otimes f\right)(\mid \text { Bell }\rangle \otimes 1_{\mathcal{H}_{1}}\right) .
$$

$$
\operatorname{tr}_{\mathcal{H}_{1}, \mathcal{H}_{2}}^{\mathcal{H}}\left(\left|\Psi_{g}\right\rangle\left\langle\Psi_{f}\right|\right)=g \circ f^{\dagger} .
$$

von Neumann's mixed state formalism

A more general notion is needed to describe:

1. Lack of complete knowledge on actual state.
2. Large statistical ensembles of systems.
3. Subsystems of a bigger entangled systems.
4. Non-isolated (=open) quantum systems.

A density operator is a linear map which is:

- positive i.e. of form $\rho=g^{\dagger} \circ g$ - so self-adjoint;
- has trace equal to one.

Postulate [extension to mixed states]. The state of a system is a density operator $\rho: \mathcal{H} \rightarrow \mathcal{H}$.
Deterministic transformations correspond to $\rho \mapsto U \circ \rho \circ U^{\dagger}$ where $U: \mathcal{H} \rightarrow \mathcal{H}$ is unitary. Pure measurements are described by a set of projectors $\left\{\mathrm{P}_{i}: \mathcal{H} \rightarrow \mathcal{H}\right\}_{i}$ with $\sum_{i} \mathrm{P}_{i}=1_{\mathcal{H}}$ and they cause a state transition

$$
\rho \mapsto \frac{\mathrm{P}_{i} \circ \rho \circ \mathrm{P}_{i}}{\operatorname{Tr}\left(\mathrm{P}_{i} \circ \rho\right)}
$$

and this transition happens with probability
 $\operatorname{Tr}\left(\mathrm{P}_{i} \circ \rho\right)$.

Probabilistic lack of knowledge. Consider a family of pure states $\left\{\psi_{i}\right\}_{i}$ with probabilistic weights $\left\{\omega_{i}\right\}_{i}$.

The probability for a certain outcome in a measurement is the weighted sum of individual probabilities:

$$
\begin{aligned}
\sum_{j} \omega_{j}\left\langle\psi_{j}\right| \mathrm{P}_{i}\left|\psi_{j}\right\rangle & =\sum_{j} \omega_{j} \operatorname{Tr}\left(\mathrm{P}_{i} \circ\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\right) \\
& =\operatorname{Tr}\left(\mathrm{P}_{i} \circ\left(\sum_{j} \omega_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\right)\right) \\
& =\operatorname{Tr}\left(\mathrm{P}_{i} \circ \rho\right) .
\end{aligned}
$$

$\sum_{j} \omega_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$ is indeed a density matrix:

- Since $\left\langle\phi \mid \psi_{j}\right\rangle\left\langle\psi_{j} \mid \phi\right\rangle=\left|\left\langle\phi \mid \psi_{j}\right\rangle\right|^{2} \geq 0$ hence
$\sum_{j} \omega_{j}\left\langle\phi \mid \psi_{j}\right\rangle\left\langle\psi_{j} \mid \phi\right\rangle=\langle\phi|\left(\sum_{j} \omega_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\right)|\phi\rangle \geq 0$
- $\operatorname{Tr}\left(\sum_{j} \omega_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\right)=\sum_{j} \omega_{j} \operatorname{Tr}\left(\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\right)=1$

Conversely, all mixed states clearly arise in this way.

Part of a larger system. We now have $|\Phi\rangle \in \mathcal{K} \otimes \mathcal{H}$.

A measurement of \mathcal{H} 'alone' is realised by
$\left\{1_{\mathcal{K}} \otimes \mathrm{P}_{i}\right\}_{i}$ where $\left\{\mathrm{P}_{i}: \mathcal{H} \rightarrow \mathcal{H}\right\}_{i}$ a measurement of \mathcal{H}. Hence the respective probabilities are

$$
\begin{aligned}
\langle\Phi|\left(1_{\mathcal{K}} \otimes \mathrm{P}_{i}\right)|\Phi\rangle & \left.=\langle\text { Bell }|\left(1_{\mathcal{K}} \otimes\left(f^{\dagger} \circ \mathrm{P}_{i} \circ f\right)\right) \mid \text { Bell }\right\rangle \\
& =\operatorname{Tr}\left(f^{\dagger} \circ \mathrm{P}_{i} \circ f\right) \\
& =\operatorname{Tr}\left(\mathrm{P}_{i} \circ f \circ f^{\dagger}\right) \\
& =\operatorname{Tr}\left(\mathrm{P}_{i} \circ \rho\right)
\end{aligned}
$$

$f \circ f^{\dagger}$ is indeed a density matrix:

- It is positive.
- $\operatorname{Tr}\left(f \circ f^{\dagger}\right)=\langle\Phi \mid \Phi\rangle=1$ for $|\Phi\rangle$ is normalised.

All mixed states arise in this way by setting

$$
f:=\sqrt{\rho}
$$

