Incremental Maintenance Of Materialized Ontologies

Raphael Vol?2, Steffen Staah and Boris Motik

1 Institute AIFB, University of Karlsruhe

76128 Karlsruhe, Germany

{vol z, staab}@i f b. uni - kar | sruhe. de

http://wwmv. ai fb. uni -karl sruhe. de/ WBS/

2 WIM, Forschungszentrum Informatik (FZI)

76131 Karlsruhe, Germany
{vol z, noti k}@ zi . de

http://ww. fzi.de/w m

This paper discusses the incremental maintenance of mlaed ontologies in a
rule-enabled Semantic Web. Materialization allows to dpae query processing by
explicating the implicit entailments which are sanctiofgdhe semantics of an onto-
logy. The complexity of reasoning with the ontology is thershifted from query time
to update time. We assume that materialization techniqileBeguently be important
to achieve a scalable Semantic Web, since read access togiais predominant.
Central to materialization are maintenance techniqudsatlav to incrementally up-
date a materialization when changes occur.

We present a novel solution that allows to cope with changeslées and facts. To
achieve this we extend a known approach for the incremerdaitenance of views in
deductive databases. We show how our technique can be esdploya broad range
of existing Web ontology languages, such as RDF/S and subE&WL and present a
first evaluation.

1 Introduction

Germane to the idea of the Semantic Web are the capabibtassert facts and to derive
newimplicit facts from the asserted facts using the semantics specifiad bntology.
The current building blocks of the Semantic Web, ResourcscBation Framework
(RDF) [10] and Web Ontology Language (OWL) [15], define howassert facts and
specify how implicit facts should be derived from stated$ac

The derivation of implicit information is usually achievatithe time clients issue
queries to inference engines. Situations where the quaysaigh or the procedure to
derive implicit information is time consuming and compleadl to slow performance.
Materialization can be used to increase the performanceatydime and to make
implicit information explicit. This avoids to recomputerdleed information for every
query.

Materialization has been applied successfully in manyieafbns where reading
access to data is predominant. For example, data warehasisalty apply materializa-
tion techniques to makenline analytical processing possible. In the traditional web,
portals maintain cached web pages to offer fast access tantigally generated web
pages.

2 Raphael Volz et al.

We assume that reading access to ontologies is predomm#me iSemantic Web
and other ontology based applications, hence materi@izaeems to be a promising
technique for fast query processing.

Central to materialization approaches is the issue of ramimg a materialization
when changes occur. This issue can be handled by simply mdong the whole mate-
rialization, however as the computation is often complekt@#me consuming, typically
more efficient technigques need to be applied.

Contribution We present a technique for the incremental maintenance t#rialized
ontologies. Our technique can be applied to a wide rangetofagy languages, namely
those that can be axiomatized by a set of rtiles

The challenge that has not been tackled before comes frofa¢hthat updates of
ontology definitions are equivalent to the update and newnitiefis of rules, whereas
existing maintenance techniques only address the updgt®ond facts.

To cope with changing rules, our solution extends a dedl@aigorithm for the
incremental maintenance of views [19] that was developatiendeductive database
context. We show the feasibility of our solution in a firstfeemance evaluation.

Paper structureThe remainder of the paper will consist of a review of how Waloe
logy languages and rules interplay (Section 2), presemati the algorithm for main-
tenance for changing facts (Section 3), extension of therdilgn for maintenance with
changing rules (Section 4), a first performance evaluatBatijon 5), a review of re-
lated work (Section 6) followed by general conclusions {Bec7).

2 Web ontology languages and rules

2.1 Axiomatization of the language

Since the early days of the Semantic Web, many systems hesddireason with Web
ontology languages using rule-based systems, e.g. SIRCWM*, Euler [16], JTP
or Triple [17]. To do so, a particular Web ontology languagiexiomatized via a static
set of rules which capture the semantics specified for aguéeti ontology language.

For example, Figure 1 presents the Datalog axiomatizafiéDd-/S. This axiom-
atization implements the semantics of RDF specified by th& Riddel theory [10]
(without datatype entailments and support for strongesdffnantics of domain and
ranges). The ontology and associated data is stored in ke dergary predicate, i.e.
the extension of stores all triples that constitute a particular RDF graph.

In many applications, e.g. editors, it is necessary to mlstish between asserted
information and entailed information [2]. This can be aghigtby turning the predicate
into a completely intensional predicate (view) that is dedifrom the explicitly asserted

% The underlying rule language used for our approach is Datalth stratified negation.
“http://ww. w3. or g/ 2000/ 10/ swap/ doc/ cwm
Shttp://ksl.stanford. edu/ software/jtp/

Incremental Maintenance Of Materialized Ontologies 3

t(P,a,rdf:Property) - t(S,P,0). rdfl
t(S,a,C) - t(P,domain,C), t(S,P,0). rdfs2
t(0,a,C) - t(P,range,C), t(S,P,0). rdfs3
t(S,a,Resource) - t(S,P,0). rdfs4d
t(0,a,Resource) - t(S,P,0). rdfs4b
t(P,subPropertyOf,R) - t(Q,subPropertyOf,R), t(P,gapkrtyOf,Q).rdfs5a
t(S,R,0) - t(P,subPropertyOf,R), t(S,P,0O). rdfs6
t(C,a,Class) - t(C,subClassOf,Resource). rdfs7|
t(A,subClassOf,C) - t(B,subClassOf,C), t(A,subClasBpf rdfs8
t(S,a;B) - t(S,a,A), t(A,subClassOf,B). rdfs9
t(X,subPropertyOf,member) - t(X,a,ContainerMemberBhoperty). rdfs10
t(X,subClassOf,Literal) - t(X,a,Datatype). rdfs11
t(Resource,subClassOf,Y) - t(X,domain,Y), t(rdf:typeh PropertyOf,X) rdfs12

Fig. 1. Static Datalog rules for implementing RDF(S)

information. Hence, asserted RDF triples constitute ars¢paxtensional predicate,
sayt g, andt is derived fron¥ g, via a rule:

HX,Y, Z) - tpa(X,Y, 2).

Such view definitions allow not only to distinguish betweaserted and entailed
information in queries but also to re-use results estadtishr the incremental mainte-
nance of views (intensional predicates) in the deductivelmtese context for the purpose
of materialization.

2.2 Dynamic rule sets

The set of rules is typically not immutable. With the advehtigher layers of the

Semantic Web stack, i.e. the rule layer, users can credteothie rules. Hence, we are
facing a scenario where not only base facts can change lmtrasset of rules. This
requires the ability to maintain a materialization in thisiation.

Besides support for a rule layer, the ability to maintain aamalization under
changing rule sets is also required for approaches wheredimantics of the onto-
logy language is not captured via a static set of rules bt&uscompiled into a set of
rules. Such an approach is for example required by Desenijatbgic Programs (DLP)
[6], where OWL ontologies are translated to logic progra®ther implementations
of knowledge representation languages, e.g. O-Telos [dd FaLogic [21], have also
been achieved via such a compilation.

Semantic Web Rule layer We now briefly present some languages for the specifica-
tion of Semantic Web rules that may be compiled into the ggradve use. The Rule
Markup Initiative aims to develop a canonical Web languametles called RuleML.
RuleML covers the entire rule spectrum and spans from d@vivaules to transforma-
tion rules to reaction rules. It has a well-defined Dataldggsst, which can be enforced

4 Raphael Volz et al.

using XML schemas, and for which we can employ the matedtbtn techniques de-
veloped within this paper. The reader may note, that mdiateon is not an issue for
many other aspects found in RuleML, e.g. transformatioas ok reaction rules.

In parallel to the RuleML iniative, Notation3 (N3) has emedi@s a human-readable
language for RDF/XML. Its aim is to optimize expression otadand logic in the
same language and has become a serious alternative singesyst®ms that support
inference on RDF data (e.g. cwm, Euler, Jena2) supporté.riite language supported
by N3 is an extension of Datalog with existential quantifiersule heads Hence, the
materialization techniques developed within this paperlma applied to the subset of
all N3 programs which do not make use of existential quasatifim in the head.

Description Logic Programs Both of the above mentioned approaches allow the def-
inition of rules but are not integrated with the ontologydayn the Semantic Web
architecture. Description Logic Programs aim to integrates with the ontology layer
by compiling ontology definitions into a logic program whichn later be extended
with additional rules. This approach can deal with a veryreggive subset of the stan-
dardized Web ontology language OWL (i.e. OWL without exisild quantification,
negation and disjunction in rule heads).

The following example OWL fragment declares Wine to be platéiquids who are
made by Wineries:

Wine C PotableLiquid1 VhasMakeWinery

This will be translated in DLP to the following set of rules:

Wine(X) :- PotableLiquidX), hasMakefX,Y"), Winery(Y").
PotableLiquidX) :- Wine(X).
Winery(Y') - Wine(X), hasMakefX,Y).

Hence, a change to the ontologies class and property steugtiliresult in a change
of the compiled rules. Again, it is necessary to be able towaa a materialization in
case of such a change.

3 Changing facts

This section presents the maintenance of a materializatiemn facts change, viz. new
tuples are added or removed from the extension of a predidtérst demonstrate how
changes can effect a materialization in an example and deapitulate the incremental
maintenance approach [19] upon which we build our approach.

3.1 Anexample

Let’s consider the effects of adding and removing a subClasslationship in RDF/S
with respect to some of the relevant rules that axiomatiz& Bbhema. The first rule

Incremental Maintenance Of Materialized Ontologies 5

Asserted Materialization

(Transitive
— Insert Closure)
...... » D el ete

Fig. 2. Changes to a RDF/S taxonomy and its materialization

links the intensional predicatewith ground facts. The second rule implements the
transitive closure of the subClassOf relationship:

Ry : t(X,Y,Z) - teat(X,Y, Z).
R : t(A,subClassQfC) :- t(BsubClassQrC), t(A,subClassQB).

Let us consider the effects of updates on the taxonomy depintFigure 2:

— bis nolonger a subclass of viz. thet.,. (b, subClassQfc) fact is deleted.
— his asserted to be a subclassiphence a.,(h, subClassQfd) fact is inserted.

The deletion has the following consequences tbeliminates the links between (a,c),
(a,9), (b,c) and (b,g). Since the fa¢ts: (d, subClassQfc) andt.,: (e, subClassQfd) ex-
ist, alternative derivations also exist for the links (g(e)g), (f,c) and (f,g). These alter-
native derivations have to be taken into account in our aggroThe insertion yields
three new derivations namely links between (h,c), (h,d)(&rg).

3.2 Generating Maintenance Rules

Several algorithms (e.g. [9, 12, 7]) have been presentatiédncremental maintenance
of views (or intensional predicates) in the deductive dasabcontext. The most com-
mon procedure is to compute the changes (differentialsigtossin three steps:

— Firstly, to overestimate the consequences of deletions, sgper set of the facts
that are eventually deleted is computed for deletion.

— Secondly, a rederivation step prunes those computed aleddtiom the set of dele-
tions for which alternative derivations (via some otheesuefining the view) exist.

6 Raphael Volz et al.

— Thirdly, the consequences of insertions to extensionalipates are added to the
view, if applicable.

Our approach is based on the results established in [19fhwigialize the DRed
(delete and rederive) algorithm presented in [7] in a pudgglarative way. The ap-
proach is based on rewriting the original program into a teaiance program, which
is evaluated instead of the old program.

Hence, an original Datalog rule:

pPi=T1,...,Tn.

is rewritten into a set of new predicates and several maamemrules that calculate the
differentials required to maintain a materialization. Thaintenance of an intensional
predicatep is achieved via six additional predicates:

1. pP¢ computes an overestimation of facts that ought to be defeded the mate-
rialization so-called deletion candidates. For extersipnedicateg” contains
explicitly what should be removed from the materialization

2. p'™s contains the facts that ought to be inserted into the méitgien. For exten-

sional predicatep’™* contains explicitly what should be inserted into the materi
alization.

. p'ed stores those facts that are marked for deletion but havenattee derivations.

pVev describes the new state of the materialization after ugdate

. pPh_” computes the net insertions required to maintain the naditzation.

pMinus computes the net deletions required to maintain the méiteian.

o U AW

The extension op itself contains the materialization. The reader may nott the
evaluation of the set of maintenance rules computes thef $etpticit insertions and
deletions that have to be propagated to the materializafitime predicate and to other
predicates, which depend on the predicate through some rule

Deletion Candidates The first subset of maintenance rules derive all possibletidel
candidates for a predicate Deletion candidates are constituted by deleted factsan th
body predicates. For all rules and all body predicatés these rules, we define a rule

. Del . Del
Di- p .- 7“1,...,7“1‘_1,’{'1-e,Ti+1,...,7“7L.

If r; is a extensional predicate?*! contains either the explicitly deleted factsin
or it contains a superset of the derived facts to be deletedduoe to deletions caused
by other rules.

With respect to our example we would have to generate thriegiale rules. The
transformation of?1 yields one deletion rule, while the transformationt# results in
two deletion rules.

R1Dy: tDel(X,Y,Z) - te[ﬁl(X,Y,Z).

RyDy: tPel(A, subClassQfC) :- tP¢!(B,subClassQfC'), t(A, subClassQfB).

RyDy: tP¢(A, subClassQfC) :- t(B,subClassQfC),tP¢ (A, subClassQfB).

Incremental Maintenance Of Materialized Ontologies 7

If bis no longer a subclass of(viz. t2¢ (b, subClassQfc) exists), the extension of

exrt

thetP¢! predicate would be constituted by the following deriveddass relationships:

(b7 c), (bv 9)7 (a, C)v (a,9), (6, C)v (679)7 (f,0), (fag)

Rederivation We now have to check which tuples ¢! have alternative derivations
in the new database state. This is achieved using the fallpwile:

R: Red - Del , ,r{\/'ew

P -p pNew

I
With respect to our examplefe? is axiomatized by two rules:

RiR: tRd(X)Y,7) - tPU(XY, Z), tNew (XY, 7).

RoR: tBed(A subClassQfC) :- tP¢(A, subClassQfC),
tNVew (B, subClassQfC), tVe¥ (A, subClassQfB).

tfed has the following subClassOf relationships as its extensio

(67 C)’ (e’g)’ (f’ C)7 (f7 g)

This is due to the fact§d, subClassQfc) andt(e, subClassQfd), which generate these
alternative derivations.

Insertion The next rules propagate insertions of extensional facteédntensional
predicates. This is done by ordinary semi-naive rewritirgg by constructing rule€;)
that join new facts inserted into one body relation with fdtensions of all others:

I;: plns - pNew o pNew, r{"s,rﬁﬁ“’, o, riew,

With respect to our example we have to generate three inseties (one folR,
and two forR5):

RiI: tI"™(X,Y,Z) - (XY, Z).

Rol;: tIm3(A, subClassQfC) :- t/"%(B,subClassQfC'), "V (A, subClassQfB).

Roly: tIm3(A, subClassQfC) :- tVe¥(B,subClassQfC), t/"*(A, subClassQfB).

If we assert: to be a subclass af(viz. t17¢(h, subClassQfd) exists), we can derive

ext

the following new subclass relationships in the extensiot{ s

(h,d), (R, c), (h, g)

Description of the new state The new state of a predicapeafter updates is captured
in a new predicatp”™ ¢, A set of rules captures the changes:

8 Raphael Volz et al.

Nl: pNew -, ﬁpDel.
NQ: pNew .~ pRed.
N3: pNew .~ plns.

Rule N; ensures that the new state of a predigatioes not contain the deleted in-
formation. RuleNV, ensures that rederived facts are part of the new state of¢ldécate.
Finally, rule N3 pushes insertions into the new state of the predicate.

Computation of differentials We can compute the deletions and insertions that have
to be performed to maintain the materialization of a preipaia two predicateg’”**
andpMius which compute the net insertions and deletions to a prélica

pPs contains those facts, which were not present before andesineed for inser-
tion. pMimus contains those facts, which are deletion candidates arnukétieer inserted
nor re-derived.

P: pPlus - plns’ —p.

. Minus - Del Ins Red
M: p = pPe o, —ptel

In our example the extension of's is made up by the following subclassOf as-
sertions:

(h,d), (h,c), (h,g)
The extension ofMinus js:

(a’c)7 (a’g)’ (b7 C)’ (b7 g)

3.3 Static RDF/S rules revisited

The 15 static Datalog rules for the axiomatization of RDRIS Figure 1) contain 21
body predicates. This leads to the generation of 21 ingertiles and 21 deletion rules.
Additionally 15 rederivation rules are generated. 5 prattis are generated to capture
the new state of the predicatand the differentials. The total number of 62 generated
rules can be found onlifie

3.4 Evaluation of maintenance rules

[18] show that the evaluation of the maintenance rules isumd@nd complete pro-
cedure for computing the differentials between two datalsiates when extensional
update operations occur.

During the evaluation it is necessary to access the old sfagredicate. Bottom-
up evaluation approaches therefore require that all ideatrelations involved in the
computation are completely materialized, viz. the initisles defining the predicates
are not considered during the evaluation of the maintenaries.

8 http://kaon.semanticweb.org/research/materialinatio

Incremental Maintenance Of Materialized Ontologies 9

The rewriting contain negated predicates to express ttebedir set difference op-
eration. Hence, even though the original rules may be putal@s(without negation),
a program with negation is generated. The rewriting tramsétion keeps the property
of stratifiability, since newly introduced predicates dd nocur in cycles with other
negations. Hence, the evaluation can partition predidatesstrata such that no two
predicates in one stratum depend negatively on each otredticAtes may only oc-
cur negatively in rules that define predicates of a highetwstn. The evaluation can
then proceed as usual stratum-by-stratum starting witextensional predicates them-
selves.

Not only changed predicates have to be maintained but digoealicates that de-
pend on predicates whose extension changes. An axiomatiz#tRDF/S based on a
single ternary predicate (cf. Figure 1) therefore leadotoglete re-materialization in
case of updates. We present an optimization for this casedtidd 4.3 which results in
more efficient results.

4 Changing rules

This section presents the maintenance of a materializdtidre definition of views
(intensional predicates) changes, viz. rules that defireptiedicate are added or re-
moved. Our solution has two main components. Firstly, thienadization itself has to
be maintained. Secondly, the materialization rules foregimatep themselves have to
be maintained.

DL-Style DLP Translation explanation
1.|hasChildC inDynasty inDynasty(X,Y) :- hasChild(X,Y). hasChild constitutes in-
Dynasty
2./inDynasty"™ C inDynasty inDynasty(X,Y) :- the inDynasty
inDynasty(X,Z), inDynasty(Z,Y). relation is transitive
3./inDynasty” = inDynasty inDynasty(X,Y) :- inDynasty(Y,X). |the inDynasty relation
is symmetric

Table 1. Versions of the example ontology: (a) DL-based (b) DLP taien

4.1 Anexample

Table 1 depicts a small sample ontology that describes tataeships in a family dy-
nasty. The OWL rules stated in DL-style syntax are compited appropriate Datalog
rules using the DLP approach. Let’'s assume that DLP has besshta implement the
semantics. If the ontology only contains the first and se@iom then the extension
of hasChi | d is constituted by the tupleg1, 2), (2, 3), (4, 3)}. Hence, the extension
of i nDynast y corresponds to hasChild{(1,3)}

If the first axiom is deleted, nDynast y has an empty extension. Similarly the
extension ofi nDynast y would be equivalent tdhasChi | d, if the second axiom
were deleted.

10 Raphael \Volz et al.

Now assume that the third rule is inserted. Apparently thve etension will con-
tain the tuple(1, 4) (among others), which is derived by one of the existing rules
rule 2 which operated on tuples derived by rule 3.

4.2 Maintaining the materialization

Every change in the rule set causes changes in the exterfsiopredicatep. Hence,
the materialization has to be updated as well. Howeverkeriti the case of changing
extensions, the existing maintenance rules cannot cagtisreituation.

As we can see in the above examples, adding and removingegjeses the reeval-
uation of all other rules defining a predicate. The readermods, that it does not suffice
to simply change the maintenance rules. Since there is nugettahas Chi | d, both
predicates which capture the difference hasCHilel and hasChild™** are empty.
In consequence inDynasty , inDynasty’*, inDynasty**? and thereby inDynasty“*
and inDynasty ""“* are empty.

Our solution is based on the creation of a temporary pregicat™?, which is
used to calculate the extensionmiising the changed set of rules. Heng&s™? is
axiomatized using the updated rule set for a predigagelf-references of the predicate
have to be substituted by the temporary predicate:

inDynasty “*?(z, y) :- hasChildz,).
inDynasty “™?(z, y) :- inDynasty P (z, z), inDynasty " (z, y).
inDynasty “"*?(z, y) :- inDynasty “™?(y, x).

Then,pTe™? jsused for the calculation gf”*** and p™**s by augmenting the
definition of p!™* andp?*! with the following rules:

pIns .~ pTe'rer7 —p.

pDel - D, _‘pTemp'

The view maintenance process is carried out by evaluatiagraintenance rules
without the initial rules that defing All predicates, which depend gncan be updated
usingp’™* andp?°!. The reader may note, that our solution allows the simutiase
modification of both rules and facts. However, the new faats @lready be taken into
account whep?*™? is computed.

4.3 Selection-based Optimization

Alternatively to DLP, the semantics of the ontology statedable 1 could have been
given by specifying several rules that axiomatize a singdet predicate. For example
the symmetry of the dynastic relationship could be axioneatias follows:

t(X,inDynastyY') :- t(Y, inDynasty X).

In this case our approach requires to access the whole dataddace only one predicate
is materialized and all rules defining this predicate havbdaeevaluated. Naturally,

Incremental Maintenance Of Materialized Ontologies 11

this situation corresponds to the simple strategy of reaging a materialization from
scratch.

We therefore introduce an optimization, which improvesrgmmputation by lim-
iting the part of the database which takes part in the evialmaSelection-based opti-
mization assumes that the extension of the database iglspkinding on split points.
Split points are given by constants that occur at a certgjnraent position of a predi-
cate.

The optimization transforms a Datalog program into an eajaivt program, such
that all references tp where a split point occurs are replaced by split predicdies.
is the case, if a constantvas used as thieth argument in the predicage

To generate split predicates, we split the extension of digagepg..; into several
edb predicates of the forpt; ,(Vari,Vars,...,Var,_1,c,Var,y1,Vary,) to store
tuples based on equal constant vala@stheiri-th component.

Hence, instead of using a single predicatg, for representing the direct RDF as-
sertion, the database is split into severgl,. Again, we want to distinguish between
asserted and derived information and consequently int®datensional predicates
(views) for each component of the extension (i.e. rules efftrm p® :- p} ,).The
complete predicate is represented by rules that unify the used split predicates:
pi-p

Returning to the triple based axiomatization of the exampkecan transform the
program by introducing a split poimt»P¥"stv2 for thei nDynast y constant (when
used as second argument in the ternary predi¢ate

— We use two extensional predicateest, t40¥"*'¥> 10 store the extension in two
disjoint sets.

— We capture the intensional predicates and integrate tite 8jib a complete exten-
sion oft and rewrite the example rule 2 such that split predicatesised instead
of the full predicate:

tRest (X, Y’7 Z) - tgiit (X7 Y7 Z)
tinDynastyz - tzEnI[zynastyz (){7 Y, Z)
HX,Y, Z) - XY, Z).
If(X, Y, Z) ._ ¢inDynastys (X, Y, Z)

tinDynastyz (X,inDynasty Y) - ¢inDynastys (Z,inDynastyY),
tinDynastyz (X, inDynastyY).

Assume now that the third rule of Table 1 is inserted. We cairagansform this
rule into a rule, which uses the split predicate”v™*stvz, However, the maintenance
of ¢™nPynastyz can now be carried out by ignoring all non-relevant rulestfddence,
the whole extension afcan be updated via the insert and delete maintenance rales th
are created fot’Pvnesty2 gnly, viz. without using the complete database.

4.4 Maintaining maintenance rules

Additionally to the maintenance of the materializatioeltsthe maintenance rules have
to be altered when changes occur. In case of insertion oka néw maintenance rules

12 Raphael \Volz et al.

are generated. In case of deletion of a nylall maintenance rules generated from the
rule are deleted as well. If the predicatiself is deleted, i.e. the last rutedefiningp is
deleted, all maintenance predicates, g5, p'**¢ etc. are removed from the database
by removing the rules that define those predicates.

The maintenance algorithms operate on the following datetres:

— R setofrules

— M R set of maintenance rules,

— P set of predicates,

— M P set of maintenance predicates,

— ruleMaintenance : R — M R function that maps rule to its maintenance rules
— head : R — P function maps a rule to the rule head

— rules : P — R function that maps a predicate to defining rules

Two procedures generate the maintenance rules for a gilen and its heagb:

— staticM aintenance Rules generates the rules definipg <, pr'vs andpMinus,
— dynamicM aintenanceRules generates the rules definipge!, p'*¢? andp’"*

Maintaining maintenance rules is achieved by algorithm e T branch checks
whether a rule is the first (respectively last) rule definingredicatep and generate
(respectively delete) the static maintenance predicaiesides.

Algorithm 1 Changing Rules

Require: New rulesChangeghat are changed, operatoe= {U, \ } specifying insert or delete
R = Ro Changes
for all » € Changes do
maintenanceRules &
p =head(r)
it ({ptnP=0)A(c=U))V ((rulegp)\{r} =0) A (c=\)) then
P =Po{p}
MP = MPo {pNew7pTemp7pRed7pI\/Iinus7pPlus7pDel7pRed7pIns}
maintenanceRules = staticMaintenanceRutes(
end if
rules(p) =rules(p)or
maintenanceRules = maintenanceRwedynamicMaintenanceRules()
ruleMaintenancef) = ruleMaintenancef) o maintenanceRules
MR = M Ro maintenanceRules
end for
Ensure: Updated setd/ R, M P, R, P and maps-ule M aintenance. ..

5 Evaluation

This section reports on our prototypical implementatiod arfirst evaluation of our
approach.

Incremental Maintenance Of Materialized Ontologies 13

5.1 Implementation

We implemented our approach to materialization as an extetsthe KAON Datalog
engine. The implementation is freely available via the KA@ab sit€.

In case of the materialization of a predicate all changeattsfrelevant for the
predicate and the rule set defining a predicate are monitdieel materialization and
corresponding maintenance rules are updated as desanibieelprevious sections.

The maintenance process is carried out as follows. Whengrammois designated
for materialization, all maintenance rules are generabtedprogram itself is evaluated
and the extension of all predicates designated for maiteatadn is stored explicitly.
The maintenance program is used for future evaluationaadsté the original program.
Therefore, all rules defining non-materialized predicaresadded to the maintenance
program.

Changes in facts are stored in the appropriaté andp”¢ predicates. The change
triggers the evaluation of the maintenance rules and camesely updates the exten-
sions of all materialized predicates is updated by adgiff§® and removing? s,
Afterwards the extension of extensional predicates is tgutlay addingy!™* and re-
movingpP¢. As a last step, the extension@f* and all other auxiliary predicates is
cleared.

Changes in rules are carried out by retrieving all rules dajithe same predicates
as the changed rules from the original program. These ruéethan rewritten to refer
to p?*™? only. Then the maintenance rules are evaluated and extenaie updated as
described for facts. As a last step the auxiliary rules dedipf ? are deleted.

5.2 Evaluation Setting

Test Assumption3 he evaluation has been carried out with changing OWL ogiet
that are compiled into logic programs via the DLP transtafi]. It is assumed that all
predicates are materialized. We assume that an inferemyieeebuilds its knowledge
base by aggregating data from several web sources. Therbfdk updates will be
predominant.

Test Procedure Each test is characterized by a certain ontology structudeaaclass
whose extension is to be read. The ontology structure has d¢pemerated for different
input parameters, resulting in ontologies of differenesizThe average of five such
invocations has been taken as the performance measurecfotest. If the engine ran
out of Memory results are denoted with OoM in the result t§bleAppendix 1).

We obtain six measure&) the time of query processing without materialization,
(b) the time required to set up the materialization and the ramarice progranic)
the time required to perform maintenance when rules aredadd)erules are removed,
(e) facts are added, an(d) facts are removed. Finallyg) assesses the time of query
processing with materialization.

Test Platform.We performed the tests on a laptop with Pentium IV Mobile pesor
running at 2 GHz, 512 MB of RAM using the Windows XP operatirygtem. The
implementation itself is written in Java and executed uSing’s JDK version 1.4.01.

" http://kaon.semanticweb.org/

14 Raphael \Volz et al.

5.3 Evaluation Scenarios

First we give an overview of the types of tests we conductedelscribing the results
(cf. Appendix 1) we usé® to denote the depth of the class hierardd§3to denote
the number of sub classes at each level in the hieraihyo denote the number of
instances per class aRdo denote the number of properties.

To test changes in facts, we add and remove a random pereddit@mgeof the
facts. For rules, we add and remove a random rule. This isaltleetlimitation of the
underlying engine, which currently does not allow to altdes in a bulk manner. The
test was performed for different depths of the taxonddny 3, 4, 5 while the number
of sub classes and the number of instances was not altdfd %; NI = 5). Test 2 and
3 made use of properties. Here, every class had five propentdch are instantiated
for every third instance of the clasBll(= 5). We carried out each test using varying
Changeratios of 10% and 15% of the facts.

Test 1: Taxonom¥xtended taxonomies, e.g. WordNet, currently constitléege por-
tion of the ontologies that are in use. Our goal with this tesb see how the very
basic task of taking the taxonomy into account when retnigte extension of a class
is improved. The taxonomy is constituted by a symmetric tleelasses. We did not
make use of properties, henée= 0. The test query involved computing the extension
of one of the concepts on the first level of the class hierarthig is a realistic query
in systems where taxonomies are used for navigation in deatcollections. Here,
navigation typically starts with top-level classes andgbeof documents is displayed
as the class extension.

Test 2: Database-likd he goal of this test was to see how ontologies with largertyemm
of properties are handled. Our goal was to answer a simplemdtive query on top of
this ontology. The DL-like query is 1 3p0.c12.

Test 3: DL-like This test shows how materialization performs in DL-like @ogies,
which contain simple class definitions. Each class in thescleee is defined using the
following axiom: g L dp,.c;—1 T c (where ¢ denotes i-th child of concept c). The
query retrieves the extension of some random class in thddirsl of the taxonomy.

5.4 Results

Figure 3 depicts the average titnfor querying an ontology without using material-
ization, setting up the materialization and cost of maiatere for different types of
changes (adding and removing rules and facts). Finallyjiefor answering the same
query using the materialization is depicted. The exactltesd the evaluation can be
found in Appendix 1.

As we can see in the figure, maintenance costs do not varyfisemily with the
quantity of updates. All costs are directly related to tlze sif the ontologies. The per-
formance behavior between the taxonomy and DB-like oniekdo also not alter sig-
nificantly. However, more complex rules as they are cortstitbby DL-like ontologies

8 in milliseconds on a logarithmic scale

Incremental Maintenance Of Materialized Ontologies 15

Evaluation Results

1000000

100000

O Taxonomy Depth 3

1000 + il W DL-Like Ontology Depth 3

Time (ms)

O DB-Like Conjunctive Query Depth 3
O Taxonomy Depth 4

100 -
W DL-Like Ontology Depth 4

[0 DB-Like Conjunctive Query Depth 4
W Taxonomy Depth 5

W DB-Like Conjunctive Query Depth 5

006 & ¢ ¢ {bc,\% ,06@ S
(\{b <& Q‘ < Q & '],rb
> N © » o & o
& X 8 v P ¥ &
& & & Xy S
o o)
))
S

Action

Fig. 3. Evaluation Results (Average Values)

are always more expensive to evaluate, therefore setup andtthe cost of evaluating
the maintenance rules is also higher.

We want to stress that we measured the performance of cerno@s. Although
algorithms implemented by a system are certainly impoyttuet overall performance
of a system is influenced by many other factors as well, suelytfality of the imple-
mentation or the language. It is virtually impossible tolade these factors from the
performance measurement. For example, our Datalog engimeut of memory with
the DL-like ontology where the taxonomic depth was five, the set of rules was gen-
erated from 3950 class and 19750 property definitions, vithdeinderlying knowledge
base contained 19750 class instantiations and 32915 pydpstantiations.

5.5 Discussion

The different costs of each step in the maintenance proeeaher always higher than
the costs of evaluating a single query. The question wheatheiot to materialize is
therefore determined by the application and the issue wen#tle system can handle its
typical workload, e.g. can it handle the intended numbersefsi if answering a single
query takes almost 3 seconds ?

16 Raphael \Volz et al.

With materialization the cost of accessing the materidlizeedicates is can be ne-
glected. However, the time for the evaluation of the maiatex rules can be a signifi-
cant bottleneck for a system especially for large knowleligges. For example, in one
of our test runs it took almost 16 minutes to recompute thesriaization after fact
changes for the DB-like test with taxonomic depth 5. Fortalyamaterialization can
be carried out in parallel to answering queries on top of #igtieg materialization.

In consequence, users will have to operate on stale copstaf Staleness of data
cannot be avoided in distributed scenarios like the Web érfitist place, and existing
experiences, e.g. with outdated page ranks of a web pageedgl€& show that the
quality of query answering is still good enough, if data islaged occasionally.

6 Related Work

We can find related work in two areas: Firstly, incrementaimegance of materialized
views in deductive databases. Secondly, truth maintensystems in the Artificial In-
telligence context.

Incremental Maintenance of materialized vie@gveral algorithms have been devised
for the incremental maintenance of views. All of these apphes do not consider
changes in the set of rules and differ in the techniques usetpe with changes in
facts. In order to cope with changing facts [1, 12] efficigettmpute the standard model
of a stratified database after a database is updated. Thegawgolution of [1] uses
sets of positive and negative dependencies that are nmaadtéor all derived facts. This
leads to low space efficiency and high cost for maintainirgdpendencies. Another
drawback of the approach is the granularity of the matesatitbn which is the whole
database.

[12] also derives rules (so-called meta-programs) to caenihe difference between
consecutive database states for a stratified Datalog progitae rules do not follow our
three step principle and some of the generated rules arafeotrgking it impossible to
implement the rules in typical Datalog engines. Additibpduplicate derivations are
not discarded in the algorithm.

[7] present the DRed algorithm, which is a procedural apgnda view mainte-
nance in Datalog with stratified negation. We follow theiinpipal approach in the for
the computation of changes, in fact their procedural atjorihas been rewritten into
the declarative version we use by [19].

The Progragation Filtration algorithm of [9] is similar toeet DRed algorithm, ex-
cept that changes are propagated on a predicate by prebdasite Hence, it computes
changes in one intensional predicate due to changes in oeesgnal predicate, loop-
ing over all derived and extensional predicate to completentaintenance procedure.
In each step of the loop the delete, re-derive and insert sigp executed. The algo-
rithm ends up fragmenting computation and rederiving clkdrand deleted facts over
and over again.

Truth Maintenance Systemgruth maintenance (also called belief revision or reason
maintenance) is an area of Al concerned with revising setsetiéfs and maintaining

Incremental Maintenance Of Materialized Ontologies 17

the truth in the system when new information alters exisitifigrmation. To this extent
a representation of beliefs and their dependencies is s&get® achieve the retraction
of believes and to identify contradictions. For examplstification-based TMS [5] uses
a graph data structure where nodes are augmented with tas firelicating their belief
status and supporting justification. When the belief st&tushanged, dependencies
are propagated through the graph. Making TMSs more effigiasta cottage industry
in the late 1980s, with most of the attention focused on theuAgption-based TMS
[3]. The primary advantage of the ATMS is its ability to ralgidwitch among many
different contexts, e.g. it is simpler to propagate the diitlwal of facts, but this comes
at the cost of an exponential node-label updating proceissidantages of TMS is
that the set of justifications (and nodes) grows monotolyied it is not allowed to
retract a justification, but only disable information. Tlaetfthat the set of assumption
is always in flux introduces most of the complexity in the TM§oaithms. More recent
work (e.g. [14]) primarily tried to reduce the cost for inarental updates. However, the
underlying principle of labelling does not change. To thettwé our knowledge, there
is no TMS, where the aggregation of all historic informatisravoided, viz. facts are
permanently removed from the system. Additionally the @riyrtechnique deployed in
TMS (backtracking) does not fit well with the bottom-up cortggion that is usually
applied in deductive databases.

7 Conclusion

We have presented an incremental maintenance techniqubdonaterialization of
intentional predicates (views). Unlike previous apprashour approach allows to
change the set of rules in a stratified Datalog program. We paesented a prelimi-
nary performance evaluation which underlines the feasiluif our solution. We regard
our results to be central to achieve scalability in larggles&emantic systems such as
presented by the Semantic Web. We have shown how our appcaache used with
current means for specifying semantics in the Semantic Welve present a generic
solution, future developments, e.g. for the rule layer ef$@mantic Web, are likely to
benefit from our technique as well.

Materialization is certainly not a panacea to all tracigpfiroblems. One drawback
is that it trades off required inferencing time againstaf@r space and access time.

In spite of such restrictions, we conjecture that matexddion as explained in this
paper will help to progress the Semantic Web and to build #ngel Semantic Web
engines of tomorrow — the Semantic Web analogon to a syot&ciogle.

Future work will address the maintenance when existentiahtjfication is avail-
able in the rule language, such as in N3. This will involvemt&ining skolem constants,
which are used in the implementation of existential quaratifon. Additionally, we will
investigate the obvious space-time trade-off betweendh#isns presented in sections
3 and 4 and non-materialized evaluation. This needs to lesiigated quantitatively,
including different options how to materialize: fully, byew indexes, with or without
intermediate results, etc. Further, one might integrageréhms that determine when
modifications leave a predicate unchanged. This could be ftoriacts in style of [13]
and for rules in style of [8].

18

Raphael \Volz et al.

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

K. Apt and J.-M. Pugin. Maintenance of stratified databas®ved as belief revision system.
In Proc. of the 6th Symposium on Principles of Database Syste@BS) pages 136145,
San Diego, CA, USA, March 1987.

. S. Bechhofer, C. Goble, and I. Horrocks. DAML+OIL is nobagh. INSWWS-1, Semantic

Web working symposiundul/Aug 2001.

. J. de Kleer. An assumption-based truth maintenance mystdértificial Intelligence

28(1986), 127-162.

. S. Decker, D. Brickley, J. Saarela, and J. Angele. A quedyiaference service for RDF. In

QL98 - Query Languages Workshdpecember 1998.

. J. Doyle. A truth maintenance system. In B. Webber and Nildson, editorsReadings in

Artifcial Intelligence pages 496-516. SMorgan Kaufmann, Los Altos, Califorr@811

. B. Grossof, I. Horrocks, R. Volz, and S. Decker. Desaiptiogic Programs: Combining

Logic Programs with Description Logic. Proceedings of WWW 200Budapest, Hungary,
May 2003.

. A. Gupta, I.S. Mumick, and V.S. Subrahmanian. Maintagniiews incrementally. IIACM

SIGMOD Conference on Management of D&t@93.

. Ashish Gupta, Inderpal Singh Mumick, and Kenneth A. Réstapting materialized views

after redefinitions. In Michael J. Carey and Donovan A. Saere editors,Proceedings
of the 1995 ACM SIGMOD International Conference on Managenoé Data, San Jose,
California, May 22-25, 1995pages 211-222. ACM Press, 1995.

. John Harrison and Suzanne Dietrich. Maintenance of madiferd views in a deductive

database: An update propagation approachiankshop on Deductive Databases, JICSLP
1992.

Patrick Hayes. RDF Semantics. W3C Working Draft, WaNle Web Consortium (W3C),
http://www.w3.org/TR/rdf-mt/, January 2003.

Matthias Jarke, Rainer Gallersdoerfer, Manfred A.féddisand Martin Staudt. ConceptBase
- A Deductive Object Base for Meta Data Managem@itS, 4(2):167-192, 1995.

V. Kuchenhoff. On the efficient computation of the diffiece betwen consecutive database
states. In Claude Delobel, Michael Kifer, and Yoshifumi Miaaga, editorsProc. of 2nd
Int. Conf. on Deductive and Object-Oriented Databasedume 566 ofLecture Notes in
Computer Science (LNCS$)ages 478-502, Munich, Germany, December 1991. Springer.
A. Y. Levy and Y. Sagiv. Queries independent of updatesPrbc. of 19th VLDB pages
171-181, 1993.

P. Pandurang Nayak and Brian C. Williams. Fast ContextcBing in Real-time Proposi-
tional Reasoning. IProceedings of AAAI-971997.

P. F. Patel-Schneider, P. Hayes, I. Horrocks, and F. vamelen. Web Ontology Language
(OWL) Abstract Syntax and Semantics. http://www.w3.oRJ/dwl-semantics/, 2002.

Jos De Roo. Euler proof mechanism. Internet: http://vagia.com/w3c/euler/, 2002.
Michael Sintek and Stefan Decker. TRIPLE - A Query, lefere, and Transformation Lan-
guage for the Semantic Web. limernational Semantic Web Conference (ISWIDphe 2002.
M. Staudt and M. Jarke. Incremental maintenance of madlgrmaterialized views. Techni-
cal Report AlB-95-13, RWTH Aachen, 1995.

Martin Staudt and Matthias Jarke. Incremental maimtemaf externally materialized views.
In T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan, anchdal L. Sarda, editors,
VLDB’96, Proceedings of 22th International Conference en/\Large Data Bases, Septem-
ber 3-6, 1996, Mumbai (Bombay), Indipages 75-86. Morgan Kaufmann, 1996.

Guizhen Yang and Michael Kifer. FLORA: Implementing dfidient DOOD System Using
a Tabling Logic Engine. I'Computational Logic 20Q(pages 1078-1093, 2000.

19

Incremental Maintenance Of Materialized Ontologies

A Evaluation Results

[4:143
0

0
€91
0
NCO
[Ae]
oL

[4c143
0

0
Leel

¥2.556

962817

€/8€9L
1108

vevl
oleviL
L€6L
66€1L

G268y 1,926 S9SKTY
106L 1¥8L 9/8L
443 z8el 601
€Y8/8L 09266C LE6LES
2208 256L 166L
1343 z6eL corl
[\e] oo Woo
55985 0185 6£E8S
SGEE szLe (4445
[Ae] Woo Woo
20045 12€9S 5299
V81€ V.62 LL0€
G9C0S9 82918E V6CCYS
LLEL oveL 0S€L
zleL %5743 LoglL
192652 16G/8% 9S61€9
19€L 182L 473
2eEL 2821 20€)

[wnwiuwfeb

wnuwiui | abelany]

Kianp

soe4 Buippy

791169

€9LLYL

6EY8Y

wnwixep | wnwiuipy[abesany|

~Sioe] bumoway

Soing buPPY

50691

5691

1291

9€581

9€G81

1ZA%4

SLS€

414
062
08

8L0C
era 4
cLL
s9le
414
413
oo
[2%x4
€92
oo
9.2
oLe
S9/1
8L€
Lyl
91
€L€
161

LLLLOLLLLLOLWLYLWYLLLOLOOL

OTLOTOOLTOOTOOTOOT O

Kianp eanouniuo) ax-gd|
Asanp aanounfuo) ax17-gqQ|
Asanp aanounfuo) ax17-gqQ|
Asanp aanounfuo) ax17-gq|
Asanp announfuo) ax17-gq|
Asanp announfuo) ax17-gq|
ABojouQ &y11-1a]
ABojouo &411-1q|
ABojouo &411-1q|
ABojojuo ax1-1a

ABojoyuo ax11-1a

ABojoyuo ax11-1a
Awouoxe] |

Awouoxe] |

Awouoxe] |

Awouoxe] |

Awouoxe] |

Awouoxey |

60060. L06ZEL 092.0S |6100C
€28 [24:73 (493} 259l
€821 (2443 2851 (g4
60062, 68EY8Z ¥66LLS |66661
2€L8 182L 108 |e99l
ccLL z8el (434 Ley
ASe] Woo oo Ae]
S6€99 v¥60S 6619 |/Si¥
S55€ §s0e 8zZLee 115
ASe] Woo Weo oo
1299 8Ly €192s |Lviv
S6Le 982 6162 €S
0098 €€668L ¥./8E€LT |LL06L
cL€8 0geL S192 €891
cLLL (45143 (44143 314
2SvLLL LyLlZC 9Tl¥6Y |8LEGL
2Ge8 L6cL 185 229l
2661 262l 98€L (344
wnwixep | wnwiupy[abesony|

Sa|ny Bunoway

abelany|

wnwixep | wnwiuiy [sbessay BuQ)|

soueuS U dnjes

Kianp buQ

£
O

QL [COCO000CLOLVLWLWLLLVVWLWLWD

D [PrLOLOLLLLLLWLWYWLLLLWYO

y

vJo]

1891

