
Incremental Maintenance Of Materialized Ontologies

Raphael Volz1,2, Steffen Staab1, and Boris Motik2

1 Institute AIFB, University of Karlsruhe
76128 Karlsruhe, Germany

{volz,staab}@aifb.uni-karlsruhe.de
http://www.aifb.uni-karlsruhe.de/WBS/

2 WIM, Forschungszentrum Informatik (FZI)
76131 Karlsruhe, Germany
{volz,motik}@fzi.de

http://www.fzi.de/wim/

This paper discusses the incremental maintenance of materialized ontologies in a
rule-enabled Semantic Web. Materialization allows to speed up query processing by
explicating the implicit entailments which are sanctionedby the semantics of an onto-
logy. The complexity of reasoning with the ontology is thereby shifted from query time
to update time. We assume that materialization techniques will frequently be important
to achieve a scalable Semantic Web, since read access to ontologies is predominant.
Central to materialization are maintenance techniques that allow to incrementally up-
date a materialization when changes occur.

We present a novel solution that allows to cope with changes in rules and facts. To
achieve this we extend a known approach for the incremental maintenance of views in
deductive databases. We show how our technique can be employed for a broad range
of existing Web ontology languages, such as RDF/S and subsets of OWL and present a
first evaluation.

1 Introduction

Germane to the idea of the Semantic Web are the capabilities to assert facts and to derive
new implicit facts from the asserted facts using the semantics specified by an ontology.
The current building blocks of the Semantic Web, Resource Description Framework
(RDF) [10] and Web Ontology Language (OWL) [15], define how toassert facts and
specify how implicit facts should be derived from stated facts.

The derivation of implicit information is usually achievedat the time clients issue
queries to inference engines. Situations where the query rate is high or the procedure to
derive implicit information is time consuming and complex lead to slow performance.
Materialization can be used to increase the performance at query time and to make
implicit information explicit. This avoids to recompute derived information for every
query.

Materialization has been applied successfully in many applications where reading
access to data is predominant. For example, data warehousesusually apply materializa-
tion techniques to makeonline analytical processing possible. In the traditional web,
portals maintain cached web pages to offer fast access to dynamically generated web
pages.

2 Raphael Volz et al.

We assume that reading access to ontologies is predominant in the Semantic Web
and other ontology based applications, hence materialization seems to be a promising
technique for fast query processing.

Central to materialization approaches is the issue of maintaining a materialization
when changes occur. This issue can be handled by simply recomputing the whole mate-
rialization, however as the computation is often complex and time consuming, typically
more efficient techniques need to be applied.

Contribution We present a technique for the incremental maintenance of materialized
ontologies. Our technique can be applied to a wide range of ontology languages, namely
those that can be axiomatized by a set of rules3.

The challenge that has not been tackled before comes from thefact that updates of
ontology definitions are equivalent to the update and new definitions of rules, whereas
existing maintenance techniques only address the update ofground facts.

To cope with changing rules, our solution extends a declarative algorithm for the
incremental maintenance of views [19] that was developed inthe deductive database
context. We show the feasibility of our solution in a first performance evaluation.

Paper structureThe remainder of the paper will consist of a review of how Web onto-
logy languages and rules interplay (Section 2), presentation of the algorithm for main-
tenance for changing facts (Section 3), extension of the algorithm for maintenance with
changing rules (Section 4), a first performance evaluation (Section 5), a review of re-
lated work (Section 6) followed by general conclusions (Section 7).

2 Web ontology languages and rules

2.1 Axiomatization of the language

Since the early days of the Semantic Web, many systems have tried to reason with Web
ontology languages using rule-based systems, e.g. SilRi [4], CWM4, Euler [16], JTP5

or Triple [17]. To do so, a particular Web ontology language is axiomatized via a static
set of rules which capture the semantics specified for a particular ontology language.

For example, Figure 1 presents the Datalog axiomatization of RDF/S. This axiom-
atization implements the semantics of RDF specified by the RDF model theory [10]
(without datatype entailments and support for stronger iffsemantics of domain and
ranges). The ontology and associated data is stored in a single ternary predicatet, i.e.
the extension oft stores all triples that constitute a particular RDF graph.

In many applications, e.g. editors, it is necessary to distinguish between asserted
information and entailed information [2]. This can be achieved by turning the predicatet
into a completely intensional predicate (view) that is derived from the explicitly asserted

3 The underlying rule language used for our approach is Datalog with stratified negation.
4 http://www.w3.org/2000/10/swap/doc/cwm
5 http://ksl.stanford.edu/software/jtp/

Incremental Maintenance Of Materialized Ontologies 3

t(P,a,rdf:Property) :- t(S,P,O). rdf1
t(S,a,C) :- t(P,domain,C), t(S,P,O). rdfs2
t(O,a,C) :- t(P,range,C), t(S,P,O). rdfs3
t(S,a,Resource) :- t(S,P,O). rdfs4a
t(O,a,Resource) :- t(S,P,O). rdfs4b
t(P,subPropertyOf,R) :- t(Q,subPropertyOf,R), t(P,subPropertyOf,Q).rdfs5a
t(S,R,0) :- t(P,subPropertyOf,R), t(S,P,O). rdfs6
t(C,a,Class) :- t(C,subClassOf,Resource). rdfs7
t(A,subClassOf,C) :- t(B,subClassOf,C), t(A,subClassOf,B). rdfs8
t(S,a;B) :- t(S,a,A), t(A,subClassOf,B). rdfs9
t(X,subPropertyOf,member) :- t(X,a,ContainerMembershipProperty). rdfs10
t(X,subClassOf,Literal) :- t(X,a,Datatype). rdfs11
t(Resource,subClassOf,Y) :- t(X,domain,Y), t(rdf:type,subPropertyOf,X).rdfs12

Fig. 1. Static Datalog rules for implementing RDF(S)

information. Hence, asserted RDF triples constitute a separate extensional predicate,
saytExt, andt is derived fromtExt via a rule:

t(X, Y, Z) :- tExt(X, Y, Z).

Such view definitions allow not only to distinguish between asserted and entailed
information in queries but also to re-use results established for the incremental mainte-
nance of views (intensional predicates) in the deductive database context for the purpose
of materialization.

2.2 Dynamic rule sets

The set of rules is typically not immutable. With the advent of higher layers of the
Semantic Web stack, i.e. the rule layer, users can create their own rules. Hence, we are
facing a scenario where not only base facts can change but also the set of rules. This
requires the ability to maintain a materialization in this situation.

Besides support for a rule layer, the ability to maintain a materialization under
changing rule sets is also required for approaches where thesemantics of the onto-
logy language is not captured via a static set of rules but instead compiled into a set of
rules. Such an approach is for example required by Description Logic Programs (DLP)
[6], where OWL ontologies are translated to logic programs.Other implementations
of knowledge representation languages, e.g. O-Telos [11] and F-Logic [21], have also
been achieved via such a compilation.

Semantic Web Rule layer We now briefly present some languages for the specifica-
tion of Semantic Web rules that may be compiled into the paradigm we use. The Rule
Markup Initiative aims to develop a canonical Web language for rules called RuleML.
RuleML covers the entire rule spectrum and spans from derivation rules to transforma-
tion rules to reaction rules. It has a well-defined Datalog subset, which can be enforced

4 Raphael Volz et al.

using XML schemas, and for which we can employ the materialization techniques de-
veloped within this paper. The reader may note, that materialization is not an issue for
many other aspects found in RuleML, e.g. transformation rules or reaction rules.

In parallel to the RuleML iniative, Notation3 (N3) has emerged as a human-readable
language for RDF/XML. Its aim is to optimize expression of data and logic in the
same language and has become a serious alternative since many systems that support
inference on RDF data (e.g. cwm, Euler, Jena2) support it. The rule language supported
by N3 is an extension of Datalog with existential quantifiersin rule heads Hence, the
materialization techniques developed within this paper can be applied to the subset of
all N3 programs which do not make use of existential quantification in the head.

Description Logic Programs Both of the above mentioned approaches allow the def-
inition of rules but are not integrated with the ontology layer in the Semantic Web
architecture. Description Logic Programs aim to integraterules with the ontology layer
by compiling ontology definitions into a logic program whichcan later be extended
with additional rules. This approach can deal with a very expressive subset of the stan-
dardized Web ontology language OWL (i.e. OWL without existential quantification,
negation and disjunction in rule heads).

The following example OWL fragment declares Wine to be potable liquids who are
made by Wineries:

Winev PotableLiquidu ∀hasMaker.Winery

This will be translated in DLP to the following set of rules:

Wine(X) :- PotableLiquid(X), hasMaker(X, Y), Winery(Y).
PotableLiquid(X) :- Wine(X).
Winery(Y) :- Wine(X), hasMaker(X, Y).

Hence, a change to the ontologies class and property structure will result in a change
of the compiled rules. Again, it is necessary to be able to maintain a materialization in
case of such a change.

3 Changing facts

This section presents the maintenance of a materializationwhen facts change, viz. new
tuples are added or removed from the extension of a predicate. We first demonstrate how
changes can effect a materialization in an example and then recapitulate the incremental
maintenance approach [19] upon which we build our approach.

3.1 An example

Let’s consider the effects of adding and removing a subClassOf relationship in RDF/S
with respect to some of the relevant rules that axiomatize RDF Schema. The first rule

Incremental Maintenance Of Materialized Ontologies 5

Insert
Delete

Asserted
Materialization

(Transitive

Closure)

f

e

a

b

c g

h

d

f

e
h

a

db

c g

Fig. 2. Changes to a RDF/S taxonomy and its materialization

links the intensional predicatet with ground facts. The second rule implements the
transitive closure of the subClassOf relationship:

R1 : t(X, Y, Z) :- text(X, Y, Z).
R2 : t(A,subClassOf,C) :- t(B,subClassOf,C), t(A,subClassOf,B).

Let us consider the effects of updates on the taxonomy depicted in Figure 2:

– b is no longer a subclass ofc, viz. thetext(b, subClassOf, c) fact is deleted.
– h is asserted to be a subclass ofd, hence atext(h, subClassOf, d) fact is inserted.

The deletion has the following consequences tot: It eliminates the links between (a,c),
(a,g), (b,c) and (b,g). Since the factstext(d, subClassOf, c) andtext(e, subClassOf, d) ex-
ist, alternative derivations also exist for the links (e,c), (e,g), (f,c) and (f,g). These alter-
native derivations have to be taken into account in our approach. The insertion yields
three new derivations namely links between (h,c), (h,d) and(h,g).

3.2 Generating Maintenance Rules

Several algorithms (e.g. [9, 12, 7]) have been presented forthe incremental maintenance
of views (or intensional predicates) in the deductive database context. The most com-
mon procedure is to compute the changes (differentials) to views in three steps:

– Firstly, to overestimate the consequences of deletions, soa super set of the facts
that are eventually deleted is computed for deletion.

– Secondly, a rederivation step prunes those computed deletions from the set of dele-
tions for which alternative derivations (via some other rules defining the view) exist.

6 Raphael Volz et al.

– Thirdly, the consequences of insertions to extensional predicates are added to the
view, if applicable.

Our approach is based on the results established in [19], which realize the DRed
(delete and rederive) algorithm presented in [7] in a purelydeclarative way. The ap-
proach is based on rewriting the original program into a maintenance program, which
is evaluated instead of the old program.

Hence, an original Datalog rule:

p :- r1, . . . , rn.

is rewritten into a set of new predicates and several maintenance rules that calculate the
differentials required to maintain a materialization. Themaintenance of an intensional
predicatep is achieved via six additional predicates:

1. pDel computes an overestimation of facts that ought to be deletedfrom the mate-
rialization so-called deletion candidates. For extensional predicatespDel contains
explicitly what should be removed from the materialization.

2. pIns contains the facts that ought to be inserted into the materialization. For exten-
sional predicatespIns contains explicitly what should be inserted into the materi-
alization.

3. pRed stores those facts that are marked for deletion but have alternative derivations.
4. pNew describes the new state of the materialization after updates.
5. pPlus computes the net insertions required to maintain the materialization.
6. pMinus computes the net deletions required to maintain the materializaion.

The extension ofp itself contains the materialization. The reader may note that the
evaluation of the set of maintenance rules computes the set of implicit insertions and
deletions that have to be propagated to the materializationof the predicate and to other
predicates, which depend on the predicate through some rules.

Deletion Candidates The first subset of maintenance rules derive all possible deletion
candidates for a predicatep. Deletion candidates are constituted by deleted facts in the
body predicates. For all rules and all body predicatesri in these rules, we define a rule

Di: pDel :- r1, . . . , ri−1, r
Del
i , ri+1, . . . , rn.

If ri is a extensional predicate,rDel
i contains either the explicitly deleted facts inri

or it contains a superset of the derived facts to be deleted inri due to deletions caused
by other rules.

With respect to our example we would have to generate three deletion rules. The
transformation ofR1 yields one deletion rule, while the transformation ofR2 results in
two deletion rules.

R1D1: tDel(X, Y, Z) :- tDel
ext (X, Y, Z).

R2D1: tDel(A, subClassOf, C) :- tDel(B, subClassOf, C), t(A, subClassOf, B).
R2D2: tDel(A, subClassOf, C) :- t(B, subClassOf, C), tDel(A, subClassOf, B).

Incremental Maintenance Of Materialized Ontologies 7

If b is no longer a subclass ofc (viz. tDel
ext (b, subClassOf, c) exists), the extension of

thetDel predicate would be constituted by the following derived subclass relationships:

(b, c), (b, g), (a, c), (a, g), (e, c), (e, g), (f, c), (f, g)

Rederivation We now have to check which tuples inpDel have alternative derivations
in the new database state. This is achieved using the following rule:

R: pRed :- pDel, rNew
1 , . . . , rNew

n .

With respect to our example,tRed is axiomatized by two rules:

R1R: tRed(X, Y, Z) :- tDel(X, Y, Z), tNew
ext (X, Y, Z).

R2R: tRed(A, subClassOf, C) :- tDel(A, subClassOf, C),
tNew(B, subClassOf, C), tNew(A, subClassOf, B).

tRed has the following subClassOf relationships as its extension:

(e, c), (e, g), (f, c), (f, g)

This is due to the factst(d, subClassOf, c) andt(e, subClassOf, d), which generate these
alternative derivations.

Insertion The next rules propagate insertions of extensional facts tothe intensional
predicates. This is done by ordinary semi-naive rewriting,i.e. by constructing rules(Ii)
that join new facts inserted into one body relation with fullextensions of all others:

Ii: pIns :- rNew
1 , . . . , rNew

i−1 , rIns
i , rNew

i+1 , . . . , rNew
n .

With respect to our example we have to generate three insertion rules (one forR1

and two forR2):

R1I1: tIns(X, Y, Z) :- tIns
ext (X, Y, Z).

R2I1: tIns(A, subClassOf, C) :- tIns(B, subClassOf, C), tNew(A, subClassOf, B).
R2I2: tIns(A, subClassOf, C) :- tNew(B, subClassOf, C), tIns(A, subClassOf, B).

If we asserth to be a subclass ofd (viz. tIns
ext (h, subClassOf, d) exists), we can derive

the following new subclass relationships in the extension of tIns:

(h, d), (h, c), (h, g)

Description of the new stateThe new state of a predicatep after updates is captured
in a new predicatepNew. A set of rules captures the changes:

8 Raphael Volz et al.

N1: pNew :- p,¬pDel.

N2: pNew :- pRed.

N3: pNew :- pIns.

RuleN1 ensures that the new state of a predicatep does not contain the deleted in-
formation. RuleN2 ensures that rederived facts are part of the new state of the predicate.
Finally, ruleN3 pushes insertions into the new state of the predicate.

Computation of differentials We can compute the deletions and insertions that have
to be performed to maintain the materialization of a predicatep via two predicatespPlus

andpMinus, which compute the net insertions and deletions to a predicatep.
pPlus contains those facts, which were not present before and are derived for inser-

tion.pMinus contains those facts, which are deletion candidates and areneither inserted
nor re-derived.

P : pPlus :- pIns,¬p.

M : pMinus :- pDel,¬pIns,¬pRed.

In our example the extension oftPlus is made up by the following subclassOf as-
sertions:

(h, d), (h, c), (h, g)

The extension oftMinus is:

(a, c), (a, g), (b, c), (b, g)

3.3 Static RDF/S rules revisited

The 15 static Datalog rules for the axiomatization of RDF/S (cf. Figure 1) contain 21
body predicates. This leads to the generation of 21 insertion rules and 21 deletion rules.
Additionally 15 rederivation rules are generated. 5 predicates are generated to capture
the new state of the predicatet and the differentials. The total number of 62 generated
rules can be found online6.

3.4 Evaluation of maintenance rules

[18] show that the evaluation of the maintenance rules is a sound and complete pro-
cedure for computing the differentials between two database states when extensional
update operations occur.

During the evaluation it is necessary to access the old stateof a predicate. Bottom-
up evaluation approaches therefore require that all intensional relations involved in the
computation are completely materialized, viz. the initialrules defining the predicates
are not considered during the evaluation of the maintenancerules.

6 http://kaon.semanticweb.org/research/materialization

Incremental Maintenance Of Materialized Ontologies 9

The rewriting contain negated predicates to express the algebraic set difference op-
eration. Hence, even though the original rules may be pure Datalog (without negation),
a program with negation is generated. The rewriting transformation keeps the property
of stratifiability, since newly introduced predicates do not occur in cycles with other
negations. Hence, the evaluation can partition predicatesinto strata such that no two
predicates in one stratum depend negatively on each other. Predicates may only oc-
cur negatively in rules that define predicates of a higher stratum. The evaluation can
then proceed as usual stratum-by-stratum starting with theextensional predicates them-
selves.

Not only changed predicates have to be maintained but also all predicates that de-
pend on predicates whose extension changes. An axiomatization of RDF/S based on a
single ternary predicate (cf. Figure 1) therefore leads to complete re-materialization in
case of updates. We present an optimization for this case in Section 4.3 which results in
more efficient results.

4 Changing rules

This section presents the maintenance of a materializationif the definition of views
(intensional predicates) changes, viz. rules that define the predicate are added or re-
moved. Our solution has two main components. Firstly, the materialization itself has to
be maintained. Secondly, the materialization rules for a predicatep themselves have to
be maintained.

DL-Style DLP Translation explanation
1. hasChildv inDynasty inDynasty(X,Y) :- hasChild(X,Y). hasChild constitutes in-

Dynasty
2. inDynasty+ v inDynasty inDynasty(X,Y) :- the inDynasty

inDynasty(X,Z), inDynasty(Z,Y). relation is transitive
3. inDynasty− ≡ inDynasty inDynasty(X,Y) :- inDynasty(Y,X). the inDynasty relation

is symmetric
Table 1.Versions of the example ontology: (a) DL-based (b) DLP translation

4.1 An example

Table 1 depicts a small sample ontology that describes the relationships in a family dy-
nasty. The OWL rules stated in DL-style syntax are compiled into appropriate Datalog
rules using the DLP approach. Let’s assume that DLP has been used to implement the
semantics. If the ontology only contains the first and secondaxiom then the extension
of hasChild is constituted by the tuples{(1, 2), (2, 3), (4, 3)}. Hence, the extension
of inDynasty corresponds to hasChild∪ {(1, 3)}

If the first axiom is deleted,inDynasty has an empty extension. Similarly the
extension ofinDynasty would be equivalent tohasChild, if the second axiom
were deleted.

10 Raphael Volz et al.

Now assume that the third rule is inserted. Apparently the new extension will con-
tain the tuple(1, 4) (among others), which is derived by one of the existing rules, i.e.
rule 2 which operated on tuples derived by rule 3.

4.2 Maintaining the materialization

Every change in the rule set causes changes in the extension of a predicatep. Hence,
the materialization has to be updated as well. However, unlike in the case of changing
extensions, the existing maintenance rules cannot capturethis situation.

As we can see in the above examples, adding and removing rulesrequires the reeval-
uation of all other rules defining a predicate. The reader maynote, that it does not suffice
to simply change the maintenance rules. Since there is no change tohasChild, both
predicates which capture the difference hasChildPlus and hasChildMinus are empty.
In consequence inDynastyIns, inDynastyDel, inDynastyRed and thereby inDynastyPlus

and inDynastyMinus are empty.
Our solution is based on the creation of a temporary predicate pTemp, which is

used to calculate the extension ofp using the changed set of rules. Hence,pTemp is
axiomatized using the updated rule set for a predicatep. Self-references of the predicate
have to be substituted by the temporary predicate:

inDynastyTemp(x, y) :- hasChild(x, y).

inDynastyTemp(x, y) :- inDynastyTemp(x, z), inDynastyTemp(z, y).

inDynastyTemp(x, y) :- inDynastyTemp(y, x).

Then,pTemp isused for the calculation ofpPlus andpMinus by augmenting the
definition ofpIns andpDel with the following rules:

pIns :- pTemp,¬p.

pDel :- p,¬pTemp.

The view maintenance process is carried out by evaluating the maintenance rules
without the initial rules that definep. All predicates, which depend onp can be updated
usingpIns andpDel. The reader may note, that our solution allows the simultaneous
modification of both rules and facts. However, the new facts can already be taken into
account whenpTemp is computed.

4.3 Selection-based Optimization

Alternatively to DLP, the semantics of the ontology stated in Table 1 could have been
given by specifying several rules that axiomatize a single triple predicate. For example
the symmetry of the dynastic relationship could be axiomatized as follows:

t(X, inDynasty, Y) :- t(Y, inDynasty, X).

In this case our approach requires to access the whole database, since only one predicate
is materialized and all rules defining this predicate have tobe reevaluated. Naturally,

Incremental Maintenance Of Materialized Ontologies 11

this situation corresponds to the simple strategy of recomputing a materialization from
scratch.

We therefore introduce an optimization, which improves therecomputation by lim-
iting the part of the database which takes part in the evaluation. Selection-based opti-
mization assumes that the extension of the database is splitdepending on split points.
Split points are given by constants that occur at a certain argument position of a predi-
cate.

The optimization transforms a Datalog program into an equivalent program, such
that all references top where a split point occurs are replaced by split predicates.This
is the case, if a constantc was used as thei-th argument in the predicatep.

To generate split predicates, we split the extension of a predicatepExt into several
edb predicates of the formpci

Ext(V ar1, V ar2, . . . , V ari−1, c, V ari+1, V arn) to store
tuples based on equal constant valuesc in their i-th component.

Hence, instead of using a single predicatepExt for representing the direct RDF as-
sertion, the database is split into severalpci

Ext. Again, we want to distinguish between
asserted and derived information and consequently introduce intensional predicates
(views) for each component of the extension (i.e. rules of the form pci :- pci

Ext).The
complete predicatep is represented byn rules that unify the used split predicates:
p :- pci

Returning to the triple based axiomatization of the example, we can transform the
program by introducing a split pointtinDynasty2 for theinDynasty constant (when
used as second argument in the ternary predicatet):

– We use two extensional predicates:tRest
Ext , t

inDynasty2

Ext to store the extension in two
disjoint sets.

– We capture the intensional predicates and integrate the splits into a complete exten-
sion of t and rewrite the example rule 2 such that split predicates areused instead
of the full predicate:

tRest(X, Y, Z) :- tRest
Ext (X, Y, Z).

tinDynasty2 :- t
inDynasty2

Ext (X, Y, Z).
t(X, Y, Z) :- tRest(X, Y, Z).
t(X, Y, Z) :- tinDynasty2(X, Y, Z).
tinDynasty2(X, inDynasty, Y) :- tinDynasty2(Z, inDynasty, Y),

tinDynasty2(X, inDynasty, Y).

Assume now that the third rule of Table 1 is inserted. We can again transform this
rule into a rule, which uses the split predicatetinDynasty2 . However, the maintenance
of tinDynasty2 can now be carried out by ignoring all non-relevant rules fort. Hence,
the whole extension oft can be updated via the insert and delete maintenance rules that
are created fortinDynasty2 only, viz. without using the complete database.

4.4 Maintaining maintenance rules

Additionally to the maintenance of the materialization itself, the maintenance rules have
to be altered when changes occur. In case of insertion of a ruler new maintenance rules

12 Raphael Volz et al.

are generated. In case of deletion of a ruler, all maintenance rules generated from the
rule are deleted as well. If the predicatep itself is deleted, i.e. the last ruler definingp is
deleted, all maintenance predicates, e.g.pNew, pRed etc. are removed from the database
by removing the rules that define those predicates.

The maintenance algorithms operate on the following data structures:

– R set of rules
– MR set of maintenance rules,
– P set of predicates,
– MP set of maintenance predicates,
– ruleMaintenance : R → MR function that maps rule to its maintenance rules
– head : R → P function maps a rule to the rule head
– rules : P → R function that maps a predicate to defining rules

Two procedures generate the maintenance rules for a given rule r and its headp:

– staticMaintenanceRules generates the rules definingpNew, pPlus andpMinus,
– dynamicMaintenanceRules generates the rules definingpDel, pRed andpIns

Maintaining maintenance rules is achieved by algorithm 1. The if branch checks
whether a rule is the first (respectively last) rule defining apredicatep and generate
(respectively delete) the static maintenance predicates and rules.

Algorithm 1 Changing Rules
Require: New rulesChangesthat are changed, operator◦ = {∪, \} specifying insert or delete

R = R◦ Changes
for all r ∈ Changes do

maintenanceRules =∅
p = head(r)
if (({p} ∩ P = ∅) ∧ (◦ = ∪)) ∨ ((rules(p)\{r} = ∅) ∧ (◦ = \)) then

P = P ◦ {p}
MP = MP ◦ {pNew , pTemp, pRed, pMinus, pPlus, pDel, pRed, pIns}
maintenanceRules = staticMaintenanceRules(p)

end if
rules(p) = rules(p) ◦ r
maintenanceRules = maintenanceRules∪ dynamicMaintenanceRules(r)
ruleMaintenance(r) = ruleMaintenance(r) ◦ maintenanceRules
MR = MR◦ maintenanceRules

end for
Ensure: Updated setsMR, MP, R, P and mapsruleMaintenance . . .

5 Evaluation

This section reports on our prototypical implementation and a first evaluation of our
approach.

Incremental Maintenance Of Materialized Ontologies 13

5.1 Implementation

We implemented our approach to materialization as an extension to the KAON Datalog
engine. The implementation is freely available via the KAONweb site7.

In case of the materialization of a predicate all changes to facts relevant for the
predicate and the rule set defining a predicate are monitored. The materialization and
corresponding maintenance rules are updated as described in the previous sections.

The maintenance process is carried out as follows. When a program is designated
for materialization, all maintenance rules are generated,the program itself is evaluated
and the extension of all predicates designated for materialization is stored explicitly.
The maintenance program is used for future evaluation instead of the original program.
Therefore, all rules defining non-materialized predicatesare added to the maintenance
program.

Changes in facts are stored in the appropriatepIns andpDel predicates. The change
triggers the evaluation of the maintenance rules and consequently updates the exten-
sions of all materialized predicates is updated by addingpPlus and removingpMinus.
Afterwards the extension of extensional predicates is updated by addingpIns and re-
movingpDel. As a last step, the extension ofpIns and all other auxiliary predicates is
cleared.

Changes in rules are carried out by retrieving all rules defining the same predicates
as the changed rules from the original program. These rules are then rewritten to refer
to pTemp only. Then the maintenance rules are evaluated and extensions are updated as
described for facts. As a last step the auxiliary rules definingpTemp are deleted.

5.2 Evaluation Setting

Test AssumptionsThe evaluation has been carried out with changing OWL ontologies
that are compiled into logic programs via the DLP translation [6]. It is assumed that all
predicates are materialized. We assume that an inference engine builds its knowledge
base by aggregating data from several web sources. Therefore bulk updates will be
predominant.

Test Procedure.Each test is characterized by a certain ontology structure and a class
whose extension is to be read. The ontology structure has been generated for different
input parameters, resulting in ontologies of different sizes. The average of five such
invocations has been taken as the performance measure for each test. If the engine ran
out of Memory results are denoted with OoM in the result table(cf. Appendix 1).

We obtain six measures:(a) the time of query processing without materialization,
(b) the time required to set up the materialization and the maintenance program,(c)
the time required to perform maintenance when rules are added, (d) rules are removed,
(e) facts are added, and(f) facts are removed. Finally,(g) assesses the time of query
processing with materialization.

Test Platform.We performed the tests on a laptop with Pentium IV Mobile processor
running at 2 GHz, 512 MB of RAM using the Windows XP operating system. The
implementation itself is written in Java and executed usingSun’s JDK version 1.4.101.

7 http://kaon.semanticweb.org/

14 Raphael Volz et al.

5.3 Evaluation Scenarios

First we give an overview of the types of tests we conducted. In describing the results
(cf. Appendix 1) we useD to denote the depth of the class hierarchy,NS to denote
the number of sub classes at each level in the hierarchy,NI to denote the number of
instances per class andP to denote the number of properties.

To test changes in facts, we add and remove a random percentage Changeof the
facts. For rules, we add and remove a random rule. This is due to the limitation of the
underlying engine, which currently does not allow to alter rules in a bulk manner. The
test was performed for different depths of the taxonomyD = 3, 4, 5 while the number
of sub classes and the number of instances was not altered (NS= 5; NI = 5). Test 2 and
3 made use of properties. Here, every class had five properties, which are instantiated
for every third instance of the class (NI = 5). We carried out each test using varying
Changeratios of 10% and 15% of the facts.

Test 1: TaxonomyExtended taxonomies, e.g. WordNet, currently constitute alarge por-
tion of the ontologies that are in use. Our goal with this testis to see how the very
basic task of taking the taxonomy into account when retrieving the extension of a class
is improved. The taxonomy is constituted by a symmetric treeof classes. We did not
make use of properties, henceP = 0. The test query involved computing the extension
of one of the concepts on the first level of the class hierarchy. This is a realistic query
in systems where taxonomies are used for navigation in document collections. Here,
navigation typically starts with top-level classes and theset of documents is displayed
as the class extension.

Test 2: Database-likeThe goal of this test was to see how ontologies with larger number
of properties are handled. Our goal was to answer a simple conjunctive query on top of
this ontology. The DL-like query is c1u ∃p0.c12.

Test 3: DL-like This test shows how materialization performs in DL-like ontologies,
which contain simple class definitions. Each class in the class tree is defined using the
following axiom: ci t ∃pk.ci−1 v c (where ci denotes i-th child of concept c). The
query retrieves the extension of some random class in the first-level of the taxonomy.

5.4 Results

Figure 3 depicts the average time8 for querying an ontology without using material-
ization, setting up the materialization and cost of maintenance for different types of
changes (adding and removing rules and facts). Finally, thetime for answering the same
query using the materialization is depicted. The exact results of the evaluation can be
found in Appendix 1.

As we can see in the figure, maintenance costs do not vary significantly with the
quantity of updates. All costs are directly related to the size of the ontologies. The per-
formance behavior between the taxonomy and DB-like ontologies do also not alter sig-
nificantly. However, more complex rules as they are constituted by DL-like ontologies

8 in milliseconds on a logarithmic scale

Incremental Maintenance Of Materialized Ontologies 15

Evaluation Results

1

10

100

1000

10000

100000

1000000

O
rig

in
al

Q
ue

ry

S
et

up
M

ai
nt

en
an

ce

R
em

ov
e

R
ul
es

A
dd

R
ul
es

R
em

ov
e

Fac
ts

A
dd

Fac
ts

Q
ue

ry
O
n

M
at

er
ia
liz

at
io
n

Action

T
im

e
(m

s
) Taxonomy Depth 3

DL-Like Ontology Depth 3

DB-Like Conjunctive Query Depth 3

Taxonomy Depth 4

DL-Like Ontology Depth 4

DB-Like Conjunctive Query Depth 4

Taxonomy Depth 5

DB-Like Conjunctive Query Depth 5

Fig. 3.Evaluation Results (Average Values)

are always more expensive to evaluate, therefore setup costs and the cost of evaluating
the maintenance rules is also higher.

We want to stress that we measured the performance of concrete tools. Although
algorithms implemented by a system are certainly important, the overall performance
of a system is influenced by many other factors as well, such the quality of the imple-
mentation or the language. It is virtually impossible to exclude these factors from the
performance measurement. For example, our Datalog engine ran out of memory with
the DL-like ontology where the taxonomic depth was five, viz.the set of rules was gen-
erated from 3950 class and 19750 property definitions, whilethe underlying knowledge
base contained 19750 class instantiations and 32915 property instantiations.

5.5 Discussion

The different costs of each step in the maintenance procedure are always higher than
the costs of evaluating a single query. The question whetheror not to materialize is
therefore determined by the application and the issue whether the system can handle its
typical workload, e.g. can it handle the intended number of users if answering a single
query takes almost 3 seconds ?

16 Raphael Volz et al.

With materialization the cost of accessing the materialized predicates is can be ne-
glected. However, the time for the evaluation of the maintenance rules can be a signifi-
cant bottleneck for a system especially for large knowledge-bases. For example, in one
of our test runs it took almost 16 minutes to recompute the materialization after fact
changes for the DB-like test with taxonomic depth 5. Fortunately, materialization can
be carried out in parallel to answering queries on top of the existing materialization.

In consequence, users will have to operate on stale copies ofdata. Staleness of data
cannot be avoided in distributed scenarios like the Web in the first place, and existing
experiences, e.g. with outdated page ranks of a web pages in Google, show that the
quality of query answering is still good enough, if data is updated occasionally.

6 Related Work

We can find related work in two areas: Firstly, incremental maintenance of materialized
views in deductive databases. Secondly, truth maintenancesystems in the Artificial In-
telligence context.

Incremental Maintenance of materialized viewsSeveral algorithms have been devised
for the incremental maintenance of views. All of these approaches do not consider
changes in the set of rules and differ in the techniques used to cope with changes in
facts. In order to cope with changing facts [1, 12] efficiently compute the standard model
of a stratified database after a database is updated. The proposed solution of [1] uses
sets of positive and negative dependencies that are maintained for all derived facts. This
leads to low space efficiency and high cost for maintaining the dependencies. Another
drawback of the approach is the granularity of the materialization which is the whole
database.

[12] also derives rules (so-called meta-programs) to compute the difference between
consecutive database states for a stratified Datalog program. The rules do not follow our
three step principle and some of the generated rules are not safe making it impossible to
implement the rules in typical Datalog engines. Additionally duplicate derivations are
not discarded in the algorithm.

[7] present the DRed algorithm, which is a procedural approach to view mainte-
nance in Datalog with stratified negation. We follow their principal approach in the for
the computation of changes, in fact their procedural algorithm has been rewritten into
the declarative version we use by [19].

The Progragation Filtration algorithm of [9] is similar to the DRed algorithm, ex-
cept that changes are propagated on a predicate by predicatebasis. Hence, it computes
changes in one intensional predicate due to changes in one extensional predicate, loop-
ing over all derived and extensional predicate to complete the maintenance procedure.
In each step of the loop the delete, re-derive and insert steps are executed. The algo-
rithm ends up fragmenting computation and rederiving changed and deleted facts over
and over again.

Truth Maintenance SystemsTruth maintenance (also called belief revision or reason
maintenance) is an area of AI concerned with revising sets ofbeliefs and maintaining

Incremental Maintenance Of Materialized Ontologies 17

the truth in the system when new information alters existinginformation. To this extent
a representation of beliefs and their dependencies is necessary to achieve the retraction
of believes and to identify contradictions. For example, justification-based TMS [5] uses
a graph data structure where nodes are augmented with two fields indicating their belief
status and supporting justification. When the belief statusis changed, dependencies
are propagated through the graph. Making TMSs more efficientwas a cottage industry
in the late 1980s, with most of the attention focused on the Assumption-based TMS
[3]. The primary advantage of the ATMS is its ability to rapidly switch among many
different contexts, e.g. it is simpler to propagate the withdrawal of facts, but this comes
at the cost of an exponential node-label updating process. Disadvantages of TMS is
that the set of justifications (and nodes) grows monotonically as it is not allowed to
retract a justification, but only disable information. The fact that the set of assumption
is always in flux introduces most of the complexity in the TMS algorithms. More recent
work (e.g. [14]) primarily tried to reduce the cost for incremental updates. However, the
underlying principle of labelling does not change. To the best of our knowledge, there
is no TMS, where the aggregation of all historic informationis avoided, viz. facts are
permanently removed from the system. Additionally the primary technique deployed in
TMS (backtracking) does not fit well with the bottom-up computation that is usually
applied in deductive databases.

7 Conclusion

We have presented an incremental maintenance technique forthe materialization of
intentional predicates (views). Unlike previous approaches, our approach allows to
change the set of rules in a stratified Datalog program. We have presented a prelimi-
nary performance evaluation which underlines the feasibility of our solution. We regard
our results to be central to achieve scalability in large-scale Semantic systems such as
presented by the Semantic Web. We have shown how our approachcan be used with
current means for specifying semantics in the Semantic Web.As we present a generic
solution, future developments, e.g. for the rule layer of the Semantic Web, are likely to
benefit from our technique as well.

Materialization is certainly not a panacea to all tractability problems. One drawback
is that it trades off required inferencing time against storage space and access time.

In spite of such restrictions, we conjecture that materialization as explained in this
paper will help to progress the Semantic Web and to build the large Semantic Web
engines of tomorrow — the Semantic Web analogon to a syntactic Google.

Future work will address the maintenance when existential quantification is avail-
able in the rule language, such as in N3. This will involve maintaining skolem constants,
which are used in the implementation of existential quantification. Additionally, we will
investigate the obvious space-time trade-off between the solutions presented in sections
3 and 4 and non-materialized evaluation. This needs to be investigated quantitatively,
including different options how to materialize: fully, by view indexes, with or without
intermediate results, etc. Further, one might integrate algorithms that determine when
modifications leave a predicate unchanged. This could be done for facts in style of [13]
and for rules in style of [8].

18 Raphael Volz et al.

References

1. K. Apt and J.-M. Pugin. Maintenance of stratified databases viewed as belief revision system.
In Proc. of the 6th Symposium on Principles of Database Systems(PODS), pages 136–145,
San Diego, CA, USA, March 1987.

2. S. Bechhofer, C. Goble, and I. Horrocks. DAML+OIL is not enough. InSWWS-1, Semantic
Web working symposium, Jul/Aug 2001.

3. J. de Kleer. An assumption-based truth maintenance system. Artificial Intelligence,
28(1986), 127-162.

4. S. Decker, D. Brickley, J. Saarela, and J. Angele. A query and inference service for RDF. In
QL98 - Query Languages Workshop, December 1998.

5. J. Doyle. A truth maintenance system. In B. Webber and N. J.Nilsson, editors,Readings in
Artifcial Intelligence, pages 496–516. SMorgan Kaufmann, Los Altos, California, 1981.

6. B. Grossof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining
Logic Programs with Description Logic. InProceedings of WWW 2003, Budapest, Hungary,
May 2003.

7. A. Gupta, I.S. Mumick, and V.S. Subrahmanian. Maintaining views incrementally. InACM
SIGMOD Conference on Management of Data, 1993.

8. Ashish Gupta, Inderpal Singh Mumick, and Kenneth A. Ross.Adapting materialized views
after redefinitions. In Michael J. Carey and Donovan A. Schneider, editors,Proceedings
of the 1995 ACM SIGMOD International Conference on Management of Data, San Jose,
California, May 22-25, 1995, pages 211–222. ACM Press, 1995.

9. John Harrison and Suzanne Dietrich. Maintenance of materialized views in a deductive
database: An update propagation approach. InWorkshop on Deductive Databases, JICSLP,
1992.

10. Patrick Hayes. RDF Semantics. W3C Working Draft, World-Wide Web Consortium (W3C),
http://www.w3.org/TR/rdf-mt/, January 2003.

11. Matthias Jarke, Rainer Gallersdoerfer, Manfred A. Jeusfeld, and Martin Staudt. ConceptBase
- A Deductive Object Base for Meta Data Management.JIIS, 4(2):167–192, 1995.

12. V. Kuchenhoff. On the efficient computation of the difference betwen consecutive database
states. In Claude Delobel, Michael Kifer, and Yoshifumi Masunaga, editors,Proc. of 2nd
Int. Conf. on Deductive and Object-Oriented Databases, volume 566 ofLecture Notes in
Computer Science (LNCS), pages 478–502, Munich, Germany, December 1991. Springer.

13. A. Y. Levy and Y. Sagiv. Queries independent of updates. In Proc. of 19th VLDB, pages
171–181, 1993.

14. P. Pandurang Nayak and Brian C. Williams. Fast Context Switching in Real-time Proposi-
tional Reasoning. InProceedings of AAAI-97, 1997.

15. P. F. Patel-Schneider, P. Hayes, I. Horrocks, and F. van Harmelen. Web Ontology Language
(OWL) Abstract Syntax and Semantics. http://www.w3.org/TR/owl-semantics/, 2002.

16. Jos De Roo. Euler proof mechanism. Internet: http://www.agfa.com/w3c/euler/, 2002.
17. Michael Sintek and Stefan Decker. TRIPLE - A Query, Inference, and Transformation Lan-

guage for the Semantic Web. InInternational Semantic Web Conference (ISWC), June 2002.
18. M. Staudt and M. Jarke. Incremental maintenance of externally materialized views. Techni-

cal Report AIB-95-13, RWTH Aachen, 1995.
19. Martin Staudt and Matthias Jarke. Incremental maintenance of externally materialized views.

In T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda, editors,
VLDB’96, Proceedings of 22th International Conference on Very Large Data Bases, Septem-
ber 3-6, 1996, Mumbai (Bombay), India, pages 75–86. Morgan Kaufmann, 1996.

20. Guizhen Yang and Michael Kifer. FLORA: Implementing an Efficient DOOD System Using
a Tabling Logic Engine. InComputational Logic 2000, pages 1078–1093, 2000.

Incremental Maintenance Of Materialized Ontologies 19

A Evaluation Results

