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Abstract

Although there has been significant interest in applying ma-
chine learning techniques to structured data, the expressivity
(i.e., a description of what can be learned) of such techniques
is still poorly understood. In this paper, we study data trans-
formations based on graph neural networks (GNNs). First,
we note that the choice of how a dataset is encoded into a nu-
meric form processable by a GNN can obscure the character-
isation of a model’s expressivity, and we argue that a canoni-
cal encoding provides an appropriate basis. Second, we study
the expressivity of monotonic max-sum GNNs, which cover a
subclass of GNNs with max and sum aggregation functions.
We show that, for each such GNN, one can compute a Data-
log program such that applying the GNN to any dataset pro-
duces the same facts as a single round of application of the
program’s rules to the dataset. Monotonic max-sum GNNs
can sum an unbounded number of feature vectors which can
result in arbitrarily large feature values, whereas rule appli-
cation requires only a bounded number of constants. Hence,
our result shows that the unbounded summation of monotonic
max-sum GNNs does not increase their expressive power.
Third, we sharpen our result to the subclass of monotonic
max GNNs, which use only the max aggregation function,
and identify a corresponding class of Datalog programs.

1 Introduction
Data management tasks such as query answering or logical
reasoning can be abstractly seen as transforming an input
dataset into an output dataset. A key aspect of such trans-
formations is their expressivity, which is often established
by identifying a logic-based language that realises the same
class of transformations. For example, core aspects of the
SQL and SPARQL query languages have been characterised
using fragments of first-order logic (Abiteboul, Hull, and
Vianu 1995; Pérez, Arenas, and Gutierrez 2009), and logical
deduction over RDF datasets has been described using the
rule-based language Datalog (Motik et al. 2012). Such cor-
respondences enable rigorous understanding and compari-
son of different data management languages.

Recently, there has been an increasing interest in apply-
ing machine learning techniques to data management tasks.
A key benefit is that the desired transformation between
datasets can be induced from examples, rather than speci-
fied explicitly. Many models have been proposed for this
purpose, such as recurrent (Hölldobler, Kalinke, and Störr

1999), fibring (Bader, d’Avila Garcez, and Hitzler 2005),
and feed-forward networks (Bader et al. 2007), architec-
tures that simulate forward (Dong et al. 2019; Campero et
al. 2018) and backward chaining (Rocktäschel and Riedel
2017), and architectures for rule learning (Yang, Yang, and
Cohen 2017; Sadeghian et al. 2019). Graph neural networks
(GNNs) have proved particularly popular since they can ex-
press graph transformations and have been widely applied
to link prediction and node classification tasks in structured
datasets (Schlichtkrull et al. 2018; Pflueger, Tena Cucala,
and Kostylev 2022; Liu et al. 2021; Ioannidis, Marques,
and Giannakis 2019; Qu, Bengio, and Tang 2019; Yang,
Cohen, and Salakhutdinov 2016; Kipf and Welling 2017;
Zhang and Chen 2018; Teru, Denis, and Hamilton 2020).

Characterising the expressivity of ML models for data
management has thus steadily gained importance, and com-
putational logic provides a well-established methodology:
we can describe conditions under which ML-induced mod-
els become equivalent to logical formalisms in the sense
that applying the ML model to an arbitrary dataset produces
the same result as applying a specific logical formula. In
a pioneering study, Barceló et al. (2020) showed that each
GNN-induced transformation expressible in first-order logic
is equivalent to a concept query of the ALCQ description
logic (Baader et al. 2007)—a popular KR formalism. Huang
et al. (2023) proved an analogous result for a class of GNNs
with a dedicated vertex and colour. Morris et al. (2019)
showed that GNNs can express certain types of graph iso-
morphism tests. Sourek, Zelezný, and Kuzelka (2021) char-
acterised the expressivity of GNNs using a hybrid language
where each Datalog rule is annotated with a tensor. Tena Cu-
cala et al. (2022) characterised the expressivity of monotonic
GNNs (MGNNs), which use the max aggregation function
and require all weights in the matrices to be nonnegative, in
terms of a class of Datalog programs. Finally, Tena Cucala,
Cuenca Grau, and Motik (2022) characterised the expressiv-
ity of the Neural-LP model of rule learning.

In this paper, we take a next step in the study of the ex-
pressivity of GNN-based transformations of structured data.
A key technical challenge can be summarised as follows.
GNNs typically use summation to aggregate feature vectors
of all vertices adjacent to a given vertex in the input graph.
The number of adjacent vertices in the input is unbounded
(i.e., there is no a priori limit on the number of neighbours



a vertex can have), and so the summation result can be un-
bounded as well; hence, it appears that arbitrarily many ver-
tices can influence whether a fact is derived. This seems fun-
damentally different to reasoning in fragments of first-order
logic such as Datalog: the number of constants that need to
be jointly considered in an application of a Datalog rule is
determined by the number of rule variables, and not by the
structure of the input dataset. Thus, at first glance, one might
expect GNNs with summation to be fundamentally different
from Datalog rules. To shed light on this issue, we present
several novel contributions.

In Section 3 we focus on a key obstacle: to apply a GNN
to a dataset, the latter must be encoded as a graph where
each vertex is assigned a numeric feature vector; but then,
the expressivity of the transformation inevitably depends on
the details of the encoding, which obscures the contribution
of the GNN itself. To overcome this, we adopt a canoni-
cal encoding, variants of which have already been consid-
ered by Schlichtkrull et al. (2018), Barceló et al. (2020), and
Pflueger, Tena Cucala, and Kostylev (2022). We define a
GNN to be equivalent to a Datalog program if applying the
GNN to any dataset while using the canonical encoding pro-
duces the same facts as applying the program’s rules to the
dataset once (i.e., without fixpoint iteration). Finally, we
observe that noncanonical encodings by Tena Cucala et al.
(2022), Morris et al. (2019), or Liu et al. (2021) can be de-
scribed using well-known extensions of Datalog, and so the
expressivity of transformations based on such encodings can
be characterised by composing all relevant programs.

In Section 4 we present our main technical contribution.
First, we introduce a class of monotonic max-sum GNNs.
Similarly to the MGNNs by Tena Cucala et al. (2022),
monotonic max-sum GNNs require matrix weights to be be
nonnegative; however, they allow for the max or sum ag-
gregation functions in each network layer, and they place
certain restrictions on the activation and classification func-
tions (ReLU and threshold functions are allowed). Tena
Cucala et al. (2022) showed that the performance of such
GNNs with just max aggregation on tasks such as knowl-
edge graph completion is on a par with that of other recent
approaches. Hence, monotonic max-sum GNNs are prac-
tically relevant, but they also allow their predictions to be
explained using logical proofs. Second, we prove that each
monotonic max-sum GNN is equivalent to a Datalog pro-
gram of a certain shape possibly containing inequalities in
rule bodies. Strictly speaking, such a program can be recur-
sive in the sense that the same predicate can occur in both
rule bodies and heads; however, our notion of equivalence
does not involve fixpoint iteration (i.e., the program’s rules
are applied just once). Our result thus shows that monotonic
max-sum GNNs can derive facts with predicates from the
input, but they cannot express true recursive properties such
as reachability. Moreover, the ability to produce unbounded
feature values does not lead to a fundamental increase in ex-
pressivity. Our equivalence proof is quite different from the
analogous result for MGNNs: when aggregation is limited
to just max, the value of each feature of a vertex clearly de-
pends on only a fixed number of neighbours of the vertex.
Third, we prove that the equivalent Datalog program can be

computed from the GNN itself. This result is interesting
because it requires enumerating potentially infinite sets of
real-valued candidate feature values in a way that guaran-
tees termination. This provides a starting point for future
development of practical techniques for extracting Datalog
programs from monotonic max-sum GNNs.

Finally, in Section 5 we sharpen our results to monotonic
max GNNs, which allow only for max aggregation. We
show that, analogously to MGNNs, each monotonic max
GNN is equivalent to a positive Datalog program; however,
we also present a converse result: we identify a class Data-
log programs such that, for each program in the class, there
exists an equivalent monotonic max GNN. In this way, we
obtain an exact characterisation of an interesting class of
GNN-based transformations using logical formalisms.

The proofs of all theorems are given in full in Appen-
dices A and B.

2 Preliminaries
We next recapitulate the basics of Datalog and GNNs.
Datasets and Datalog. We fix a signature consisting of
countably infinite, disjoint sets of predicates and constants.
Each predicate is associated with a nonnegative integer arity.
We also consider a countably infinite set of variables that is
disjoint with the sets of predicates and constants.

A term is a variable or a constant. An atom is an expres-
sion of the form P (t1, . . . , tn) where P is a predicate of arity
n and t1, · · · , tn are terms. An inequality is an expression
of the form t1 ̸≈ t2 where t1 and t2 are terms. A literal is
an atom or an inequality. A term or a literal is ground if it
is variable-free. A fact is a ground atom and a dataset is a
finite set of facts; thus, datasets cannot contain inequalities.
A ground atom A is true in a dataset D, written D |= A, if
A ∈ D. A ground inequality s ̸≈ t is true if s ̸= t; for uni-
formity with atoms, we often write D |= s ̸≈ t even though
the truth of s ̸≈ t does not depend on D. A (Datalog) rule
is an expression of form (1) where n ≥ 0, B1, . . . , Bn are
body literals, and H is the head atom:

B1 ∧ · · · ∧Bn → H. (1)

A (Datalog) program is a finite set of rules. A substitution ν
is a mapping of finitely many variables to ground terms; for
α a literal, αν is the result of replacing in α each variable
x with ν(x) provided the latter is defined. Each rule r of
form (1) defines an immediate consequence operator Tr on
datasets: for D a dataset, Tr(D) is the dataset that contains
the fact Hν for each substitution ν mapping all variables
of r to terms occurring in D such that D |= Biν for each
1 ≤ i ≤ n. For P a program, TP(D) =

⋃
r∈P Tr(D).

To simplify the formal treatment, we do not make the
usual safety requirement where each variable in a rule must
occur in a body atom; in fact, the body can be empty, which
we denote by⊤. For example, rule r = ⊤ → R(x, y) is syn-
tactically valid; moreover, the definition of Tr ensures that
Tr(D) contains exactly each fact R(s, t) for all (not neces-
sarily distinct) terms s and t occurring in D.

Conjunctions α and β are equal up to variable renaming
if there exists a bijective mapping ν from the set of all vari-
ables of α to the set of all variables of β such that αν and β



contain exactly the same conjuncts; this notion is extended
to rules in the obvious way. Moreover, a set S contains α up
to variable renaming if there exists β ∈ S such that α and β
are equal up to variable renaming.
Graph Neural Networks. We use R and R+

0 for the sets of
real and nonnegative real numbers, respectively. Also, we
use N for the set of natural numbers, and N0 = N ∪ {0}.

A function σ : R→ R is monotonically increasing if
x < y implies σ(x) ≤ σ(y). Function σ is Boolean if its
range is {0, 1}. Finally, σ is unbounded if, for each y ∈ R,
there exists x ∈ R such that σ(x) > y.

A real multiset is a function S : R→ N0 that assigns the
number of occurrences S(x) to each x ∈ R. Such S is finite
if S(x) > 0 for finitely many x ∈ R; the cardinality of such
S is |S| =

∑
x∈R S(x); and F(R) is the set of all finite real

multisets. We often write S as a list of possibly repeated real
numbers in double-braces {{ . . . }}. Finally, we often treat a
set as a multiset where each element occurs just once.

We consider vectors and matrices over R and R+
0 . For v

a vector and i a natural number, (v)i is the i-th element of
v. We apply scalar functions to vectors element-wise; for
example, given n vectors v1, . . . ,vn of equal dimension,
max{v1, . . . ,vn} is the vector whose i-th element is equal
to max{(v1)i, . . . , (vn)i}.

For Col a finite set of colours and δ ∈ N a dimension, a
(Col, δ)-graph is a tuple G = ⟨V, {Ec}c∈Col, λ⟩ where V is a
finite set of vertices; for each c ∈ Col, Ec ⊆ V × V is a set of
directed edges; and labelling λ assigns to each v ∈ V a vec-
tor vλ of dimension δ. Graph G is symmetric if ⟨v, u⟩ ∈ Ec
implies ⟨u, v⟩ ∈ Ec for each c ∈ Col, and it is Boolean if
(λ(v))i ∈ {0, 1} for each v ∈ V and i ∈ {1, . . . , δ}. To im-
prove readability, we abbreviate vλ to just v when the la-
belling function is clear from the context. Analogously, we
abbreviate indexed labelling functions vλℓ

to vℓ.
A (Col, δ)-graph neural network (GNN) N with L ≥ 1

layers is a tuple
⟨{Aℓ}1≤ℓ≤L, {Bc

ℓ}c∈Col and 1≤ℓ≤L,
{bℓ}1≤ℓ≤L, {aggℓ}1≤ℓ≤L, σ, cls⟩, (2)

where, for each ℓ ∈ {1, . . . , L} and c ∈ Col, Aℓ and Bc
ℓ are

matrices over R of dimension δℓ × δℓ−1 with δ0 = δL = δ,
bℓ is a vector over R of dimension δℓ, aggℓ : F(R)→ R is
an aggregation function, σ : R→ R is an activation func-
tion, and cls : R→ {0, 1} is a classification function.

Applying (Col, δ)-GNN N to (Col, δ)-graph G induces
the sequence λ0, . . . , λL of vertex labelling functions such
that λ0 = λ and, for each ℓ ∈ {1, . . . , L} and v ∈ V , the
value of vλℓ

is given by

vℓ = σ
(
Aℓvℓ−1+∑
c∈Col

Bc
ℓ aggℓ

(
{{uℓ−1 | ⟨v, u⟩ ∈ Ec }}

)
+ bℓ

)
.

(3)

The resultN (G) of applyingN to G is the Boolean (Col, δ)-
graph with the same vertices and edges as G, but where each
vertex v ∈ V is labelled by cls(vλL

).

3 Choosing an Encoding/Decoding Scheme
To realise a dataset transformation using a GNN, we must
first encode the input dataset into a graph that can be pro-

cessed by a GNN, and subsequently decode the GNN’s out-
put back into a dataset. Many encoding/decoding schemes
have been proposed in the literature, and their details differ
considerably. As a result, when characterising GNN-based
transformations of datasets using logic, it can be hard to un-
derstand which properties of the characterisation are due to
the chosen encoding/decoding scheme, and which are im-
manent to the GNN used to realise the transformation. In
this paper we consider primarily the encoding scheme that
straightforwardly converts a dataset into a graph, but we also
discuss how to take other encoding schemes into account.

3.1 Canonical Encoding/Decoding Scheme
A straightforward way to encode a dataset containing only
unary and binary facts into a Boolean (Col, δ)-graph is to
transform terms into vertices, use vertex connectivity to de-
scribe binary facts, and encode presence of unary facts in
feature vectors. Such encoding/decoding schemes, which
we call canonical, have already been widely used in the
literature with minor variations (Schlichtkrull et al. 2018;
Pflueger, Tena Cucala, and Kostylev 2022; Barceló et al.
2020). They establish a direct syntactic correspondence be-
tween datasets and coloured graphs and are thus a natural
starting point for studying the expressivity of GNNs.

We next describe one such scheme. In particular, we in-
troduce (Col, δ)-datasets, which naturally correspond to a
large class of (Col, δ)-graphs. Our definitions provide the
foundation necessary to formulate our expressivity results
in Section 4. In Section 3.2 we discuss how to combine our
expressivity results with more complex encoding schemes.

Definition 1. Let Col be a set of colours and let δ ∈ N be a
dimension. A (Col, δ)-signature contains

• a binary predicate Ec for each colour c ∈ Col, and
• a unary predicate Ui for each i ∈ {1, . . . , δ}.
A (Col, δ)-dataset is a dataset in which each fact uses only
predicates from a (Col, δ)-signature.

We will assume from now onwards that terms occurring
in datasets correspond one-to-one to vertices of coloured
graphs—that is, each term t is paired with a unique vertex
vt. This is again without loss of generality since the result
of applying a GNN to a coloured graph does not depend on
the identity of vertices, but only on the graph structure.

We are now ready to define the canonical GNN-based
transformations of (Col, δ)-datasets.

Definition 2. The canonical encoding enc(D) of a (Col, δ)-
dataset D is the Boolean (Col, δ)-graph ⟨V, {Ec}c∈Col, λ⟩
defined as follows:

• V contains the vertex vt for each term t occurring in D;
• ⟨vt, vs⟩ ∈ Ec if Ec(t, s) ∈ D for each c ∈ Col; and
• (vt)i = 1 if Ui(t) ∈ D, and (vt)i = 0 otherwise.

The canonical decoding dec(G) of a Boolean (Col, δ)-graph
G = ⟨V, {Ec}c∈Col, λ⟩ is the dataset that contains

• the fact Ec(t, s) for each ⟨vt, vs⟩ ∈ Ec and c ∈ Col, and
• the fact Ui(t) for each vt ∈ V and i ∈ {1, . . . , δ} such

that (vt)i = 1.



Each (Col, δ)-GNNN induces the canonical transformation
TN on (Col, δ)-datasets where TN (D) = dec(N (enc(D)))
for each (Col, δ)-dataset D.

The encoding neither introduces nor omits any informa-
tion from the input dataset, so a (Col, δ)-dataset D and its
canonical encoding enc(D) straightforwardly correspond to
one another. Since datasets are directional, (Col, δ)-graphs
must be directed as well to minimise the discrepancy be-
tween the two representations. The canonical decoding is
analogous to the encoding, and the two are inverse opera-
tions on graphs that are regular as per Definition 3.
Definition 3. A (Col, δ)-graph G = ⟨V, {Ec}c∈Col, λ⟩ is
regular if G is Boolean and each vertex v ∈ V either occurs
in Ec for some c ∈ Col, or (v)i = 1 for some i ∈ {1, . . . , δ}.

Our canonical encoding produces only regular graphs,
and there is a one-to-one correspondence between (Col, δ)-
datasets and regular (Col, δ)-graphs. Our results from the
following sections can be equivalently framed as character-
ising expressivity of GNN transformations of regular graphs
in terms of Datalog programs. Graphs that are not Boolean
do not correspond to encodings of datasets, so we do not
see a natural way to view GNN transformations over such
graphs in terms of logical formalisms. Finally, a (Col, δ)-
graph G that is Boolean but not regular contains ‘isolated’
vertices that are not connected to any other vertex and are
labelled by zeros only. When such G is decoded into a
(Col, δ)-dataset, such ‘isolated’ vertices do not produce any
facts in dec(G) and thus several non-regular Boolean graphs
can produce the same (Col, δ)-dataset. Note, however, that
each ‘isolated’ zero-labelled vertex is transformed by a GNN
in the same way—that is, the vector labelling the vertex in
the GNN’s output does not depend on any other vertices but
only on the matrices of the GNN. Consequently, such ver-
tices are not interesting for our study of GNN expressivity.

We are now ready to formalise our central notion of equiv-
alence between a GNN and a Datalog program.
Definition 4. A (Col, δ)-GNN N captures a rule or a Data-
log program α if Tα(D) ⊆ TN (D) for each (Col, δ)-dataset
D. Moreover, N and α are equivalent if TN (D) = Tα(D)
for each (Col, δ)-dataset D.

The key question we address in Sections 4 and 5 is the
following: under what conditions is a given (Col, δ)-GNN
N equivalent to a Datalog program, and can this program
(at least in principle) be computed from N ?

3.2 Noncanonical Encoding/Decoding Schemes
For each (Col, δ)-dataset D, the binary facts of D and
TN (D) coincide, and so applying TN to D cannot derive
any binary facts. To overcome this limitation, more com-
plex, noncanonical encodings have been proposed (Tena Cu-
cala et al. 2022; Morris et al. 2019; Liu et al. 2021). These
introduce vertices representing combinations of several con-
stants so that facts of higher arity can be encoded in appro-
priate feature vectors, but there is no obvious canonical way
to achieve this. Expressivity results based on such encodings
are less transparent because it is not obvious which aspects
of expressivity are due to the encoding/decoding scheme and
which are immanent to the GNN itself.

We argue that noncanonical encoding/decoding schemes
can often be described by a pair of programs Penc and Pdec,
possibly expressed in a well-known extension of Datalog,
which convert an input dataset into a (Col, δ)-dataset and
vice versa. Thus, given an arbitrary dataset D, the re-
sult of applying the end-to-end transformation that uses a
GNN N and the respective encoding/decoding scheme is
TPdec

(TN (TPenc(D))). Furthermore, if N is equivalent to
a Datalog program PN , then the composition of Penc, PN ,
and Pdec characterises the end-to-end transformation. This
allows us to clearly separate the contribution of the GNN
from the contributions of the encoding and decoding.
Tena Cucala et al. (2022) recently presented a dataset trans-
formation based on a class of monotonic GNNs (MGNNs).
Their approach is applicable to a dataset D that uses unary
predicates A1, . . . , Aϵ and binary predicates Rϵ+1, . . . , Rδ ,
and D is encoded into a symmetric (Col, δ)-graph over the
set of colours Col = {c1, c2, c3, c4}. The encoding intro-
duces a vertex va for each constant a in D as well as ver-
tices va,b and vb,a for each pair of constants a, b occurring
together in a binary fact in D. Predicates are assigned fixed
positions in vectors so that the value of a component of a
vector labelling a vertex indicates the presence or absence of
a specific fact in D. For example, if Ai(a) ∈ D, then (va)i
is set to 1; analogously, if Rj(a, b) ̸∈ D but a and b occur
in D in a binary fact, then (va,b)j is set to 0. Moreover, the
edges of the coloured graph indicate different types of ‘con-
nections’ between constants; for example, vertices va and
va,b are connected by an edge of colour c1 to indicate that
constant a occurs first in the constant pair (a, b). A variant
of this approach was also proposed by Liu et al. (2021) in
the context of knowledge graph completion.

We next show how to capture this encoding using rules.
Note that the encoder introduces vertices of the form va,b
for pairs of constants a and b, so the encoding program Penc

requires value invention. This can be conveniently realised
using functional terms; for example, we represent vertex va,b
using term g(a, b); moreover, we represent each vertex of
the form va using a term f(a) for uniformity. Applying the
encoding program Penc to a dataset thus produces a (Col, δ)-
dataset with functional terms, which should be processed by
the GNN as if they were constants; for example, the canon-
ical encoding should transform g(a, b) into vertex vg(a,b).
Based on this idea, the encoding program Penc contains rule
(4) instantiated for each i ∈ {1, . . . , ϵ}, and rules (5)–(13)
instantiated for each j ∈ {ϵ+ 1, . . . , δ}.

Ai(x)→ Ui(f(x)) (4)
Rj(x, y)→ Uj(g(x, y)) (5)
Rj(x, y)→ Ec1(f(x), g(x, y)) (6)
Rj(x, y)→ Ec1(g(x, y), f(x)) (7)
Rj(x, y)→ Ec2(f(y), g(x, y)) (8)
Rj(x, y)→ Ec2(g(x, y), f(y)) (9)
Rj(x, y)→ Ec3(g(x, y), g(y, x)) (10)
Rj(x, y)→ Ec3(g(y, x), g(x, y)) (11)
Rj(x, y)→ Ec4(f(x), f(y)) (12)
Rj(x, y)→ Ec4(f(y), f(x)) (13)



Rules (4) and (5) ensure that all unary and binary facts in
the input dataset are encoded as facts of the form Ui(f(a))
and Uj(g(a, b)); thus, when these are further transformed
into a (Col, δ)-graph, the vectors labelling vertices vf(a)
and vg(a,b) encode all input facts of the form Ai(a) and
Rj(a, b) for i ∈ {1, . . . , ϵ} and j ∈ {ϵ+ 1, . . . , δ}. In addi-
tion, rules (6)–(13) encode the adjacency relationships be-
tween terms: colour c1 connects terms g(a, b) and f(a),
colour c2 connects g(a, b) and f(b), colour c3 connects
g(a, b) and g(b, a), and colour c4 connects terms f(a) and
f(b) provided that a and b occur jointly in a binary fact.

Program Pdec capturing the decoder contains rule (14) in-
stantiated for each i ∈ {1, . . . , ϵ}, as well as rule (15) instan-
tiated for each j ∈ {ϵ+ 1, . . . , δ}.

Ui(f(x))→ Ai(x) (14)
Uj(g(x, y))→ Rj(x, y) (15)

Intuitively, these rules just ‘read off’ the facts from the labels
of vertices vf(a) and vf(a,b). The composition of these three
programs is a (function-free) Datalog program.

It is straightforward to show that, for each dataset D, the
graph obtained by applying the encoder by Tena Cucala et
al. (2022) is isomorphic to the graph obtained by applying
the canonical encoding from Definition 2 to TPenc(D) and
thus program Penc correctly captures their encoder.

A limitation of this encoding is that the transformation’s
output can contain a fact of the form R(a, b) only if the input
dataset contains a fact of the form S(a, b) or S(b, a). Intu-
itively, the presence of S(a, b) or S(b, a) in the input ensures
that the resulting (Col, δ)-graph contains a vertex vg(a,b) for
representing binary facts of the form R(a, b). An obvious
way to overcome this limitation is to introduce terms g(a, b)
for all constants a and b occurring in the input, without re-
quiring a and b to occur jointly in a binary fact. While this
increases the expressivity of the end-to-end transformation,
the increase is due to the encoding step, rather than the GNN.
Our framework makes this point clear. For example, we
can extend Penc with rules such as (16)–(19) and so on for
all other combinations of unary and binary predicates and
colours. The chaining of Penc, PN , and Pdec can now cap-
ture different transformations even if PN remains the same.

Ai(x) ∧Aj(y)→ Ec1(f(x), g(x, y)) (16)
Ai(x) ∧Aj(y)→ Ec1(g(x, y), f(x)) (17)

Ri(x, z) ∧Aj(y)→ Ec1(g(x, y), f(x)) (18)
Ri(z, x) ∧Aj(y)→ Ec1(g(x, y), f(x)) (19)

Morris et al. (2019) introduced k-GNNs and showed them
to be more expressive than standard GNNs. The input to a k-
GNN is a symmetric (Col, δ1)-graph G1 where Col contains
just one colour and, for each vertex v of G1, (v)i = 1 for
exactly one 1 ≤ i ≤ δ1. To apply a k-GNN to G1, the latter
is transformed into another (Col, δ2)-graph G2 that contains
one vertex for each set of k distinct vertices of G1, and then
a standard (Col, δ2)-GNN is applied to G2.

We next show that the transformation of G1 into G2 can
be captured by a program Penc that transforms a (Col, δ1)-
dataset into a (Col, δ2)-dataset. Thus, the increase in expres-
sivity of k-GNNs does not come from the GNN model itself,

but rather from the encoding implicit in their approach. For
readability, we make several simplifying assumptions. First,
while Morris et al. (2019) consider sets of k distinct ver-
tices in order to ensure practical scalability, we consider k-
tuples instead and limit our presentation for simplicity to just
k = 2. Second, we consider just the local neighbourhood
approach to connecting vertices in G2. Finally, our encoding
requires extending Datalog not only with function symbols,
but also with stratified negation-as-failure not.

Program Penc consists of rules (20)–(23) instantiated for
all i, j, k, ℓ ∈ {1, . . . , δ1}.

Ai(x) ∧Aj(y) ∧ x ̸≈ y ∧
Ak(x) ∧Aℓ(z) ∧ x ̸≈ z ∧

R(y, z) ∧ y ̸≈ z → Ec(g(x, y), g(x, z))
(20)

Ai(y) ∧Aj(x) ∧ y ̸≈ x ∧
Ak(z) ∧Aℓ(x) ∧ z ̸≈ x ∧

R(y, z) ∧ y ̸≈ z → Ec(g(y, x), g(z, x))
(21)

Ai(x) ∧Aj(y) ∧ x ̸≈ y ∧ not R(x, y)
→ Ui,j,0(g(x, y))

(22)

Ai(x) ∧Aj(y) ∧ x ̸≈ y ∧R(x, y)
→ Ui,j,1(g(x, y))

(23)

Conjunctions of the form Ai(x) ∧Aj(y) ∧ x ̸≈ y in these
rules identify pairs of distinct constants a and b (correspond-
ing to the vertices of G1) in the input dataset, and, for each
such pair, g(x, y) introduces a term g(a, b) (corresponding
to a vertex of G2). Rules (20) and (21) encode the local
neighbourhood approach: terms g(a, b) and g(c, d) are con-
nected in G2 if either a = b and c ̸= d, or a ̸= b and c = d,
and additionally the two constants in the inequality are con-
nected in G1. Finally, rules (22) and (23) identify the type
of subgraph of G1 that a and b participate in. Specifically, a
fact of the form Ui,j,0(g(a, b)) says that a and b are labelled
in G1 by Ai and Aj respectively, but they are not connected
in G1. A fact of the form Ui,j,1(g(a, b)) is analogous, but
with the difference that a and b are connected in G1.

4 GNNs with Max-Sum Aggregation
In this section, we introduce monotonic max-sum GNNs and
prove that each such GNN corresponds to a Datalog pro-
gram (possibly with inequalities in the rule bodies) that can
be computed from the GNN’s definition. Monotonic max-
sum GNNs can use the following aggregation function in all
layers, which generalises both max and sum.
Definition 5. For k ∈ N0 ∪ {∞}, a finite real multiset
S ∈ F(R), and ℓ = min (k, |S|), let

max-k-sum(S) =


0 if ℓ = 0,

ℓ∑
i=1

si
where s1, . . . , sℓ are the
ℓ largest numbers of S.

Each occurrence of a number is counted separately; for
example, max-3-sum({{ 0, 1, 1, 2, 2, 5 }}) = 9 because the
three largest numbers in S are 5 and the two occurrences of
2. Also, max-1-sum is equivalent to max, and max-∞-sum
is equivalent to sum; hence, max-k-sum generalises both
the max and sum aggregation functions. While the ability



to sum just the k maximal elements may not be relevant in
practice, it will allow us to formalise a key technical result.
We next introduce monotonic max-sum GNNs.
Definition 6. A monotonic max-sum (Col, δ)-GNN is a
GNN of the form (2) satisfying the following conditions:
• for each ℓ ∈ {1, . . . , L} and each c ∈ Col, all elements of

matrices Aℓ and Bc
ℓ are nonnegative;

• for each ℓ ∈ {1, . . . , L}, the aggregation function aggℓ is
max-kℓ-sum for some kℓ ∈ N0 ∪ {∞};

• the activation function σ is monotonically increasing and
unbounded, and the range of σ is R+

0 ; and
• the classification function cls is a step function—that is,

there exists a threshold t ∈ R such that cls(t′) = 0 for
each t′ < t, and cls(t′) = 1 for each t′ ≥ t.
Monotonic max-sum GNNs are closely related to, but

incomparable with MGNNs by Tena Cucala et al. (2022):
MGNNs do not require the activation function to be un-
bounded, but they support only the max aggregation func-
tion in all layers. While ReLU satisfies Definition 6, neither
ELU nor the sigmoid function is compatible.

In Section 4.1, we show that, in each monotonic max-sum
GNN N , one can replace each occurrence of max-kℓ-sum
where kℓ =∞ with max-Cℓ-sum for some Cℓ ∈ N0 with-
out changing the canonical transformation that the GNN in-
duces; that is, to apply a GNN to a dataset, we need to con-
sider only a bounded numbers of vertices for aggregation.
Number Cℓ depends solely on N (i.e., it is independent of
a dataset to which N is applied) and is called the capacity
of layer ℓ. In Section 4.2, we use this result to show that
TN is equivalent to the immediate consequence operator of
a Datalog program PN that depends only on N . Finally, in
Section 4.3, we show that numbers Cℓ can be computed from
N , and hence program PN is computable. Our objective is
to show that extracting PN from N is possible in principle,
but further work is needed to devise a practical procedure.

4.1 Limiting Neighbour Aggregation
Throughout the rest of Section 4, we fix a monotonic max-
sum (Col, δ)-GNNN of form (2) and dimensions δ0, . . . , δL
as specified in Section 2, and we fix k1, . . . , kL as the num-
bers defining the aggregation functions ofN . We next show
that each kℓ =∞ can be replaced with a natural number Cℓ.
We first introduce several auxiliary definitions.
Definition 7. A (Col, ℓ)-multiset family, where 0 ≤ ℓ ≤ L,
is a mapping Y that assigns to each colour c ∈ Col a finite
multiset Yc of vectors of dimension δℓ.

For each 1 ≤ ℓ ≤ L, each 1 ≤ i ≤ δℓ, each vector x of
dimension δℓ−1, and each (Col, ℓ−1)-multiset family Y , let

Val(ℓ, i,x,Y) = (Aℓx+
∑
c∈Col

Bc
ℓ max-kℓ-sum(Yc)+bℓ)i.

Sets Xℓ,i with 0 ≤ ℓ ≤ L and 1 ≤ i ≤ δℓ are defined by
induction on ℓ as follows.
• For each 1 ≤ i ≤ δ0, let X0,i = {0, 1}.
• For each ℓ ≥ 1 and each 1 ≤ i ≤ δℓ, set Xℓ,i is the

least set that contains σ(Val(ℓ, i,x,Y)) for each vector
x of dimension δℓ−1 such that (x)j ∈ Xℓ−1,j for each

Algorithm 1 CAPACITY(N )

1: let αL be the threshold of cls
2: for ℓ from L down to 1 do
3: wℓ := the least non-zero element of Aℓ and all Bc

ℓ
4: ϵℓ := the least non-zero number in

⋃
i Xℓ−1,i

5: if either wℓ or ϵℓ does not exist then
6: Cℓ := Cℓ−1 := C1 := 0
7: return
8: βℓ := the least natural number such that σ(βℓ) ≥ αℓ

9: bℓ := the least element of bℓ

10: Cℓ := min(kℓ, ⌈βℓ−bℓ
wℓ·ϵℓ ⌉)

11: αℓ−1 := βℓ−bℓ
wℓ

j, and each (Col, ℓ − 1)-multiset family Y such that
(y)j ∈ Xℓ−1,j for all c ∈ Col, y ∈ Yc, and j.
Intuitively, sets Xℓ,i contain all real numbers that can oc-

cur in the i-th position of a vector labelling a vertex at layer ℓ
whenN is applied to a canonical encoding of some (Col, ℓ)-
dataset. Indeed, the base case in the definition of Xℓ,i con-
tains all values that can be produced by the canonical en-
coding, and the inductive step considers all possible ways in
which a vector in layer ℓ can be computed from vectors in
layer ℓ − 1 using the propagation equation (3). In the latter
case, a (Col, ℓ)-multiset family Y represents a collection of
possible neighbour vectors, and Val(ℓ, i,x,Y) is the argu-
ment of the activation function used to compute some (vℓ)i.

Note that sets Xℓ,i can be infinite. However, Theorem 8
shows that Xℓ,i can be enumerated as a countable, monoton-
ically increasing sequence of numbers α0, α1, . . .. This is
important because it shows that the notion of a least nonzero
element of Xℓ,i is correctly defined. In the following, for
α ∈ R, let X>α

ℓ,i = {α′ ∈ Xℓ,i | α′ > α}.

Theorem 8. Each setXℓ,i satisfiesXℓ,i ⊆ R+
0 , and, for each

α ∈ R, set Xℓ,i \ X>α
ℓ,i is finite.

Theorem 8 ensures that, for each α ∈ R, set X>α
ℓ,i is ei-

ther empty or it contains a number that is strictly larger than
α. The proof uses the fact that the activation function σ is
unbounded. We are now ready to define the capacity of N .
Definition 9. The capacity of layer ℓ of N is defined as
in Algorithm 1. Moreover, the capacity of N is defined as
CN = max(C1, . . . , CL).

Sets Xℓ,i can be infinite, so Algorithm 1 can perhaps be
better understood as inductively defining sequences of num-
bers αℓ, βℓ, Cℓ and so on. However, in Section 4.3 we show
that the smallest positive elements ofXℓ,i can in fact be com-
puted, which justifies our usage of the term ‘algorithm’.

Theorem 10 shows that, in each layer of ℓ, any kℓ that is
larger than Cℓ can be replaced by Cℓ without affecting the
result of applying N to any dataset.
Theorem 10. Let N ′ be the (Col, δ)-GNN obtained from
N by replacing kℓ with Cℓ for each 1 ≤ ℓ ≤ L. Then,
TN (D) = TN ′(D) for each (Col, δ)-dataset D.

Theorem 10 can intuitively be understood as follows.
Let vλℓ

and vλ′
ℓ

be vectors labelling a vertex v in layer



ℓ when TN and TN ′ are applied to some D. We prove
the theorem by showing that either (vλℓ

)i = (vλ′
ℓ
)i, or

(vλℓ
)i > (vλ′

ℓ
)i ≥ αℓ for each layer L ≥ ℓ ≥ ℓst, where

ℓst is either the layer where Algorithm 1 performs an early
return (via line 7) or 0 if this does not happen. Indeed, as-
sume that cls((vλL

)i) = 1 holds for some v. If AL and all
Bc

L contain only zeros, or if allXL,i contain only zeros, then
L = ℓst; no neighbours of v are needed so we can set all
Cℓ to 0 and the equality above holds. Otherwise, cls is a
threshold function, so (vλL

)i ≥ αL holds for αL the thresh-
old of cls, and so the argument to the activation function
when computing (vλL

)i is at least βL. Moreover, (vλL
)i is

produced from (vλL−1
)i and the values of (uλL−1

)j where u
are the neighbours of v. If we assume that (vλL−1

)i = 0 and
that ϵℓ is the least nonzero value that each u can contribute
to (vλL

)i, it suffices to have at least ⌈βℓ−bℓ
wℓ·ϵℓ ⌉ nonzero neigh-

bours to reach βL. Thus, we can replace kℓ with this number
whenever this number is smaller than kℓ; in contrast, if kℓ is
smaller, we need to keep kℓ so that N ′ does not derive any
new consequences. Finally, αL−1 is the value of (vλL−1

)i
in layer L− 1 to which we can apply analogous reasoning.

4.2 Equivalence with Datalog Programs

We next show that there eixsts a Datalog program PN that
is equivalent to N in the sense described in Definition 4.
Towards this goal, in Definition 11 we capture the syn-
tactic structure of the rules in PN as rules of form (25)
where φ is a tree-like formula. To understand the intu-
ition, assume that we construct from φ a graph whose ver-
tices are the variables in φ, and where a directed edge from
x to y is introduced for each Ec(x, y) in φ; then, such
graph must be a directed tree. Moreover, if variable x
has children y1 and y2 in this graph, then φ is allowed to
contain inequalities of the form y1 ̸≈ y2, which provide φ
with a limited capability for counting; for example, formula
Ec(x, y1) ∧ Ec(x, y2) ∧ y1 ̸≈ y2 is true precisely for those
values of x that are connected via the Ec predicate to at least
two distinct constants. We also introduce intuitive notions of
a fan-out (i.e., the number of children) and depth of a vari-
able. Tree-like formulas contain all concepts of the ALCQ
description logic (Baader et al. 2007) constructed from ⊤,
atomic concepts, and concepts of the form ≥ nR.C and
C1 ⊓ C2; however, our definition also allows for formulas
such as Ec(x, y1) ∧ Ec(x, y2) ∧ U(y1) ∧ y1 ̸≈ y2, which
do not correspond to the translation of ALCQ concepts.

Definition 11. A tree-like formula for a variable is defined
inductively as follows.

• For each variable x, formula ⊤ is tree-like.
• For each variable x and each unary predicate U , atom
U(x) is a tree-like formula for x.

• For each variable x and all tree-like formulas φ1 and
φ2 for x that share no variables other than x, formula
φ1 ∧ φ2 is a tree-like formula for x.

• For each variable x, each binary predicate Ec, all tree-
like formulas φ1, . . . , φn for distinct variables y1, . . . , yn
such that no φi contains x and no φi and φj with i ̸= j

share a variable, formula (24) is a tree-like formula for x.
n∧

i=1

(
Ec(x, yi) ∧ φi

)
∧

∧
1≤i<j≤n

yi ̸≈ yj (24)

Let φ be a tree-like formula and let x be a variable
in φ. The fan-out of x in φ is the number of distinct
variables yi for which Ec(x, yi) is a conjunct of φ. The
depth of x is the maximal n for which there exist variables
x0, . . . , xn and predicates Ec1 , . . . , Ecn such that xn = x
and Eci(xi−1, xi) is a conjunct of φ for each 1 ≤ i ≤ n.
The depth of φ is the maximum depth of a variable in φ.

For c and d natural numbers, a tree-like formula φ is
(c, d)-tree-like if, for each variable x in φ, the depth i of
x is at most d and the fan-out of x is at most c(d− i). More-
over, a Datalog rule is (c, d)-tree-like if it is of form (25),
where φ is a (c, d)-tree-like formula for x.

φ→ U(x) (25)

We point out that φ is allowed to be ⊤ in a rule of form
(25); for example, ⊤ → U(x) is a valid (0, 0)-tree-like rule.
As explained in Section 2, when applied to a dataset D, such
a rule derives U(t) for each term t occurring in D.

Now let δN = max(δ0, . . . , δL). To construct PN , we
proceed as follows: we compute c = |Col| · δN · CN , we
enumerate all (c, L)-tree-like rules (up to variable renam-
ing), and we add to PN each such rule that is captured by
N . Lemma 12 shows that this latter test can, at least in prin-
ciple, be operationalised. In particular, to test whether a rule
φ→ U(x) with n variables is captured by N , we consider
each possible dataset D obtained from the atoms of φ by
replacing the variables with up to n distinct constants, and
we check whether applyingN to D derives the analogously
instantiated rule head; if this is the case for all such D, then
the rule is captured by N . Tena Cucala et al. (2022) used
a similar test for MGNNs, but their approach was simpler
since it did not need to support inequalities. Theorem 13
then shows that program PN is indeed equivalent to N .
Lemma 12. Let r be a constant-free Datalog rule of form
(1), let V be the set of variables in r, and let A be the
set of body atoms of r. Then, N captures r if and only if
Hν ∈ TN (Aν) for each substitution ν : V → S such that
Hν ∈ Tr(Aν), where S is a set of |V | distinct constants.

Theorem 13. Let PN be the Datalog program containing,
up to variable renaming, each (|Col| · δN · CN , L)-tree-like
rule captured by N , where δN = max(δ0, . . . , δL). Then,
N and PN are equivalent.

To understand this result intuitively, assume that N is ap-
plied to a dataset D. The fact that all rules of PN are cap-
tured by N clearly implies TPN (D) ⊆ TN (D). Further-
more, by equation (3), the value of (vL)i for some i is com-
puted from the values of (vL−1)i and (uL−1)j for k ≤ CL

distinct neighbours u of v per colour and position; but then,
if t and s are terms represented by v and u, respectively, the
canonical encoding ensures Ec(t, s) ∈ D for some c ∈ Col.
Also, (uL−1)j are computed using the neighbours of u and
so on. Hence, each term w in D that can possibly influence
vL must be connected in D to t by at most L such facts, so



all relevant neighbours of t can be selected by a (c, d)-tree-
like formula. The inequalities can be used to check for the
existence of at least k distinct neighbours of t in D. Now let
D′ be the subset of D containing precisely the facts that con-
tribute to the value of (vL)i. We can unfold D′ into another
tree-like dataset D′′ that corresponds to the body of an in-
stantiated tree-like rule r. Since the elements of all Aℓ and
Bc

ℓ are nonnegative, applying N to D and D′′ derives the
same value for cls((vL)i). If this value is 1, then applying
the rule r to D produces the same fact as N . Furthermore,
by definition, N captures r and so r ∈ PN . Thus, TPN (D)
contains all facts derived by N on D.

4.3 Enumerating Sets Xℓ,i

The results we presented thus far show that program PN
exists, but it is not yet clear that PN is computable: the def-
inition of Cℓ in Algorithm 1 uses sets Xℓ,i, which can be
infinite. We next show that each Xℓ,i can be enumerated
algorithmically. Specifically, in Algorithm 2 we present a
function Next(ℓ, i, α) that returns the smallest element of
Xℓ,i if α is equal to a special symbol ▷, and, for α ∈ R, re-
turns the smallest element of Xℓ,i that is larger than α or ◁
if no such element of Xℓ,i exists. Thus, Next(ℓ, i, 0) returns
the smallest nonzero element of Xℓ,i, if one exists.

In the presentation of Algorithm 2, we use the follow-
ing notation: for x a vector, j an index, and v a real num-
ber, x[j ← v] is the vector obtained from x by replac-
ing its j-th component with v. The algorithm is based on
the observation that, since Aℓ and Bc

ℓ contain only non-
negative elements and the activation function is monoton-
ically increasing, we can enumerate the values computed
by equation (3) in some vℓ in a monotonically increas-
ing fashion. To achieve this, the algorithm maintains a
frontier F of triples ⟨x,Y, z⟩, each describing one way to
compute a value of (vℓ)i: vector x reflects the values of
(vℓ−1)i, the (Col, ℓ − 1)-multiset family Y describes mul-
tisets Yc reflecting the values of (uℓ−1)i, and z is equal to
Val(ℓ, i,x,Y)—that is, the argument to the activation func-
tion when computing (vℓ)i. The starting point for the explo-
ration (line 8) is provided by Start(ℓ), which returns vℓ for
a vertex v with no neighbours. To enumerate all candidate
values for (vℓ)i in an increasing order, the algorithm selects
a triple in the frontier with the smallest z (line 10), and con-
siders ways to modify x or Y that increase z; each such
combination is added to the frontier (lines 14, 19, and 27).
Modifications involve replacing some component of x with
the next component (lines 12–14), choosing some y ∈ Yc

for some c ∈ Col and replacing some component of y with
the next component (lines 16–19), or expanding some Yc

with an additional vector (lines 20–27). In the latter case,
if Start(ℓ) contains just zeros, then adding Start(ℓ) to Yc

is not going to change the computed value of z so the algo-
rithm considers vectors obtained by expanding Start(ℓ) in
order to allow z to increase. This process produces values of
z in an increasing order and it guarantees that σ(z) ∈ Xℓ,i.
If α = ▷, the algorithm stops when the first such value is
produced (line 7). For α ∈ R, Theorem 8 guarantees that set
Xℓ,i \ X>α

ℓ,i is finite; since F is extended only if the value
of z increases, either F eventually becomes empty or σ(z)

Algorithm 2 Next(ℓ, i, α)

1: if ℓ = 0 then
2: if α = ▷ or α < 0 then return 0
3: else if α < 1 then return 1
4: else return ◁
5: let Y∅ be such that Yc

∅ = ∅ for each c ∈ Col
6: z := Val(ℓ, i,Start(ℓ),Y∅)
7: if α = ▷ then return σ(z)

8: F := {⟨Start(ℓ),Y∅, z⟩}
9: while F ̸= ∅ do

10: choose and remove ⟨x,Y, z⟩ in F with least z
11: if σ(z) > α then return σ(z)

12: for x′ ∈ Expand(ℓ,x) do
13: z′ := Val(ℓ, i,x′,Y)
14: if z′ > z then add ⟨x′,Y, z′⟩ to F

15: for c ∈ Col do
16: for y ∈ Yc and y′ ∈ Expand(ℓ,y) do
17: Y′ := Y and Y′c := (Y′c \ {y}) ∪ {y′}
18: z′ := Val(ℓ, i,x,Y′)
19: if z′ > z then add ⟨x,Y′, z′⟩ to F

20: if Start(ℓ) contains a nonzero then
21: V := {Start(ℓ)}
22: else
23: V := Expand(ℓ,Start(ℓ))

24: for y′ ∈ V do
25: Y′ := Y and Y′c := Y′c ∪ {y′}
26: z′ := Val(ℓ, i,x,Y′)
27: if z′ > z then add ⟨x,Y′, z′⟩ to F

28: return ◁

29: function Start(ℓ)
30: return the vector x of dimension δℓ−1 where

(x)j = Next(ℓ− 1, j,▷) for 1 ≤ j ≤ δℓ−1

31: function Expand(ℓ,v)
32: V := ∅
33: for 1 ≤ j ≤ δℓ−1 do
34: v′ := Next(ℓ− 1, j, (v)j)
35: if v′ ̸= ◁ then V := V ∪ {v[j ← v′]}
36: return V

exceeds α so the algorithm terminates (line 11 or 28). The-
orem 14 captures the formal properties of the algorithm.
Theorem 14. Algorithm 1 terminates on all inputs. More-
over, for 0 ≤ ℓ ≤ L and 1 ≤ i ≤ δℓ,
• Next(ℓ, i,▷) returns the smallest element of Xℓ,i, and
• for each α ∈ R, Next(ℓ, i, α) returns ◁ if X>α

ℓ,i = ∅, and
otherwise it returns the smallest element of X>α

ℓ,i .

The complexity of Algorithm 14 depends on the number
of recursive calls to Next, which in turn depends on the ma-
trices ofN . We leave investigating this issue to future work.

5 Limiting Aggregation to Max
In this section we study the expressivity of monotonic max
GNNs, which follow the same restrictions as monotonic



max-sum GNNs but additionally allow only for the max
aggregation function. Theorem 16 shows that each such
GNN corresponds to a Datalog program without inequali-
ties. Consequently, monotonic max GNNs cannot count the
connections of a constant in a dataset.

Definition 15. A monotonic max (Col, δ)-GNN is a mono-
tonic max-sum GNN that uses the max-1-sum aggregation
function in all layers.

Theorem 16. For each monotonic max (Col, δ)-GNN N
with L layers, let δN = max(δ0, . . . , δL), and let PN be the
Datalog program containing up to variable renaming each
(|Col|·δN , L)-tree-like rule without inequalities captured by
N . Then, N and PN are equivalent.

Tena Cucala et al. (2022) presented a closely related char-
acterisation for MGNNs, and the main difference is that we
use the canonical encoding. The latter allows us to describe
the target Datalog class more precisely, which in turn allows
us to prove the converse: each Datalog program without in-
equalities is equivalent to a monotonic max GNN.

In what follows, let us fix a program P consisting of
(c, d)-tree-like rules without inequalities. Recall that the sig-
nature of P consists of unary predicates U1, . . . , Uδ and bi-
nary predicates Ec for c ∈ Col. Now let τ1, . . . , τn be a se-
quence containing up to variable renaming each (c, d)-tree-
like formula for variable x without inequalities ordered by
increasing depth; that is, for all i < j, the depth of τi is less
than or equal to the depth of τj . Each τi can be written as

τi = φi,0 ∧
mi∧
k=1

(
Eck(x, yk) ∧ φi,k

)
, (26)

where each φi,k is a (c, d − 1)-tree-like formula for yk,
and, for all 1 ≤ k < k′ ≤ mi, formulas φi,k and φi,k′ do
not have variables in common. Note that formulas φi,k can
be ⊤, and that colours ck need not be distinct.

We define NP as the monotonic max (Col, δ)-GNN of
form (2) satisfying the following conditions. The number of
layers is L = d+ 2, the activation function is ReLU, and the
classification function cls is the step function with threshold
1. Dimensions δ0, . . . , δL are defined as follows:

• for 1 ≤ ℓ < L, dimension δℓ is the number of formulas in
the above sequence of depth at most ℓ− 1, and

• δ0 = δL = δ.

The elements of Aℓ, Bc
ℓ, and bℓ are defined as follows, for

c ∈ Col, 1 ≤ ℓ ≤ L, 1 ≤ i ≤ δℓ, and 1 ≤ j ≤ δℓ−1.

(Aℓ)i,j =



1 if
• ℓ = 1 and τi contains Uj(x); or
• 2 ≤ ℓ < L and
− 1 ≤ i ≤ δℓ−1 and i = j, or
− δℓ−1 < i ≤ δℓ and φi,0 = τj ; or

• ℓ = L and P contains rule
τj → Ui(x) up to variable renaming;

0 otherwise.

(Bc
ℓ)i,j =


1 if 2 ≤ ℓ < L and there exists 1 ≤ k ≤ mi

such that c = ck and φi,k and τj
are equal up to variable renaming;

0 otherwise.

(bℓ)i =


1−

δℓ−1∑
j=1

((Aℓ)i,j +
∑

c∈Col

(Bc
ℓ)i,j)

if ℓ = 1, or
1 ≤ ℓ < L and
δℓ−1 < i ≤ δℓ;

0 otherwise.

To understand the intuition behind the construction of
NP , assume thatNP is applied to a dataset D, and consider
a vector vℓ labelling a vertex corresponding to some term t
of D. Then, the i-th component of vℓ is paired with formula
τi from the above enumeration, and it indicates whether it
is possible to evaluate τi over D by mapping variable x to
t. This is formally captured by Lemma 17. To ensure that
NP and P are equivalent, layer L of NP simply realises a
disjunction over all rules in the program.
Lemma 17. For each (Col, δ)-dataset D, layer 1 ≤ ℓ < L
of NP , position 1 ≤ i ≤ δℓ, and term t in D, and for vℓ

the labelling of the vertex corresponding to t when NP is
applied to the canonical encoding of D,
• (vℓ)i = 1 if there exists a substitution ν mapping x to t

such that D |= τiν, and
• (vℓ)i = 0 otherwise.

Note that each δℓ with 1 ≤ ℓ < L is determined by the
number of (c, d)-tree-like formulas of depth ℓ − 1, and that
δL−1 is the largest such number. We next determine an upper
bound on δL−1. By Definition 11, the fan-out of a variable of
depth i is at most c(d− i). The number of variables of depth
i is at most the number of variables of depth i − 1 times
the fan-out of each variable, which is ci · d . . . (d− i+ 1)
and is bounded by ci · d!. By adding up the contribution for
each depth, there are at most cd · (d+ 1)! variables. Each
variable is labelled by one of the 2δ conjunctions of depth
zero, and each non-root variable is connected by one of
the |Col| predicates to its parent. Hence, there are at most
(|Col| · 2δ)cd·(d+1)! tree-like formulas.
Theorem 18. Program P and GNNNP are equivalent, and
moreover δL−1 ≤ (|Col| · 2δ)cd·(d+1)! holds.

6 Conclusion
We have shown that each monotonic max-sum GNN (i.e.,
a GNN that uses max and sum aggregation functions and
satisfies certain properties) is equivalent to a Datalog pro-
gram with inequalities in the sense that applying the GNN
or a single round of the rules of the program to any dataset
produces the same result. We have also sharpened this re-
sult to monotonic max GNNs and shown the converse: each
tree-like Datalog program without inequalities is equivalent
to a monotonic max GNN. We see many avenues for future
work. First, we aim to completely characterise monotonic
max-sum GNNs. Second, we intend to implement rule ex-
traction. Third, we shall investigate the empirical perfor-
mance of monotonic max-sum GNNs on tasks other than
link prediction, such as node classification.
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Pérez, J.; Arenas, M.; and Gutierrez, C. 2009. Semantics
and complexity of SPARQL. ACM Trans. Database Syst.
34(3):16:1–16:45.

Pflueger, M.; Tena Cucala, D. J.; and Kostylev, E. V. 2022.
GNNQ: A neuro-symbolic approach to query answering
over incomplete knowledge graphs. In Proc. ISWC, vol-
ume 13489 of Lecture Notes in Computer Science, 481–497.
Springer.
Qu, M.; Bengio, Y.; and Tang, J. 2019. GMNN: graph
markov neural networks. In Proc. ICML, volume 97 of Pro-
ceedings of Machine Learning Research, 5241–5250.
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A Proofs for Section 4
Throughout this appendix, we fix a max-sum GNNN , dimensions δ0, . . . , δL, and aggregation functions k1, . . . , kL as specified
in Section 4.1. As in Section 4.3, for x a vector, j an index, and v a real number, x[j ← v] is the vector obtained from x by
replacing its jth component with v.

To prove our results, we shall define a nonempty sequence Sℓ,i for each 0 ≤ ℓ ≤ L and 1 ≤ i ≤ δℓ; intuitively, each Sℓ,i
enumerates Xℓ,i in ascending order. Our definition is inductive and uses two auxiliary notions that we define next. In particular,
consider an arbitrary ℓ with 0 < ℓ ≤ L and assume that Sℓ−1,i have been defined for all 1 ≤ i ≤ δℓ. Then, sℓ−1 is the vector
of dimension δℓ−1 such that (sℓ−1)i is the first element of Sℓ,i for each 1 ≤ i ≤ δℓ−1. Moreover, a (ℓ, i)-triple is a triple of the
form ⟨x,Y, z⟩ whose components satisfy the following conditions:
• x is a vector of dimension δℓ−1 such that (x)j ∈ Sℓ−1,j holds for all 1 ≤ j ≤ δℓ−1;
• Y is a (Col, ℓ− 1)-multiset family such that (y)j ∈ Sℓ−1,j holds for all c ∈ Col, y ∈ Yc, and 1 ≤ j ≤ δℓ−1; and
• z = Val(ℓ, i,x,Y).
An (ℓ, i)-triple ⟨x2,Y2, z2⟩ is a successor of an (ℓ, i)-triple ⟨x1,Y1, z1⟩ if exactly one of the following conditions holds:
• Y1 = Y2 and x2 = x1[j ← x′] for some 1 ≤ j ≤ δℓ−1 and x′ the element that succeeds (x)j in Sℓ−1,j ; or
• x2 = x1 and there exist a colour c ∈ Col, vector y ∈ Yc

1, and index 1 ≤ j ≤ δℓ−1 such that Yc′

2 = Yc′

1 for each colour
c′ ∈ Col \ {c}, and Yc

2 = (Yc
1 \ {y}) ∪ {y[j ← y′]} where y′ is the element that succeeds (y)j in Sℓ−1,j ; or

• x2 = x1 and there exist a colour c ∈ Col and index 1 ≤ j ≤ δℓ−1 such that Yc′

2 = Yc′

1 for each colur c′ ∈ Col \ {c}, and
Yc

2 = Yc
1 ∪ {sℓ−1[j ← y′]} where y′ is the first positive element of Sℓ−1,j .

We are now ready to define sequences Sℓ,i for all 0 ≤ ℓ ≤ L and 1 ≤ i ≤ δℓ.
• For the base case ℓ = 0, let S0,i = (0, 1) for each 1 ≤ i ≤ δ0.
• For the inductive step, assume that Sℓ−1,i has been defined for each 1 ≤ i ≤ δℓ−1, and consider arbitrary 1 ≤ i ≤ δℓ. To

define Sℓ,i, we first define an auxiliary sequence Fℓ,i of finite sets of (ℓ, i)-triples as follows.
– For the base case, the first element of Fℓ,i is f0 = {⟨sℓ−1,Y∅, z0⟩}, where Y∅ is such that Yc

∅ = ∅ for each c ∈ Col and
z0 = σ(Val(ℓ, i, sℓ−1,Y∅)).

– For the inductive step, assuming that fn−1 with n > 0 has been defined and is not empty, let

fn = {⟨x,Y, z⟩ ∈ fn−1 | z > min(fn−1)} ∪
{⟨x,Y, z⟩ | z > min(fn−1) and ⟨x,Y, z⟩ is a successor of some ⟨x′,Y′,min(fn−1)⟩ ∈ fn−1},

where min(fn) is the minimum number appearing in the third position of an (ℓ, i)-triple in fn−1; such a number always
exists since fn−1 is never empty and it contains a finite number of triples. Then, Sℓ,i is the sequence of real numbers whose
n-th element is σ(min(fn)) if fn is defined and fn ̸= ∅. Since f0 is always defined and not empty, Sℓ,i is not empty.

The following lemma shows that sequences Sℓ,i capture our intuition mentioned above.
Lemma A.1. For each 1 ≤ ℓ ≤ L and each 1 ≤ i ≤ δℓ, sequence Sℓ,i satisfies the following conditions:

(S1) each element of Sℓ,i is nonnegative;
(S2) Sℓ,i is strictly monotonically increasing;
(S3) Sℓ,i is either finite or it converges to∞; and
(S4) the set of elements in Sℓ,i is Xℓ,i.

Proof. We prove all four conditions by induction over ℓ. For the base case ℓ = 0, sequence S0,i is by definition is equal to
(0, 1) for each 1 ≤ i ≤ δℓ, so conditions (S1)–(S4) hold trivially. Now consider arbitrary 1 ≤ ℓ ≤ L such that each Sℓ−1,j with
1 ≤ j ≤ δℓ−1 satisfies conditions (S1)–(S4), and consider arbitrary 1 ≤ i ≤ δℓ.

Condition (S1) follows straightforwardly from the fact that each element of Sℓ,i for ℓ ≥ 1 is the image of σ for some real
number z, and σ(z) ≥ 0 for all z ∈ R, since the range of σ is R+

0 . Condition (S2) follows from the fact that, for each n ∈ N,
each triple ⟨x,Y, z⟩ ∈ fn \ fn−1 satisfies z > min(fn−1), and so min(fn) > min(fn−1) holds.

We prove Condition (S3) by contradiction—that is, we assume that Sℓ,i is infinite, and that there exists some ᾱ ∈ R such
that each element of Sℓ,i is smaller than ᾱ.

Consider an arbitrary element α in Sℓ,i. By the definition of Sℓ,i, there exists a triple ⟨x,Y, z⟩ such that z = Val(ℓ, i,x,Y),
σ(z) = α, and, for each c ∈ Col and y ∈ Yc, vector y contains a nonzero element. Let β̄ be the smallest natural number such
that σ(β̄) ≥ ᾱ; such β̄ exists since σ is unbounded. For each 1 ≤ j ≤ δℓ−1 and each c ∈ Col, let wj , αj , and nj,c be as follows:

wj =min{(Aℓ)i,j} ∪ {(Bc
ℓ)i,j | c ∈ Col}; (27)

αj =

{
β̄−(bℓ)i

wℓ
if wℓ ̸= 0,

undefined otherwise;
(28)



ϵj =

{
the first positive value of Sℓ−1,j if such a value exists,
undefined otherwise;

(29)

nj,c =

{
⌈ β̄−(bℓ)i
(Bc

ℓ)i,j ·ϵj
⌉ if (Bc

ℓ)i,j ̸= 0 and ϵj is defined;

0 otherwise.
(30)

We next show the following properties:

1. if (Aℓ)i,j > 0, then (x)j < αj ;
2. for each c ∈ Col, if (Bc

ℓ)i,j > 0, then (y)j < αj for each y ∈ Yc;
3. for each c ∈ Col, if (Bc

ℓ)i,j > 0, then there exist fewer than nj,c elements in Yc whose j-th element is not zero.

To see the first property, note that if (x)j ≥ αj , then condition (S1) of the inductive hypothesis ensures that all elements of x
and vectors in Y are nonnegative; since the weights of Aℓ and Bc

ℓ are also nonnegative, we have

α = σ
(
Val(ℓ, i,x,Y)

)
≥ σ

(
wjαj + (bℓ)i

)
= σ(β̄) ≥ ᾱ,

which contradicts our assumption that all elements of Sℓ,i are smaller than ᾱ. The second property follows analogously. To see
the third property, assume that there exist at least nj,c vectors y in Yc such that (y)j > 0. Then,

α = σ
(
Val(ℓ, i,x,Y)

)
≥ σ

(
(Bc

ℓ)i,j
∑
y∈Yc

(y)j + (bℓ)i

)
≥ σ

(
(Bc

ℓ)i,j · nj · ϵj + (bℓ)i

)
≥ σ(β̄) ≥ ᾱ,

which again contradicts our assumption that all elements of Sℓ,i are smaller than ᾱ.
By conditions (S2) and (S3) of the inductive hypothesis, each Sℓ−1,j is countable, monotonically increasing, and either finite

or converges to infinity; hence, set {s ∈ Sℓ−1,j | s ≤ ᾱ} is finite. Thus, by the three properties shown above, if (Aℓ)i,j > 0,
then (x)j can only take finitely many values; similarly, for all c ∈ Col and y ∈ Yc, if (Bc

ℓ)i,j > 0, then, (y)j can only take
finitely many values. Notice also that each Yc cannot have infinitely many elements, since it does not contain any vector where
all elements are 0, and, for each 1 ≤ j ≤ δℓ−1, there exist fewer than nj,c elements in Yc whose j-th component’s value is
positive, and none for which it is negative. Hence, there are only finitely many values that σ(z) can take. Thus, Sℓ,i is finite,
which contradicts our initial assumption.

Finally, we show condition (S4). To this end, we first show that all elements of Sℓ,i are in Xℓ,i. Consider an arbitrary element
α ∈ Sℓ,i; by definition, there exists an (ℓ, i)-triple of the form ⟨x,Y, z⟩ such that σ(z) = α. Now, for all 1 ≤ j ≤ δℓ−1, c ∈ Col,
and y ∈ Yc, the definition of an (ℓ, i)-triple ensures (x)j ∈ Sℓ−1,j and (y)j ∈ Sℓ−1,j ; thus, our inductive hypothesis implies
(x)j ∈ Xℓ−1,j and (y)j ∈ Xℓ−1,j . But then, the definition of an (ℓ, i)-triple ensures z = Val(ℓ, i,x,Y), and the definition of
Xℓ,i ensures σ(z) ∈ Xℓ,i, as required.

To prove that each element of Xℓ,i appears in Sℓ,i, consider arbitrary α ∈ Xℓ,i. By Definition 7, there exists a vector
xα of dimension δℓ−1 where (xα)j ∈ Xℓ−1,j for each 1 ≤ j ≤ δℓ−1, and there also exists a (Col, ℓ − 1)-multiset fam-
ily Yα such that (y)j ∈ Xℓ−1,j holds for each c ∈ Col, each y ∈ Yc

α, and each 1 ≤ j ≤ δℓ−1; moreover, σ(zα) = α for
zα = Val(ℓ, i,xα,Yα). By induction hypothesis, all elements in Xℓ−1,j are in Sℓ−1,j . Hence, there exists at least one finite
sequence ⟨sℓ−1,Y∅,Val(ℓ, i, sℓ−1,Y∅)⟩ = t0, . . . , tK = ⟨xα,Yα, zα⟩ such that tn is a successor of tn−1 for each 1 ≤ n ≤ K.
Indeed, each multiset Yc

α is finite and, starting from t0, we can reach tK by, in each step, changing some vector component
to the next element in Sℓ−1,j or adding a new vector to some multiset of the (Col, ℓ − 1)-multiset family. We now show by
induction over 0 ≤ n ≤ K the following statement (∗): for each tn = ⟨xn,Yn, zn⟩ in this sequence, some element of Fℓ,i

contains a (ℓ, i)-triple ⟨x,Y, z⟩, called a witness of tn, such that
• if (Aℓ)i,j > 0, then (xn)j = (x)j ,
• for each colour c ∈ Col and each index 1 ≤ j ≤ δℓ−1, if (Bc

ℓ)i,j > 0, then multisets {{ (y)j | y ∈ Yc
n and (y)j > 0 }} and

{{ (y)j | y ∈ Yc and (y)j > 0 }} are equal.
Observe that these properties imply z = zn. For the base case, ⟨sℓ−1,Y∅,Val(ℓ, i, sℓ−1,Y∅)⟩ ∈ f0 holds by definition, so t0 is
its own witness in Fℓ,i. For the induction step, we assume that tn−1 = ⟨xn−1,Yn−1, zn−1⟩ with 0 < n ≤ K has a witness in
Fℓ,i, and we show that let tn = ⟨xn,Yn, zn⟩ then has a witness in Fℓ,i as well. Let t = ⟨x,Y, z⟩ be a witness of tn−1 in Fℓ,i.
We first show that there exists m ∈ N0 such that fm is defined, fm−1 contains t, but fm does not contain t. If Fℓ,i is finite,
the last element of Fℓ,i is empty so the claim clearly holds. Thus, assume that Fℓ,i is infinite. For the sake of a contradiction,
assume that there exists some m′ ∈ N0 such that t appears in all elements of Fℓ,i after fm′ . By the definition of Sℓ,i, this
implies that the elements of Sℓ,i after sm′ form an infinite sequence that is strictly monotonic and whose values are always
smaller than σ(z); however, this contradicts condition (S3). Thus, there exists m ∈ N0 such that fm−1 contains t, but fm does
not. The definition of Sℓ,i ensures that the m− 1-th element of Sℓ,i is precisely σ(zn−1). If zn = zn−1, then the change from
tn−1 to tn can only take place in either the j-th component of xn−1 for j such that (Aℓ)i,j = 0, or in the j-th component of
some y ∈ Yc

n−1 for some c ∈ Col with (Bc
ℓ)i,j = 0, so the statement holds since ⟨x,Y, z⟩ is a witness for tn. If zn > zn−1,



then the change from tn−1 to tn can only take place in either the j-th component of xn−1 for j such that (Aℓ)i,j > 0, or in
the j-th component of some y ∈ Yc

n−1 for some c ∈ Col with (Bc
ℓ)i,j > 0, or by adding a new vector to some Yc

n−1 with the
smallest positive value from Sℓ−1,j in the j-th component, for some j such that (Bc

ℓ)i,j > 0. By the definition of a witness,
both tn−1 and t agree on the components of vectors where the change from tn−1 to tn takes place, and so the same change
can be applied to the witness ⟨x,Y, z⟩, leading to a triple t′ = ⟨x′,Y′, z′⟩ such that z′ = zn and by definition of Fℓ,i, t′ must
appear in fm+1. Thus, t′ is clearly a witness of tn in Fℓ,i. This concludes the proof of (∗).

Now, (∗) ensures that ⟨xα,Yα, zα⟩ has a witness in Fℓ,i, and as we have already shown, there exists some element fm of
Fℓ,i such that this triple appears in fm but not in fm+1. But then, the definition of Sℓ,i ensures that σ(zα) is the m-th element
of Sℓ,i; since σ(zα) = α, numner α appears in Sℓ,i, as desired.

Theorem 8. Each set Xℓ,i satisfies Xℓ,i ⊆ R+
0 , and, for each α ∈ R, set Xℓ,i \ X>α

ℓ,i is finite.

Proof. By condition (S4) of Lemma A.1, for each 1 ≤ ℓ ≤ L and each 1 ≤ i ≤ δℓ, the elements of Xℓ,i are precisely the
elements of the sequence Sℓ,i. By condition (S1), all elements in Sℓ,i are nonnegative, so Xℓ,i ⊆ R+

0 holds. Moreover, assume
that set Xℓ,i \ X>α

ℓ,i is infinite; then, by condition (S4) of Lemma A.1, set Sℓ,i contains infinitely many numbers that are smaller
or equal than α. However, by condition (S2) ensures that Sℓ,i is strictly monotonically increasing, and so α is an upper bound
of the sequence. This, in turn, contradicts condition (S3). Consequently, set Xℓ,i \ X>α

ℓ,i is finite.

Lemma A.2. For each (Col, δ)-dataset D, each 0 ≤ ℓ ≤ L, each vector vℓ labelling a vertex when N is applied to D, and
each 1 ≤ i ≤ δℓ, it holds that (vℓ)i ∈ Xℓ,i.

Proof. The proof is by a straightforward induction on 0 ≤ ℓ ≤ L. For the base case, Definition 2 ensures (v0)i ∈ {0, 1} = X0,i

for each i. For the induction step, consider some 1 ≤ ℓ ≤ L and 1 ≤ i ≤ δℓ and notice that the value of (vℓ)i is given by
expression (31). Consider the triple ⟨x,Y, z⟩ where x = vℓ−1, Y is the multiset family such that, for each c ∈ Col, Yc is
the multiset {{uℓ | ⟨v, u⟩ ∈ Ec }}, and z = Val(ℓ, i,x,Y). By the inductive hypothesis, (x)j ∈ Xℓ−1,j , and (y)j ∈ Xℓ−1,j for
each c ∈ Col and each y ∈ Yc. Finally, by comparing (31) with the definition of Val(ℓ, i,x,Y) in Definition 7, we can see that
z = (vℓ)i. By the definition of Xℓ,i, then z ∈ Xℓ,i, and thus (vℓ)i ∈ Xℓ,i, as desired.

Theorem 10. Let N ′ be the (Col, δ)-GNN obtained from N by replacing kℓ with Cℓ for each 1 ≤ ℓ ≤ L. Then,
TN (D) = TN ′(D) for each (Col, δ)-dataset D.

Proof. Consider an arbitrary (Col, δ)-dataset D and let G = ⟨V, {Ec}c∈Col, λ⟩ be the canonical encoding of D. Let λ0, . . . , λL

and λ′
0, . . . , λ

′
L be the functions labelling the vertices of G induced by applying N and N ′ to D, respectively.

We first prove by induction on 0 ≤ ℓ ≤ L that for all v ∈ V and 1 ≤ i ≤ δℓ, it holds that (vλℓ
)i ≥ (vλ′

ℓ
)i. The base case

holds trivially since λ0 = λ′
0. For the induction step, consider 1 ≤ ℓ ≤ L, v ∈ V , and 1 ≤ i ≤ δℓ, and suppose that both claims

hold for ℓ− 1. The formulas for (vλℓ
)i and (vλ′

ℓ
)i are given by equations (31) and (32).

(vλℓ
)i = σ

δℓ−1∑
j=1

(Aℓ)i,j(vλℓ−1
)j +

∑
c∈Col

δℓ−1∑
j=1

(Bℓ
c)i,j max-kℓ-sum({{ (uλℓ

)j | ⟨v, u⟩ ∈ Ec }}) + (bℓ)i

 (31)

(vλ′
ℓ
)i = σ

δℓ−1∑
j=1

(Aℓ)i,j(vλ′
ℓ−1

)j +
∑
c∈Col

δℓ−1∑
j=1

(Bℓ
c)i,j max-Cℓ-sum({{ (uλ′

ℓ
)j | ⟨v, u⟩ ∈ Ec }}) + (bℓ)i

 (32)

In both equations, all summands except (bℓ)i are nonnegative: the weights ofN andN ′ are nonnegative by Definition 6, and the
feature vectors labelling vertices of V are also nonnegative by Theorem 8 and Lemma A.2. Note that the inductive hypothesis
ensures (uλℓ−1

)j ≥ (uλ′
ℓ−1

)j for all u ∈ V and 1 ≤ j ≤ δℓ−1. Furthermore, Algorithm 1 ensures that Cℓ ≤ kℓ. Since the
weights of Aℓ and each Bc

ℓ are nonnegative, subtracting (32) from (31) yields a positive value, and so (vλℓ
)i ≥ (vλ′

ℓ
)i. This

concludes the proof by induction.
Now let ℓst be the largest 1 ≤ ℓ ≤ L such that either all elements of Aℓ and Bc

ℓ for each c ∈ Col are 0, or Xℓ−1,j = {0}
for each 1 ≤ j ≤ δℓ−1; if such ℓ does not exist, let ℓst = 0. To complete the proof of the theorem, we prove by induction on
ℓst ≤ ℓ ≤ L that, for all v ∈ V and 1 ≤ i ≤ δℓ, exactly one of the following two properties holds:
• (vλℓ

)i = (vλ′
ℓ
)i or

• (vλℓ
)i > (vλ′

ℓ
)i ≥ αℓ.

For the base case, if ℓst = 0, then the first property holds trivially since λ0 = λ′
0. If ℓst > 0, consider an arbitrary 1 ≤ i ≤ δℓ.

We have two possibilities. First, if all elements of Aℓst and Bc
ℓst

for each c ∈ Col are all zero, equations (31) and (32) and
the fact that the matrices of N and N ′ are the same ensure that (vλℓst

)i = (vλ′
ℓst
)i = σ((bℓst)i). Second, if Xℓ−1,j = {0} for

each 1 ≤ j ≤ δℓ−1; equation (31) ensure (vλℓst
)i = σ((bℓst)i); moreover, we have shown that (vλℓst

)i ≥ (vλℓ′st
)i, and since the



elements in the sum in (32) other than (bℓ)i are not negative, we again have (vλ′
ℓst
)i = σ((bℓst)i). Hence, (vλℓ

)i = (vλ′
ℓ
)i and

the first property holds.
For the induction step, we consider arbitrary layer ℓst < ℓ ≤ L, vertex v ∈ V , and position 1 ≤ i ≤ δℓ. We assume that

(vλℓ
)i ̸= (vλ′

ℓ
)i; together with (vλℓ

)i ≥ (vλ′
ℓ
)i, this implies (vλℓ

)i > (vλ′
ℓ
)i, so we next show (vλ′

ℓ
)i ≥ αℓ. Since ℓ > ℓst,

Algorithm 1 defines ϵℓ, βℓ, wℓ, bℓ, Cℓ, αℓ, and αℓ−1. Furthermore, let k′ℓ = ⌈
βℓ−bℓ
wℓ·ϵℓ ⌉, so Cℓ = min(kℓ, k

′
ℓ). We have already

shown that (uλℓ−1
)j ≥ (uλ′

ℓ−1
)j for all u ∈ V and 1 ≤ j ≤ δℓ−1. We next consider the following four possibilities.

Case 1. There exists 1 ≤ j ≤ δℓ−1 such that (Aℓ)i,j > 0 and (vλ′
ℓ−1

)j ≥ αℓ−1. Since all summands in (32) except (bℓ)i are
nonnegative, the argument of σ in (32) is greater or equal to (Aℓ)i,j(vλ′

ℓ−1
)j + (bℓ)i ≥ wℓαℓ−1 + bℓ = βℓ; since σ(βℓ) ≥ αℓ

and σ is monotonically increasing, we have (vλ′
ℓ
)i ≥ αℓ, as desired.

Case 2. Case 1 does not hold and Cℓ = 0. If Cℓ = kℓ = 0, the sum over c ∈ Col in both (31) and (32) is always equal to 0.
Furthermore, since case 1 does not hold, the induction hypothesis ensures that for any 1 ≤ j ≤ δℓ−1 such that Aℓ

i,j > 0, we
have (vλ′

ℓ−1
)j = (vλℓ−1

)j . Thus, it follows that (vλℓ
)i = (vλ′

ℓ
)i. If Cℓ = k′ℓ = 0, Algorithm 1 ensures that βℓ = bℓ. Then,

since all summands in the argument of σ other than (bℓ)i are nonnegative, we have that the argument of σ in (32) is greater or
equal than (bℓ)i ≥ bℓ = βℓ, and since σ is monotonically increasing and σ(βℓ) ≥ αℓ, we have that (vλ′

ℓ
)i ≥ αℓ, as desired.

Case 3. Cℓ > 0 and there exist c ∈ Col, 1 ≤ j ≤ δℓ−1, and ⟨v, u⟩ ∈ Ec such that (Bℓ
c)i,j > 0 and (uλ′

ℓ−1
)j ≥ αℓ−1. All

summands in the argument of σ in (32) except (bℓ)i are nonnegative and max-Cℓ-sum({{ (uλ′
ℓ−1

)j | ⟨v, w⟩ ∈ Ec }}) ≥ (uλ′
ℓ−1

)j

due to Cℓ > 0, so the argument of σ in (32) is greater or equal to (Bℓ
c)i,j(uλ′

ℓ−1
)j + (bℓ)i ≥ wℓαℓ−1 + (bℓ)i = βℓ. Since

σ(βℓ) ≥ αℓ and σ is monotonically increasing, we have (vλ′
ℓ
)i ≥ αℓ.

Case 4. None of cases 1–3 hold. Since case 1 does not hold, the induction hypothesis ensures that for any 1 ≤ j ≤ δℓ−1

such that Aℓ
i,j > 0, we have (vλ′

ℓ−1
)j = (vλℓ−1

)j . Furthermore, since case 2 does not hold, we have Cℓ > 0. Finally, case
3 does not hold, so, for each c ∈ Col and 1 ≤ j ≤ δℓ−1 such that (Bc

ℓ)i,j > 0, we have (uλ′
ℓ−1

)j = (uλℓ−1
)j for each u such

that ⟨v, u⟩ ∈ Ec, and so {{ (uλℓ
)j | ⟨v, u⟩ ∈ Ec }} = {{ (uλ′

ℓ
)j | ⟨v, u⟩ ∈ Ec }} holds. By these observations, our assumption that

(vλℓ
)i ̸= (vλ′

ℓ
)i, and equations (31) and (32), then Cℓ = k′ℓ < kℓ and there must exist at least one 1 ≤ j ≤ δℓ−1 such that

(Bc
ℓ)i,j > 0 and the number of distinct u such that ⟨v, u⟩ ∈ Ec and (uλℓ−1

)j > 0 is greater than Cℓ. For such j, and since all
summands in the argument of σ in (32) except (bℓ)i are nonnegative, it holds that the argument is greater or equal than

(Bc
ℓ)i,jmax-Cℓ-sum({{ (uλ′

ℓ
)j | ⟨v, u⟩ ∈ Ec }}) + (bℓ)i. (33)

However, as we have already observed, we know that there exist at least Cℓ elements different from zero in the multiset in (33),
and Lemma A.2 and the definitions of ϵℓ amd Xℓ−1,j ensure that each of these elements is greater or equal than ϵℓ. Thus, the
value in (33) is greater or equal than wℓCℓϵℓ + bℓ ≥ βℓ. However, σ(βℓ) ≥ αℓ since σ is monotonic, we have (vλℓ

)i ≥ αℓ,
which concludes the proof.

To complete the proof of the theorem, we consider an arbitrary term t in D and an arbitrary unary predicate Ui in the (Col, δ)-
signature, where 1 ≤ i ≤ δ, and we show that Ui(t) ∈ TN (D) if and only if Ui(t) ∈ TN ′(D); this implies the theorem since
TN (D) and TN ′(D) can only contain atoms of this form. By definition of the canonical encoder/decoder scheme and the
definitions of both N and N ′, it suffices to show that

cls((vλL
)i) = 1 if and only if cls((vλ′

L
)i) = 1, (34)

for v the vertex of the form vt in V . By the first result shown above by induction, we have that (vλL
)i ≥ (vλ′

L
)i, and the

second result ensures that either (vλL
)i = (vλ′

L
)i or (vλ′

L
)i ≥ αL, since L ≥ ℓst. If (vλL

)i = (vλ′
L
)i, (34) holds trivially.

If (vλ′
L
)i ≥ αL, then the definition of αL in Algorithm 1 ensures that cls((vλ′

L
)i) = 1, and since (vλL

)i ≥ (vλ′
L
)i, then

cls((vλL
)i) = 1, so (34) holds.

For a dataset D, let tms(D) be the set containing each term t such that D contains an atom of the form U(t), Ec(t, s), or
Ec(s, t), for U and Ec arbitrary unary and binary predicates, respectively, and s an arbitrary term. An isomorphism from a
(Col, δ)-dataset D to a (Col, δ)-dataset D′ is an injective mapping h of terms to terms that is defined (at least) on all tms(D)
and satisfies h(D) = D′, where h(D) is the dataset obtained by replacing each fact of the form U(t) in D with U(h(t)), and
each fact of the form Ec(t, s) ∈ D with Ec(h(t), h(s)).
Lemma A.3. For all (Col, δ) datasets D and D′, the following properties holds:

(M1) each isomorphism from D to D′ is also an isomorphism from TN (D) to TN (D′); and
(M2) D ⊆ D′ implies TN (D) ⊆ TN (D′).

Proof. It is straightforward to see that property (M1) holds: for any two (Col, δ)-datasets, an isomorphism h from D to D′

induces a bijective mapping between the vertices of encD and encD′; moreover, the result of applying N to a (Col, δ)-graph



depends only on the graph structure and not on the vertex names, so it is straightforward to show that the vectors labelling the
corresponding vertices are identical.

To see that property (M2) holds, consider arbitrary datasets D and D′ such that D ⊆ D′. Let G = ⟨V, {Ec}c∈Col, λ⟩ and
G′ = ⟨V ′, {E ′c}c∈Col, λ

′⟩ be the canonical encodings of D and D′, respectively, and λ0, . . . , λL and λ′
0, . . . , λ

′
L be the functions

labelling the vertices of G and G′ when N is applied to these graphs. By a straightforward induction on 0 ≤ ℓ ≤ L we show
that (vλℓ

)i ≤ (vλ′
ℓ
)i holds for each vertex v ∈ V and each 1 ≤ i ≤ δℓ. The base case for ℓ = 0 follows immediately from the

canonical encoding and the fact that D ⊆ D′. For the induction step, the canonical encoding and D ⊆ D′ imply Ec ⊆ E ′c. The
values of (vλℓ

)i and (vλ′
ℓ
)i are computed by equation (3). Now by the inductive hypothesis, (uλℓ−1

)j ≤ (uλ′
ℓ
)j holds for each

u ∈ V and 1 ≤ j ≤ δℓ−1, which ensures

max-kℓ-sum({{ (uλℓ−1
)j | ⟨v, u⟩ ∈ Ec }}) ≤ max-kℓ-sum({{ (uλ′

ℓ−1
)j | ⟨v, u⟩ ∈ E ′c }}).

All elements of Aℓ and all Bc
ℓ with c ∈ Col are nonnegative, and σ is monotonically increasing, which implies (vλℓ

)i ≤ (vλ′
ℓ
)i.

Finally, cls is a step function, so cls((vλℓ
)i) ≤ cls((vλ′

ℓ
)i) holds as well, which ensures TN (D) ⊆ TN (D′).

Lemma 12. Let r be a constant-free Datalog rule of form (1), let V be the set of variables in r, and let A be the set of body
atoms of r. Then, N captures r if and only if Hν ∈ TN (Aν) for each substitution ν : V → S such that Hν ∈ Tr(Aν), where
S is a set of |V | distinct constants.

Proof. If there exists a substitution ν : V → S such that Hν ∈ Tr(Aν) but Hν /∈ TN (Aν), then by definition TN does not
capture r. To conclude the proof of the lemma, it only remains to show the converse implication: if Hν ∈ TN (Aν) for each
substitution ν : v → S such that Hν ∈ Tr(Aν), then T captures r. To this end, we consider an arbitrary (Col, δ)-dataset D,
and we prove that Tr(D) ⊆ TN (D). If Tr(D) is empty, then the claim holds vacuously, so suppose Tr(D) ̸= ∅. Consider an
arbitrary element α in Tr(D); clearly, α is of the form Hµ for some substitution µ such that Aµ ⊆ D and Hµ ∈ Tr(Aµ). Let h
be an injective mapping from tms(Aµ) to the constants in S; such a mapping exists because the body of r contains at most |V |
variables, and so tms(Aµ) contains at most |V | terms. Then, ν = h ◦ µ is a substitution mapping all variables in r to constants
in |V |. Mapping h is injective, rule r is constant-free, and Hµ ∈ Tr(Aµ), so the semantics of Datalog rule application ensure
that h(Hµ) ∈ Tr(h(Aµ)), and so Hν ∈ Tr(Aν). The latter implies Hν ∈ TN (Aν) by the lemma assumption. Moreover,
h is an isomorphism from Aµ to Aν, so property (M1) of Lemma A.3 implies Hµ ∈ TN (Aµ). Finally, property (M2) of
Lemma A.3 and Aµ ⊆ D imply α = Hµ ∈ TN (D), as required.

Theorem 13. Let PN be the Datalog program containing, up to variable renaming, each (|Col| · δN · CN , L)-tree-like rule
captured by N , where δN = max(δ0, . . . , δL). Then, N and PN are equivalent.

Proof. We prove the theorem by showing that TN (D) = TPN (D) holds for each (Col, δ)-dataset D. GNN N captures every
rule in PN and thus Tr(D) ⊆ TN (D) for each r ∈ PN ; since TPN (D) =

⋃
r∈PN

Tr(D), we have TPN (D) ⊆ TN (D).
To prove TN (D) ⊆ TPN (D), we consider an arbitrary fact α ∈ TN (D), and we construct a (|Col| · δN · CN , L)-tree-like

rule r such that α ∈ Tr(D) and r is captured by TN , which together imply α ∈ TPN (D). To find r, we consider the GNN N ′

obtained from N by replacing kℓ with Cℓ for each 1 ≤ ℓ ≤ L. Theorem 10 ensures TN (D) = TN ′(D), and so α ∈ TN ′(D).
Let G = ⟨V, {Ec}c∈Col, λ⟩ be the canonical encoding of D, and let λ0, . . . , λL be the functions labelling the vertices of G when
N ′ is applied to it. We next construct an atom H , a conjunction Γ, a substitution ν from the variables in Γ to tms(D), a graph
U (without vertex labels) with fresh vertices not occurring in G of the form ux for x a variable and edges with colours in Col,
and mappings Mc,ℓ,j : U → 2V for each c ∈ Col, 1 ≤ ℓ ≤ L, and 1 ≤ j ≤ δℓ−1. We also assign to each vertex in U a level
between 0 and L, and we identify a single vertex from U as the root vertex. In the rest of this proof, we use letters t and s for
terms in tms(D), letters x and y for variables, letters v, w for the vertices in V , and (possibly indexed) letter u for the vertices
in U . Our construction is by induction from level L down to level 1. The base case defines a vertex of level L. Then, for each
1 ≤ ℓ ≤ L, the induction step considers the vertices of level ℓ and defines new vertices of level ℓ− 1.

We initialise Γ as the empty conjunction, and we initialise ν and each Mc,ℓ,j as the empty mappings. For the base case, we
note that α must be of the form Ui(t), and so V contains a vertex vt. We introduce a fresh variable x, and define ν(x) = t; we
define H = Ui(x); we introduce vertex ux of level L; and we make ux the root vertex. Finally, we extend Γ with atom U(x)
for each U(t) ∈ D. For the induction step, consider 1 ≤ ℓ ≤ L and assume that all vertices of level greater than ℓ have been
already defined. We then consider each vertex of the form ux of level ℓ. Let t = ν(x). For each colour c ∈ Col, each layer
1 ≤ ℓ′ < ℓ, and each dimension j ∈ {1, . . . , δℓ′−1}, let

Mc,ℓ′,j(ux) =
{
w | ⟨vt, w⟩ ∈ Ec and (wλℓ′ )j contributes to the result of max-Cℓ′ -sum

(
{{ (wλℓ′ )j | ⟨vt, w⟩ ∈ E

c }}
)}

. (35)

At least one such set exists, but it may not be unique; however, any set satisfying (35) can be chosen. Each vertex of Mc,ℓ′,j(ux)
must be of the form vsn for some term sn ∈ tms(D), where sn ̸= sm for all 1 ≤ n < m ≤ |Mc,ℓ′,j(ux)|. We then introduce



a fresh variable yn and define ν(yn) = sn; we introduce a vertex uyn of level ℓ− 1 and an edge Ec(ux, uyn) to U ; and we
append to Γ the conjunction

|W |∧
n=1

(
Ec(x, yn) ∧BD(yn)

)
∧

∧
1≤n<m≤|W |

yn ̸≈ ym, (36)

where W = Mc,ℓ′,j(ux) and BD(yn) is the conjunction consisting of an atom U(yn) for each U(sn) ∈ D. Since each
Mc,ℓ,j(ux) contains at most Cℓ′ elements, this step adds at most |Col| · δℓ′−1 · Cℓ′ · ℓ′ new successors of ux. This com-
pletes our inductive construction. At this point, H = Ui(x) and Γ is a (|Col| · δN · CN , L)-tree-like formula for x. Thus,
rule H ← Γ is a (|Col| · δN · CN , L)-tree-like rule. Furthermore, the construction of ν ensures D |= Γν so Hν ∈ Tr(D), but
Hν = α, so α ∈ Tr(D), as required.

To complete the proof, we next show that r is captured by TN , which is equivalent to showing that r is captured by TN ′ .
To do this, we consider an arbitrary dataset D′ and an arbitrary ground atom α′ such that α′ ∈ Tr(D

′). This implies that
there exists some substitution ν′ such that D′ |= Γν′ and and α′ = Hν′. Consider the encoding of D′ into a (Col, δ)-graph
G = ⟨V ′, {E ′c}c∈Col, λ

′⟩, and let λ′
0, . . . , λ

′
L be the functions labelling the vertices of G′ whenN ′ is applied to it. We use letters

p, q, and q′ for the vertices of V ′.
We now prove the following statement by induction: for each 0 ≤ ℓ ≤ L and each vertex ux of U whose level is at least ℓ,

we have (vλℓ
)i ≤ (pλ′

ℓ
)i for each i ∈ {1, . . . , δℓ}, where v = vν(x) and p = vν′(x). For the base case, ℓ = 0, consider an

arbitrary 1 ≤ i ≤ δ0 and ux ∈ U , and let v = vν(x) and p = vν′(x). Note that (vλ0
)i ∈ {0, 1} and (pλ′

0
) ∈ {0, 1}, so we

only need to prove that (vλ0
)i = 1 implies (pλ′

0
)i = 1. By Definition 2, (vλ0

)i = 1 implies Ui(xν) ∈ D. The construction of
Γ ensures that Ui(x) ∈ Γ, and D′ |= Γν′ implies Ui(xν

′) ∈ D′, and so (pλ0
)i = 1, as required.

For the induction step, assume that the property holds for some ℓ− 1, and consider an arbitrary vertex ux ∈ U whose level
is at least ℓ; consider an arbitrary c ∈ Col, i ∈ {1, . . . , δi}, and let v = vν(x) and p = vν′(x). Note that the following holds.

(vλℓ
)i =σ

δℓ−1∑
j=1

(Aℓ)i,j(vλℓ−1
)j +

∑
c∈Col

δℓ−1∑
j=1

(Bc
ℓ−1)i,j max-Cℓ-sum{{ (wλℓ−1

)j | ⟨v, w⟩ ∈ Ec }}+ (bℓ)i

 (37)

(pλ′
ℓ
)i =σ

δℓ−1∑
j=1

(Aℓ)i,j(pλ′
ℓ−1

)j +
∑
c∈Col

δℓ−1∑
j=1

(Bc
ℓ−1)i,j max-Cℓ-sum{{ (qλ′

ℓ−1
)j | ⟨p, q⟩ ∈ E ′c }}+ (bℓ)i

 (38)

The induction assumption ensures (vλℓ−1
)j ≤ (pλ′

ℓ−1
)j for each 1 ≤ j ≤ δℓ−1. Also, for each colour c ∈ Col and each

1 ≤ j ≤ δℓ−1, we have that max-Cℓ-sum{{ (wλℓ−1
)j | ⟨v, w⟩ ∈ Ec }} is equal to

∑
w∈W (wλℓ−1

)j , where W = Mc,ℓ−1,j(ux).
Recall that the elements of W are of the form vs1 , · · · , vs|W | where s1, · · · , s|W | are terms in tms(D). Furthermore,
by the construction of U , there are W distinct vertices uy1

, · · · , uy|W | in U of level ℓ − 1 such that ν(yn) = sn and
Ec(ux, uyn

) is in U for each 1 ≤ n ≤ |W |. Furthermore, Γ contains atoms Ec(x, y1), . . . , E
c(x, y|W |) as well as inequal-

ities yn ̸≈ ym for 1 ≤ n < m ≤ |W |. We then have Ec(ν′(x), ν′(yn)) ∈ D′ and ν′(yn) ̸= ν′(ym) for 1 ≤ n < m ≤ |W |.
Thus, W ′ = {vν′(y1), . . . , vν′(y|W |)} is a set of |W | distinct c-neighbours of vν(x) in G′. The induction assumption ensures
that w = vν(yn) and q = vν′(yn) imply (wλℓ−1

)j ≤ (qλ′
ℓ−1

)j , and so
∑

w∈W (wλℓ−1
)j ≤

∑
q∈W ′(qλ′

ℓ−1
)j . Thus, by equations

(37) and (38), the fact that the elements from Aℓ and all Bc
ℓ are nonnegative, and σ is monotonically increasing, we have

(vλℓ
)i ≤ (pλ′

ℓ
)i, as required.

Recall that α′ = Hν′ is of the form Ui(t
′) with t′ = ν′(x); moreover, Ui(t) ∈ TN ′(D) with t = ν(x). Now let v = vt and

p = vt′ . Now Ui(t) ∈ TN ′(D) implies cls((vλL
)i) = 1, and the above property ensures (vλL

)i ≤ (pλ′
L
)i; since cls is a step

function, we have cls((pλ′
L
)i) = 1. Hence, Ui(t

′) ∈ TN ′(D′), as required.

Theorem 14. Algorithm 1 terminates on all inputs. Moreover, for 0 ≤ ℓ ≤ L and 1 ≤ i ≤ δℓ,
• Next(ℓ, i,▷) returns the smallest element of Xℓ,i, and
• for each α ∈ R, Next(ℓ, i, α) returns ◁ if X>α

ℓ,i = ∅, and otherwise it returns the smallest element of X>α
ℓ,i .

Proof. We first prove the two items of the theorem, and then we prove that Algorithm 1 terminates.
First, recall that by condition (S4) of Lemma A.1, for each 0 ≤ ℓ ≤ L and each 1 ≤ i ≤ δℓ, set Xℓ,i is contains exactly all

the elements of Sℓ,i. Furthermore, since Sℓ,i is strictly monotonically increasing by condition (S2) of Lemma A.1, its smallest
element is its first element. Hence, the smallest element of Xℓ,i is the first element of Sℓ,i. Furthermore, for any α ∈ R, let S>α

ℓ,i

be the subsequence of Sℓ,i which contains all elements in S>α
ℓ,i greater than α. Clearly, X>α

ℓ,i is identical to the set of elements
in S>α

ℓ,i . Furthermore, since Sℓ,i is strictly monotonically increasing, then either S>α
ℓ,i is empty or it contains an element s>α

ℓ,i

which appears in Sℓ,i exactly once and satisfies the following conditions:

(A1) all elements that precede s>α
ℓ,i in Sℓ,i are smaller or equal to α; and



(A2) all elements that follow s>α
ℓ,i in Sℓ,i are strictly greater than s>α

ℓ,i .

In particular, condition (A2) ensures that if S>α
ℓ,i is not empty, then s>α

ℓ,i is its smallest element. Hence, to show the items of the
theorem, it suffices to prove the following:

• Next(ℓ, i,▷) returns the first element of Sℓ,i, and
• for each α ∈ R, Next(ℓ, i, α) returns ◁ if S>α

ℓ,i is empty, and otherwise it returns s>α
ℓ,i .

We show both items simultaneously via induction over 0 ≤ ℓ ≤ L.
For the base case ℓ = 0, consider an arbitrary 1 ≤ i ≤ δ0. To see that Next(0, i,▷) returns the first element of S0,i,

simply note that line 2 of Algorithm 2 ensures that Next(0, i,▷) = 0, which is precisely the smallest element of S0,i. To prove
the second item, consider an arbitrary α ∈ R. If S>α

0,i is empty then, α ≥ 1, in which case line 4 of Algorithm 2 ensures
Next(0, i, α) = ◁, as expected. If S>α

0,i is not empty, we consider two possible cases: α < 0 or 0 ≤ α < 1. If α < 0, then
S>α
0,i = (0, 1), but Next(0, i, α) = 0 by line 2 of Algorithm 2, so the claim holds. If 0 ≤ α < 1, then S>α

0,i = (1). But then,
line 3 of Algorithm 2 ensures Next(0, i, α) = 1.

For the induction step, consider some arbitrary 1 ≤ ℓ ≤ L, and suppose that both items above hold for ℓ − 1. Consider an
arbitrary 1 ≤ i ≤ δℓ. We first show the first item. Observe that, the definition of Sℓ,i ensures that its first element is σ(z) for
z = Val(ℓ, i, sℓ−1,Y∅). Recall that sℓ−1 is defined as the vector of dimension δℓ−1 where (sℓ−1)j is the first element of Sℓ−1,j ,
for each 1 ≤ j ≤ δℓ−1. However, by induction hypothesis, (sℓ−1)j = Next(ℓ− 1, j,▷), and so sℓ−1 = Start(ℓ). Then, lines 6
and 7 of Algorithm 2 ensure that Next(ℓ, i,▷) is precisely σ(z). We now show the second item. Consider an arbitrary α ∈ R.
We study the execution of Next(ℓ, i, α). Since α ̸= ▷, F is initialised as stated in line 8 and so the loop starting in line 9 is
executed. We consider now the outcome of the loop’s execution. Let Sℓ,i = q0, q1, . . . . Let N ≥ 0 be the smallest natural
number such that either qN is not defined or qN > α; such N must exist since Sℓ,i is either finite or it converges to infinity, and
furthermore it is strictly monotonically increasing. We next show the following claim (∗): for each 0 ≤ n ≤ N , the algorithm’s
loop reaches a state where F = fn after a finite number of iterations. We prove this by induction on n.

The base case is straightforward since F initially contains only the triple ⟨Start(ℓ),Y∅, z⟩, where z = Val(ℓ, i,Start(ℓ),Y∅).
Furthermore, f0 contains only the triple ⟨sℓ−1,Y∅, z

′⟩, for z′ = Val(ℓ, i, sℓ−1,Y∅). However, we have already shown that
Start(ℓ) = sℓ−1, so the initial state of F is identical to f0. For the induction step, consider an arbitrary 0 ≤ n < N and suppose
that F = fn after a finite number of iterations of the algorithm’s loop; we then show that F = fn+1 holds after a finite number
of additional iterations. By definition, fn contains (at least) a triple of the form ⟨x,Y, z⟩ with σ(z) = qn, and all other triples
in fn are of the form ⟨x′,Y′, z′⟩ with z′ ≥ z. The condition in line 10 then ensures that one of the triples of the form ⟨x,Y, z⟩
with σ(z) = qn will be selected; since n < N and so qn ≤ α, the condition in line 11 will not be satisfied, so the algorithm will
not exit the loop and will afterwards start a new loop iteration. Then, the condition in line 14 ensures that no triple ⟨x′,Y′, z′⟩
with z′ ≤ z is added to F . Let K be the number of triples in fn of the form ⟨x,Y, z⟩ with σ(z) = qn. We then have that after
reaching the state where F = fn, the algorithm’s loop will run (at least) K additional times. Looking at lines 12 to 27, it is
clear that each iteration removes from F one of the K triples and adds to F all of the triple’s successors of the form ⟨x′,Y′, z′⟩
with z′ > z. Thus, after those K additional steps, F will be exactly fn+1. This concludes the proof of (∗).

Suppose now that S>α
ℓ,i is empty, which means that all elements of Sℓ,i are smaller than α. Then, N is precisely the number

of elements of Sℓ,i plus 1, that is, N > 0 and qN−1 is the last defined element of Sℓ,i. By the claim (∗), in the execution of
Next(ℓ, i, α), F becomes equal to fN after a finite number of steps. Since qN is undefined, fN must be empty. But then, since
F = fN , the condition in line 9 ensures that the loop is skipped, and line 28 ensures that the algorithm outputs ◁, as expected.
If S>α

ℓ,i is not empty, then there exists an element s>α
ℓ,i satisfying conditions (A1), and (A2). In particular, the definition of N ,

the condition (A1), and the fact that s>α
ℓ,i > α together ensure that s>α

ℓ,i is precisely the N th element of Sℓ,i. Claim (∗) ensures
that in the execution of Next(ℓ, i, α), F becomes equal to fN after a finite number of steps. Since the N th element of Sℓ,i is
defined, there exists a triple ⟨x,Y, z⟩ ∈ fn with σ(z) = s>α

ℓ,i and every other triple ⟨x′,Y′, z′⟩ ∈ F is such that z′ ≥ z. But
then, since fn = F , the next iteration of the loop must select a triple with z as the third component (note that this triple may
not be ⟨x,Y, z⟩). But since σ(z) = s>α

ℓ,i > α, the test in line 11 succeeds and so the algorithm returns s>α
ℓ,i , as expected. This

completes the proof of the second item.
Finally, to see that Algorithm 1 is terminating, we simply observe that the smallest positive number in each Xℓ,i can be

obtained by calling Next(ℓ, i,▷) and then, if this returns 0, calling Next(ℓ, i, 0). We have already shown that such calls
terminate and return the expected result. All other elements defined in the pseudocode of Algorithm 1 are easily computable
from the parameters of N , and so the algorithm terminates.

B Proofs for Section 5
Theorem 16. For each monotonic max (Col, δ)-GNN N with L layers, let δN = max(δ0, . . . , δL), and let PN be the Datalog
program containing up to variable renaming each (|Col| · δN , L)-tree-like rule without inequalities captured by N . Then, N
and PN are equivalent.



Proof. We show that N and PN are equivalent by taking an arbitrary (Col, δ)-dataset D and showing TPN (D) = TN (D).
Inclusion TPN (D) ⊆ TN (D) holds because, by definition, TN captures each rule r ∈ PN , which implies Tr(D) ⊆ TN (D).
Since TPN (D) =

⋃
r∈PN

Tr(D), we have TPN (D) ⊆ TN (D).
For the converse inclusion, consider an arbitrary fact α ∈ TN (D). Since N is a max (Col, δ)-GNN, its capacity CN is

bounded by 1. The procedure in the proof of Theorem 18 therefore constructs a (|Col| · δN , L)-tree-like rule r that is captured
by N satisfying α ∈ Tr(D). Furthermore, since Cℓ ≤ 1 for each 1 ≤ ℓ ≤ L, in equation (36) in the construction of r we have
|W | ≤ Cℓ′ ≤ 1, so the construction does not introduce any inequalities in the body of r, and so r ∈ PN holds. Hence, we have
α ∈ TPN (D), and so TN (D) ⊆ TPN (D), as required.

Lemma 17. For each (Col, δ)-dataset D, layer 1 ≤ ℓ < L ofNP , position 1 ≤ i ≤ δℓ, and term t in D, and for vℓ the labelling
of the vertex corresponding to t when NP is applied to the canonical encoding of D,
• (vℓ)i = 1 if there exists a substitution ν mapping x to t such that D |= τiν, and
• (vℓ)i = 0 otherwise.

Proof. For an arbitrary (Col, δ)-dataset D, let G = ⟨V, {Ec}c∈Col, λ⟩ be the canonical encoding of D, and consider applying
N to G. We prove the claim by induction over 1 ≤ ℓ < L. For the base case ℓ = 1, consider an arbitrary term t, an arbitrary
position 1 ≤ i ≤ δ1, and let v be the vertex corresponding to t. Let J1 and J ′

1 be the following sets of indices.

J1 = {j | 1 ≤ j ≤ δ0 and (v0)j = 1} (39)

J ′
1 = {j | 1 ≤ j ≤ δ0 and (A1)i,j = 1} (40)

Recall that (v0)j ∈ {0, 1} and (A1)i,j ∈ {0, 1} for each 1 ≤ j ≤ δ0; furthermore, Bc
1 has all elements equal to 0 for each

c ∈ Col, and one can check that (b1)i = 1− |J ′
1|. Thus, the argument of σ in the computation of (vλ1)i is equal to

|J1 ∩ J ′
1|+ 1− |J ′

1|, (41)

which is equal to 1 if J ′
1 ⊆ J1, and otherwise it less than or equal to 0. Hence, (v0)i = 1 if J ′

1 ⊆ J1, and otherwise (v0)i = 0.
Thus, to prove the claim, we show that J ′

1 ⊆ J1 if and only if D |= τiν holds for ν = {x 7→ t}. For the (⇐) direction, assume
that D |= τiν holds for ν = {x 7→ t}, and consider an arbitrary j ∈ J ′

j . The definition of J ′
1 implies (A1)i,j = 1, so τi contains

Uj(x). But then, D |= τiν implies Uj(t) ∈ D, so our encoding ensures (v0)j = 1; hence, j ∈ J holds, as required. For the
(⇒) direction, assume that J ′

1 ⊆ J1 holds. Then, for each Uj(x) ∈ τi, we have j ∈ J1 and so Uj(t) ∈ D. Hence, D |= τiν
holds for ν = {x 7→ t}.

For the induction step, consider 1 < ℓ < L such that the claim holds for ℓ− 1, an arbitrary term t, an arbitrary position
1 ≤ i ≤ δℓ, and let v be the vertex corresponding to t. We consider two cases. The first case is 1 ≤ i ≤ δℓ−1; then, (Aℓ)i,j = 1
if and only if j = i, for each j we have (Bc

ℓ)i,j = 0, and (bℓ)i = 0; hence, we have (vℓ)i = (vℓ−1)i, so both properties hold
by the induction hypothesis. The second case is δℓ−1 < i ≤ δℓ. For each c ∈ Col, let Jℓ,c and J ′

ℓ,c be defined as follows.

Jℓ,c = {j | 1 ≤ j ≤ δℓ−1 and there exists a vertex u such that ⟨v, u⟩ ∈ Ec and (uℓ−1)j = 1} (42)

J ′
ℓ,c = {j | 1 ≤ j ≤ δℓ−1 and (Bc

ℓ)i,j = 1} (43)

Let τi be of the form (26). Since φi,0 is a conjunction of atoms of the form U(x), there exists some 1 ≤ j0 ≤ δℓ−1 such
that φi,0 = τj0 . Furthermore, recall that (Aℓ)i,j ∈ {0, 1} and (vℓ−1)j ∈ {0, 1} for each 1 ≤ j ≤ δℓ−1, (Bc

ℓ)i,j ∈ {0, 1} for all
c ∈ Col, and (bℓ)i = −

∑
c∈Col |J ′

ℓ,c|. Thus, the argument of σ in the computation of (vλℓ
)i is equal to

(vℓ−1)j0 +
∑
c∈Col

(
|Jℓ,c ∩ J ′

ℓ,c| − |J ′
ℓ,c|

)
, (44)

which is equal to 1 if (vℓ−1)j0 = 1 and J ′
ℓ,c ⊆ Jℓ,c for each c ∈ Col, and otherwise it is less than or equal to 0. Consequently,

(vℓ)i = 1 if (vℓ−1)j0 = 1 and J ′
ℓ,c ⊆ Jℓ,c for each c ∈ Col, and otherwise (vℓ)i = 0. Thus, to prove the claim, we show that

(vℓ−1)j0 = 1 and J ′
ℓ,c ⊆ Jℓ,c for each c ∈ Col if and only if there exists a substitution ν mapping x to t such that D |= τiν.

For the (⇐) direction, assume that such substitution ν exists. We then have D |= φi,0ν; however, φi,0 = τj0 and j0 ≤ δℓ−1,
so the induction hypothesis implies (vℓ−1)j0 = 1. To prove J ′

ℓ,c ⊆ Jℓ,c for each c ∈ Col, we consider arbitrary c ∈ Col and
jk ∈ J ′

ℓ,c, and we let s = ν(yk). Note that D |= Ec(x, y)ν and so ⟨v, vs⟩ ∈ Ec. Furthermore, φi,k is a (c, ℓ − 2)-tree-like
formula for yk equal to τjk up to variable renaming. Also, D |= φi,kν ensures that there exists a substitution νk mapping
x to s such that D |= τjkνk, so, by applying the induction hypothesis to the vertex u for term s, we have that (uℓ−1)jk = 1.
Consequently, j ∈ Jℓ,c holds, as required.

For the (⇒) direction, assume that (vℓ−1)j0 = 1 and J ′
ℓ,c ⊆ Jℓ,c for each c ∈ Col. Since (vℓ−1)j0 = 1, the induction hy-

pothesis ensures D |= φi,0{x 7→ t}. Furthermore, for each 1 ≤ k ≤ mi, φi,k is a (Col, ℓ− 2)-tree-like formula, and so there
exists 1 ≤ jk ≤ δℓ−1 such that φi,k is equal to τjk up to variable renaming. Furthermore, (Bc

ℓ)i,jk = 1 and so jk ∈ J ′
ℓ,c, which

in turn implies jk ∈ Jℓ,c. Thus, there exists vertex u for a term s ∈ tms(D) such that ⟨v, u⟩ ∈ Ec and (uℓ−1)jk = 1. By the



induction hypothesis, there exists a substitution νk mapping x to s such that D |= τjkνk. Moreover, τjk is equal to φi,k up to
variable renaming, so there exists a substitution ν′k mapping yk to s such that D |= φi,kν

′
k. Note that φi,k has no variables in

common with φi,k′ for each 1 ≤ k < k′ ≤ mi, and none of these formulas mention x, so substitution ν = {x 7→ t} ∪
⋃mi

k=1 ν
′
k

is correctly defined. Observe that D |= φi,0ν, D |= φi,kν for each 1 ≤ k ≤ mi, and D |= Ec(x, yk)ν since ⟨v, u⟩ ∈ Ec. Thus,
D |= τiν holds, as required.

Theorem 18. Program P and GNN NP are equivalent, and moreover δL−1 ≤ (|Col| · 2δ)cd·(d+1)! holds.

Proof. For an arbitrary (Col, δ)-dataset D, let G = ⟨V, {Ec}c∈Col, λ⟩ be the canonical encoding of D, and consider applyingN
to G. Moreover, consider an arbitrary vertex v ∈ V for a term t ∈ tms(D), and an arbitrary position 1 ≤ i ≤ δL. We show that
Ui(t) ∈ TNP (D) if and only if Ui(t) ∈ TP(D). Towards this goal, let JL and J ′

L be the following sets of indices.

JL = {j | 1 ≤ j ≤ δL−1 and (vL−1)j = 1} (45)

J ′
L = {j | 1 ≤ j ≤ δL−1 and (AL)i,j = 1} (46)

For each 1 ≤ j ≤ δL−1, we have (AL)i,j ∈ {0, 1}, matrices Bc
L and bL have all elements equal to 0, and Lemma 17 ensures

(vL−1)j ∈ {0, 1}. Thus, the argument of σ in the computation of (vλL
)i is equal to |JL ∩ J ′

L|, which is greater than or equal
to 1 if J ′

L ∩ JL ̸= ∅, and smaller than or equal to 0 otherwise. Hence, (vL)i = 1 if J ′
L ∩ JL ̸= ∅, and (vL)i = 0 otherwise.

Now assume that Ui(t) ∈ TNP (D) holds. The latter implies cls((vL)i) = 1, which implies (vL)i ≥ 1; moreover, as shown
in the previous paragraph, then J ′

L ∩ JL ̸= ∅. Consider an arbitrary j ∈ J ′
L ∩ JL. Since j ∈ J ′

L, there exists a rule of the form
Ui(x)← φ ∈ P where φ is equal to τj . Furthermore, j ∈ JL implies (vL−1)j = 1, and by Lemma 17 there exists a substitution
mapping x to t such that D |= φν. Hence, Ui(x)ν ∈ TP(D), and so Ui(t) ∈ TP(D) holds, as required.

Conversely, assume that Ui(t) ∈ TP(D) holds. Fact Ui(t) is produced by a rule Ui(x)← φ ∈ P and a substitution ν map-
ping x to t such that D |= φν. Since φ is a (c, L − 2)-tree-like formula for x, there exists 1 ≤ j ≤ δL−1 such that φ is equal
to τj up to variable renaming, and τj is a (c, L − 2)-tree-like formula for x. Hence, Lemma 17 ensures that (vL−1)j = 1 and
so j ∈ JL. Furthermore, the definition of AL ensures that (AL)i,j = 1, and so j ∈ J ′

L. Thus, J ′
L ∩ JL ̸= ∅, which implies

(vL)i = 1; this, in turn, ensures cls((vL)i) = 1, so Ui(t) ∈ TNP (D) holds, as required.
We next provide an upper bound on δL−1. By Definition 11, the fan-out of a variable of depth i is at most c(d− i); moreover,

the number of variables of depth i is at most the number of variables of depth i − 1 times the fan-out of each variable, which
is ci · d . . . (d− i+ 1) and is bounded by ci · d!. By adding up the contribution of each depth, there are at most cd · (d+ 1)!
variables. Each variable is labelled by one of the 2δ formulas of depth zero, and each non-root variable is connected by one of
the |Col| predicates to its parent. Hence, there are at most (|Col| · 2δ)cd·(d+1)! tree-like formulas.
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