
EXPLAINABLE GNN-BASED MODELS OVER
KNOWLEDGE GRAPHS

David Tena Cucala
Department of Computer Science
University of Oxford, UK

Bernardo Cuenca Grau
Department of Computer Science
University of Oxford, UK

Egor V. Kostylev
Department of Informatics
University of Oslo, Norway

Boris Motik
Department of Computer Science
University of Oxford, UK

ABSTRACT

Graph Neural Networks (GNNs) are often used to learn transformations of graph
data. While effective in practice, such approaches make predictions via numeric
manipulations so their output cannot be easily explained symbolically. We pro-
pose a new family of GNN-based transformations of graph data that can be trained
effectively, but where all predictions can be explained symbolically as logical in-
ferences in Datalog—a well-known rule-based formalism. In particular, we show
how to encode an input knowledge graph into a graph with numeric feature vec-
tors, process this graph using a GNN, and decode the result into an output knowl-
edge graph. We use a new class of monotonic GNNs (MGNNs) to ensure that this
process is equivalent to a round of application of a set of Datalog rules. We also
show that, given an arbitrary MGNN, we can automatically extract rules that com-
pletely characterise the transformation. We evaluate our approach by applying it
to classification tasks in knowledge graph completion.

1 INTRODUCTION

Knowledge graphs (KGs) (Hogan et al., 2021) describe an application domain as a collection of
entities and their relationships, and they are frequently used in applications such as Web search,
recommendation, fraud detection, and data integration. Many such applications involve realising a
transformation on knowledge graphs. For example, in a recommender system, we can represent user-
item interactions as a graph (Aggarwal, 2016) and extend it with external KGs to improve accuracy,
diversity, and interpretability of recommendations (Zhang et al., 2016; Wang et al., 2018; 2019a);
the recommender system can then transform this graph into another graph containing recommended
user-item interactions. Moreover, a KG completion system (Rossi et al., 2021; Bordes et al., 2013;
Teru et al., 2020) transforms an input graph into another graph containing relationships missing in
the input. Usually, such transformations are not given explicitly, but are learned from examples.

Graph Neural Networks (GNNs) (Scarselli et al., 2009; Liu & Zhou, 2020) are one of the most
popular ML models for graph data. They are usually applied to KGs in three stages (Hamilton et al.,
2017). First, the input KG is encoded into an embedding space as another graph whose vertices are
labelled with numeric feature vectors. Second, this graph is processed by a GNN with several layers;
for each layer, the GNN updates the feature vectors based on the learned model parameters and the
vectors of the previous layer. Finally, the vectors of the output layer are decoded to the output KG.

While such approaches are effective in practice, the transformation can be difficult to understand
because GNNs compute predictions through numeric calculations. For example, it would be use-
ful to know that a system recommended novel The Idiot because the user liked Crime and Pun-
ishment and both novels were written by Dostoevsky. There is a growing interest in explaining
GNN predictions. Numerous methods focus on identifying relevant subgraphs in the embedding
space (Ying et al., 2019; Luo et al., 2020; Lin et al., 2021), but such approaches do not explain
predictions symbolically—that is, by showing how a prediction can be derived from the input
KG via logical inferences of a knowledge representation formalism. Datalog (Abiteboul et al.,

1

1995; Ceri et al., 1989) is a prominent such formalism. It allows one to model an application do-
main using ‘if–then’ rules, which can be applied to facts to derive new facts. For example, we
can represent knowledge about literature using facts Author(Dostoevsky,Crime and Punishment)
and Author(Dostoevsky,The Idiot), and past interactions using fact Likes(Crime and Punishment).
Then, applying rule Author(x, y1) ∧ Author(x, y2) ∧ Likes(y1)→ Recommend(y2) to these facts
derives fact Recommend(The Idiot). Datalog engines (Motik et al., 2014) can generate human-
readable proofs explaining why a fact follows from the rules and the data, which can help foster
trust in system predictions, ensure norm compliance, and enable verification of fairness standards.

The main contribution of this paper is a new family of GNN-based transformations of KGs that
can be trained from examples as usual, but whose predictions can be explained symbolically using
Datalog rules. Our transformation consists of the three stages mentioned earlier, but these were
carefully crafted to ensure that the transformation can always be described symbolically. To this end,
we introduce a novel class of monotonic GNNs (MGNNs) that ensure an important property: when
values in input feature vectors increase, no value of an output feature vector decreases. To capture
this intuition formally, we show that our transformation is monotonic under homomorphisms—a
well-known property that captures key aspects of Datalog rule application.

In contrast to the related approaches (Teru et al., 2020; Hamaguchi et al., 2017; Schlichtkrull et al.,
2018; Wang et al., 2019b), all predictions of our transformation can be explained using Datalog
rules. Specifically, for each MGNN, there exists an equivalent set of rules such that, on each KG,
the rules and the MGNN-based transformation produce the same facts. This opens the door to new
ways of using MGNNs: when developing Datalog rules manually is difficult, we can train an MGNN
and use it to provide further predictions; however, such predictions can always be explained using
rules. For example, we could train an MGNN on a graph containing examples of credit applications
and then support decision-making for new applications by applying the model to a different graph.
For each MGNN obtained in such a way, there exists a set of rules that fully explains each credit
recommendation; extracting all such rules can be computationally expensive, but one can typically
extract a representative subset of such rules in practice. Thus, we integrate ML and symbolic AI in
a single framework, allowing applications to use the best of both worlds.

We demonstrate the effectiveness of our approach by applying it to classification tasks in KG com-
pletion. Using well-known benchmarks, we compare our system’s performance with the state-of-
the-art KG completion systems DRUM (Sadeghian et al., 2019) and AnyBURL (Meilicke et al.,
2019). We show that, in addition to providing an exact correspondence between the model and the
extracted rules, our technique also offers competitive performance.

Our proofs are given in the appendix, and the source code is available as supplementary material.

2 AN MGNN-BASED TRANSFORMATION OF KNOWLEDGE GRAPHS

We now describe our GNN-based transformation of knowledge graphs. In this paper, we see a KG as
a dataset, which is a finite set of facts of the form A(a) or R(a1, a2), where A is a unary predicate,
R is a binary predicate, and a, a1, and a2 are constants. Constants represent entities from an
application domain, unary predicates typically represent entity types, and binary predicates represent
entity relationships. For example, the statements that a user likes Crime and Punishment and it is a
novel written by Fyodor Dostoevsky can be represented as facts Likes(Crime and Punishment) and
Author(Dostoevsky,Crime and Punishment). KGs in formats such as RDF can be transformed into
such a dataset in the obvious way. For D a dataset, cn(D) is the set of constants occurring in D.

Our transformation is realised as an operator TM that is parameterised by a GNNM and that maps
datasets to datasets. A dataset D is first encoded into a graph GD whose vertices are labelled with
numeric feature vectors; graph GD is then processed by M; finally, the result is decoded to the
output dataset TM(D). In Section 3, we show that, if M is a special kind of GNN that we call
monotonic, then TM is equivalent to a round of Datalog rule application, and we can automatically
extract from TM an equivalent set of rules. The space of encodings of D consists of coloured graphs,
which extend standard undirected graphs in two ways. First, each vertex is labelled by a numeric
feature vector of a fixed dimension, which allows the graph to be processed byM. Second, each
edge in the graph is assigned a colour, which allows us to distinguish different types of connections.

2

D:

Dostoevsky
The Idiot

Crime and Punishment

Likes

Author

Author

GD :
vDs vIvCP

vDs,CPvCP,Ds vDs,I vI,Ds

c1 c1
c2

c2
c1

c2
c1

c2

c3 c3

c4 c4
[
1
0
0

] [
0
0
0

] [
0
0
0

]

[
0
0
1

][
0
0
0

] [
0
0
1

] [
0
0
0

]
encoding

decoding

Figure 1: Graphical representation of dataset D = {Author(Dostoevsky,Crime and Punishment),
Author(Dostoevsky,The Idiot),Likes(Crime and Punishment)} and its encoding GD

Figure 1 shows the encoding of the dataset D from the introduction. We introduce vertices vDs,
vCP, and vI in GD to represent constants Dostoevsky, The Idiot, and Crime and Punishment. To
represent relationships between constants, we introduce vertices vDs,CP, vCP,Ds, vDs,I, and vI,Ds; we
do not introduce vertices vCP,I and vI,CP because the corresponding constants do not occur together in
a fact of D. We then encode unary and binary predicates using feature vectors labelling the graph’s
vertices. To this end, we assign to each predicate a fixed position in the feature vectors; for example,
we assign position 1 to predicate Likes and position 3 to predicate Author. Then, we represent fact
Likes(Crime and Punishment) by setting the first element of the feature vector of vCP to one, and
we represent fact Author(Dostoevsky,Crime and Punishment) by setting the third element of the
feature vector of vDs,CP to one. Finally, we connect with coloured edges all pairs of vertices of GD

that refer to related constants. For example, we connect vertices vDs and vDs,CP by an edge of colour
c1 to indicate that Dostoevsky occurs first in the constant pair of vDs,CP. We analogously connect
vDs,CP and vCP by an edge of colour c2. We connect vCP,Ds and vDs,CP by an edge of colour c3
to indicate that the constant pairs of the two vertices are inverses of each other. Finally, we connect
vCP and vDs by an edge of colour c4 to indicate that the two constants occur jointly in a fact of D.

Formally, we fix a set of four colours Col = {c1, c2, c3, c4}. We assume that datasets and derived
facts will use finitely many predicates, and we fix a list A1, . . . , Aϵ, Rϵ+1, . . . , Rδ of available unary
and binary predicates. We consider vectors and matrices over the reals R and its nonnegative subset
R+. For v a vector, (v)i is the i-th element of v. We apply scalar functions to vectors and matrices
element-wise; for example, for v1, . . . ,vn vectors of equal dimension, max{v1, . . . ,vn} is the vec-
tor whose i-th element is max{(v1)i, . . . , (vn)i}. Finally, a function σ : R→ R is monotonically
increasing if x < y implies σ(x) ≤ σ(y), and function σ is Boolean if it ranges over {0, 1}. The
following definition describes the kind of graph that our encoding produces.

Definition 1. A (Col, δ)-graph is a tuple ⟨V, {Ec}c∈Col, λ⟩ where V is a finite set of vertices; for
each c ∈ Col, Ec is a set of c-coloured undirected edges (possibly including self-loops) over V ; and
labelling λ assigns to each v ∈ V a vector λ(v) of dimension δ. If λ is implicitly understood, λ(v)
is written as v. For c ∈ Col and v ∈ V , Nc(v) is the set of vertices connected to v by an edge in Ec.

We are now ready to define our encoding of an arbitrary dataset D into a (Col, δ)-graph GD.

Definition 2. The encoding of a dataset D is the (Col, δ)-graph GD that contains a vertex va for
each constant a ∈ cn(D), and vertices va,b and vb,a for all (not necessarily distinct) constants a and
b that occur together in a binary fact in D. For each vertex va,b, GD contains an edge of colour c1
connecting va,b and va, an edge of colour c2 connecting va,b and vb, an edge of colour c3 connecting
va,b and vb,a, and an edge of colour c4 connecting va and vb. For each va, labelling (va)i is 1 if
Ai(a) ∈ D and 0 otherwise. For each va,b, labelling (va,b)i is 1 if Ri(a, b) ∈ D and 0 otherwise.

Graph GD will be processed by a GNN. As we explain in detail in Section 3, if we are to ensure that
our transformation ‘mimics’ Datalog rule application, we cannot use an arbitrary GNN. Instead, we
introduce Monotonic Graph Neural Networks (MGNNs), which restrict GNNs in a way that allows
us to attain our objective. Definition 3 also specifies how to apply an MGNN to a coloured graph.

Definition 3. A (Col, δ)-monotonic graph neural network (MGNN)M with L ≥ 1 layers is a tuple
⟨{Aℓ}1≤ℓ≤L, {Bℓ

c}c∈Col,1≤ℓ≤L, {bℓ}1≤ℓ≤L, σ, cls⟩. For each ℓ ∈ {1, . . . , L} and each c ∈ Col, Aℓ

and Bℓ
c are matrices over R+ of dimension mℓ × nℓ, and bℓ is a vector over R of dimension nℓ

such that n1 = mL = δ, and mℓ−1 = nℓ for each ℓ ∈ {2, . . . , L}. Moreover, σ : R→ R+ is a
monotonically increasing activation function, and cls : R+ → {0, 1} is a monotonically increasing
classification function. The dimension ofM is max{n1, . . . , nL}.

3

ApplyingM to a (Col, δ)-graph G = ⟨V, {Ec}c∈Col, λ⟩ induces the sequence λ0, . . . , λL of vertex
labellings where λ0 = λ and, for each ℓ ∈ {1, . . . , L} and v ∈ V , the value of λℓ(v) is given by

vℓ = σ
(
Aℓvℓ−1 +

∑
c∈Col

Bℓ
c max{wℓ−1 | w ∈ Nc(v)}+ bℓ

)
. (1)

The resultM(G) of applyingM to G is the (Col, δ)-graph with the same vertices and edges as G,
but where each vertex v ∈ V is labelled by cls(λL(v)).

Intuitively, an MGNN consists of L layers, where each layer ℓ ∈ {1, . . . , L} is defined by a matrix
Aℓ, a matrix Bℓ

c for each colour c, and a bias vector bℓ; these constitute the learnable parameters of
the model. In addition, an MGNN also uses functions σ and cls which are fixed and explicitly given.
An MGNN transforms an arbitrary (Col, δ)-graph G into another (Col, δ)-graphM(G) as follows.
For each layer ℓ ∈ {0, . . . , L}, each vertex v in G is associated with a labelling vℓ. Labelling v0 is
the labelling v of v in G, and, for each layer ℓ, vertex v is labelled by a feature vector vℓ computed
as specified in equation (1). The feature vector of v in the resulting graph is computed by applying
the classification function cls to the final labelling vL. Thus, MGNNs specialise GNNs by (i) taking
the maximum of the features of a vertex’ neighbours (instead of the more commonly used sum or
average), (ii) using nonnegative weights in matrices Aℓ and Bℓ

c (but the elements of bias vectors bℓ

can be negative), and (iii) requiring the activation and classification functions to be monotonically
increasing. We discuss the reasons for these restrictions in Section 3.

The resultM(GD) of applying an MGNN to the encoding GD of a dataset D can be decoded into
the output dataset of the transformation by essentially inverting the encoder (cf. Figure 1). Thus, for
each MGNNM, we obtain an operator TM that is specified as follows.
Definition 4. ForM a (Col, δ)-MGNN and D a dataset, TM(D) is the dataset that contains the
fact Ai(a) for each i ∈ {1, . . . , ϵ} and each vertex va such that (va)i = 1 inM(GD), and the fact
Ri(a, b) for each i ∈ {ϵ+ 1, . . . , δ} and each vertex va,b such that (va,b)i = 1 inM(GD).

Note that the dimensions of the matrices ofM are independent from the number of constants in a
dataset; in fact, M can be trained on one dataset and then applied to another dataset that contains
the same predicates but completely different constants. Our transformation is thus ideally suited for
inductive settings such as KG completion and recommendation (Teru et al., 2020; Hamaguchi et al.,
2017; van den Berg et al., 2017), where training and testing can involve distinct entities.

3 EXTRACTING AN EQUIVALENT SET OF DATALOG RULES

We now show that, for each MGNNM, we can automatically generate a set of Datalog rules PM
such that TM and PM derive the same facts on any dataset D. To this end, we first recapitulate the
basic definitions of Datalog and identify a property that characterises Datalog reasoning.

A (Datalog) atom is of the form A(t1) or R(t1, t2), where A and R are unary and binary predicates,
respectively, and each ti is a constant or variable. A (Datalog) rule is an implication of the form (2),
where H is the atom called the rule’s head, all Bi are atoms that together form the rule’s body, and
each variable in H occurs in some Bi.

H ← B1 ∧ · · · ∧Bm (2)

A (Datalog) program is a finite set of rules. A substitution ν is a mapping of finitely many variables
to constants; for α an atom, αν is the result of replacing in α each variable x on which ν is defined
with ν(x). Each rule r of form (2) defines the immediate consequence operator Tr on datasets: for
D a dataset, set Tr(D) contains fact Hν for each substitution ν satisfying {B1ν, . . . , Bmν} ⊆ D.
For P a program, operator TP on datasets is defined by TP(D) =

⋃
r∈P Tr(D).

Our objective is to show that, for each MGNNM, operator TM ‘behaves analogously’ to Datalog
rule application. Definition 5 specifies formally what this means in our setting.
Definition 5. A homomorphism from a dataset D to a dataset D′ is a mapping h of constants to
constants that is defined at least on cn(D) and that satisfies h(D) ⊆ D′, where h(D) is the dataset
obtained by replacing each constant a in D with h(a) and removing all duplicate facts. An operator
T from datasets to datasets is monotonic under homomorphisms if, for all datasets D and D′, each
homomorphism from D to D′ is also a homomorphism from T (D) to T (D′).

4

For any constant-free program P , operator TP is monotonic under homomorphisms. For example,
let D = {A(a), R(a, b)} and P = {S(x, y)← A(x) ∧R(x, y)}, so TP(D) = {S(a, b)}. First, op-
erator TP is monotonic: adding facts to D cannot invalidate a consequence of TP because the body
of r still matches so r derives S(a, b). Second, operator TP is resilient to replacement of constants.
For example, let D′ = {A(c), R(c, c)} be obtained from D by replacing a and b with c. Rule r
‘cannot tell’ that the constants have been replaced; thus, it derives TP(D

′) = {S(c, c)}, which is
obtained from TP(D) by the same replacement. Monotonicity under homomorphisms combines
both properties. We next show that rules can be extracted from any operator satisfying this property.
Definition 6. An operator T on datasets captures a rule or program α if Tα(D) ⊆ T (D) for each
dataset D.

Proposition 7. Let T be an operator on datasets, let r be a constant-free rule of form (2), let µ be a
substitution that maps each variable of r to a distinct constant, and let Dr = {B1µ, . . . , Bmµ}. If
T is monotonic under homomorphisms and Hµ ∈ T (Dr), then T captures r.

Intuitively, if some operator T captures a rule r, then Tr provides us with a lower bound for the
consequences of T on an arbitrary dataset—that is, T necessarily derives at least as many facts as r
(but T can derive more facts). Moreover, if T is monotonic under homomorphisms, Proposition 7
provides us with an effective way of checking whether T captures r: we replace each variable in r
with a distinct constant, we collect the resulting body atoms in a dataset Dr, we apply T to Dr, and
we check whether the result contains the replaced head atom of r. Clearly, T captures a constant-free
program P if T captures each rule r ∈ P , so we can just apply this check to each r ∈ P to verify
whether T captures P . This provides us with the necessary machinery for rule extraction.

We next show that operator TM is monotonic under homomorphisms. This shows that TM indeed
‘behaves like’ Datalog reasoning, and it will allow us to use Proposition 7 for rule extraction.
Theorem 8. For each (Col, δ)-MGNNM, mapping TM is monotonic under homomorphisms.

Theorem 8 is a consequence of the restrictions on MGNNs mentioned after Definition 3. For mono-
tonicity, note that adding facts to a dataset D has the effect of possibly adding new vertices and edges
and then flipping some elements of feacture vectors of GD from 0 to 1; moreover, the elements of
Aℓ and Bℓ

c are nonnegative so the arguments of σ in equation (1) can only increase; finally, functions
σ and cls are monotonically increasing so the elements of the feature vectors ofM(GD) can only
flip from 0 to 1, which is equivalent to deriving more facts in TM(D). For the resilience of constant
merging, replacing, say, constant b with constant a in D is tantamount to merging vertices vb into
va in GD; this will cause vertex va to have fewer neighbours, but since we aggregate neighbours’
feature vectors by taking the maximum, this cannot change the result of equation (1). Note that, if
we aggregated neighbours using a sum (as is common in the literature), then elements of the feature
vectors inM(GD) could decrease due to merging, which would invalidate Theorem 8.

Theorem 8 tells us that we can check whether TM captures a rule r using Proposition 7. This is a
key step of our rule extraction algorithm. In particular, we next show that it is sufficient to consider
only rules of a certain structure, and that the number of such rules is determined by the number
of predicates δ, the dimension of M, and the number of layers of M. Thus, to obtain a program
PM deriving the same consequences as TM, we can, in principle, enumerate all such rules, apply
Proposition 7 to each rule, and keep the rules that pass this check. Such a naı̈ve procedure can be
optimised in practice. For example, we can reduce the number of considered rules by observing
that rules can logically imply other rules; for example, if we determine that a rule B(x)← A(x) is
captured, then we do not need to consider any rule of the form B(x)← A(x) ∧ C where C is an
arbitrary conjunction: each such rule is logically implied by B(x)← A(x) and is thus redundant.

Definition 9 describes the syntactic structure of the rules that can fully characterise TM. To this end,
we use the well-known notion of a primal graph of a conjunction C of atoms, which is the undirected
graph (possibly with self-loops) whose vertices are the variables of C, and where an edge connects
each pair of (not necessarily distinct) variables x and y such that R(x, y) is in C for some R. Note
that the primal graph of an empty conjunction is also empty. A primal graph is a (possibly empty)
tree if it is connected and acyclic (and, in particular, without self-loops).
Definition 9. Let c and d be nonnegative integers. A constant-free conjunction C is (c, d)-tree-
like for a variable x if the primal graph of C is a tree that is either empty or can be rooted at x
(i.e., x occurs in C) and, for each vertex v in the tree, the distance i of v from x is at most d and

5

moreover v has at most c(d − i) children. A (c, d)-tree-like rule is a rule of form A(x)← Cx or
R(x, y)← Cx ∧Bx,y ∧ Cy , where Cx and Cy are (c, d)-tree-like conjunctions for x and y, respec-
tively, with no variables in common, and Bx,y is a nonempty constant-free conjunction of binary
atoms of the form S(x, y) or S(y, x).1

ForM a (Col, δ)-MGNN with L layers and dimension k (see Definition 3), PM is the program that
contains, up to variable renaming, each (3k, L)-tree-like rule that is captured by TM.

The primal graph of conjunction A(x) ∧R(x, y) ∧ S(x, z) is a tree with root x and children y and
z; thus, it is (2,1)-tree like for x, but not (1,1)-tree-like for x (since x is at distance 0 from itself it
can have at most one child). In contrast, the primal graph of A(x) ∧R(x, y) ∧ S(x, z) ∧ T (y, z) is
a triangle with nodes x, y, and z, so it is not (c, d)-tree-like for x for any c and d.
Theorem 10. For each (Col, δ)-MGNNM and each dataset D, we have TM(D) = TPM(D).

To prove Theorem 10, we present a construction that, for each (Col, δ)-MGNNM, dataset D, and
fact α ∈ TM(D), constructs a rule r ∈ PM such that α ∈ Tr(D)—that is, rule r explains symboli-
cally howM derives α on D. Whether such an explanation is minimal is an open question.

Theorem 10 also describes the expressiveness (i.e., the kind of possible predictions) of TM. For
example, no MGNN can capture rule r = R(x, z)← R(x, y) ∧R(y, z). To see that this is the case,
let D = {R(a, b), R(b, c)}. For an arbitrary MGNNM, Theorem 10 ensures that all predictions of
TM involving binary facts are made by rules of the form R(x, y)← Cx ∧Bx,y ∧ Cy; however, no
such rule can derive R(a, c) on D, so we necessarily have R(a, c) ̸∈ TM(D) as well.

4 EVALUATION

We evaluated our approach on KG completion—the problem of extending a KG seen as a dataset D
to its complete version D′ by adding missing facts. When seen as a classification problem, the aim
is to learn a Boolean function f(·, ·) that takes a dataset D and a fact α over a fixed set of unary and
binary predicates such that f(D,α) returns true if and only if α ∈ D′. We consider the inductive
variant of this problem, where the testing dataset may contain constants not occurring in the training
or validation datasets (but all predicates in the testing dataset are known before training). Inductive
KG completion is more general and challenging than the transductive variant (Bordes et al., 2013),
where all constants in the testing data also occur in the training data.

Baselines. We compared our approach with DRUM (Sadeghian et al., 2019) and AnyBURL (Meil-
icke et al., 2019), two state-of-the-art approaches for knowledge graph completion.

DRUM learns an end-to-end differentiable model that, given a dataset D and a fact α, returns a
score representing the likelihood of α belonging to the completion of D; predictions are then com-
puted by applying a threshold to the score. This is achieved by learning chain rules of the form
H(x1, xn)← B1(x0, x1) ∧ · · · ∧Bn(xn−1, xn), each associated with a confidence score.

AnyBURL uses path sampling techniques to produce a more general variant of chain rules in which
variables can be replaced by constants. Each rule is associated with a score. To compute a prediction
value for a dataset D and fact α, AnyBURL applies all rules to D once, combines the confidence
scores of all rules that derive α, and applies a threshold to the result.

Benchmarks and performance metrics. We used the 12 KG completion benchmarks by Teru
et al. (2020), which are based on FB15K-237 (Bordes et al., 2013), NELL-995 (Xiong et al., 2017),
and WN18RR (Dettmers et al., 2018). Each benchmark provides disjoint datasets T , V , and S for
training, validation, and testing, respectively; dataset statistics are shown in Table 1.

We evaluated our systems as follows. Each benchmark provides a method for randomly splitting
its testing dataset S into the incomplete dataset SI and the set SM of missing facts that should be
added to SI . We took (SI , α) for each fact α ∈ SM as a positive example for testing. Moreover, we
randomly sampled |SM | facts β1, . . . , βn that use the predicates of S but are not contained in SM ,
and we took each (SI , βi) as a negative example for testing. Sampling was necessary because the set
of possible facts not contained in S is very large; moreover, random sampling of negative examples

1Note that Cx cannot be empty in a rule of form A(x)← Cx since x is required to occur in the body.

6

FB15K-237 NELL-995 WN18RR

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Train. 4,245 9,739 17,986 27,203 4,687 8,219 16,393 7,546 5,410 15,262 25,901 7,940

Valid. 489 1,166 2,194 3,352 414 922 1,851 876 630 1,838 3,097 934

Test. 2,198 4,623 8,271 13,138 933 5,062 8,857 7,804 1,806 4,452 6,932 13,763

Table 1: Number of facts for each benchmark and phase (Training, Validation, and Testing)

Precision Recall Accuracy F1 Score AUC Training (s)
A D M A D M A D M A D M A D M D M

FB
15

K
-2

37 v1 100.0 82.2 98.5 25.6 40.5 32.7 62.9 65.9 66.1 41.1 54.2 49.1 62.0 68.6 65.7 15,540 9,192
v2 100.0 85.3 99.5 47.9 48.5 41.2 74.0 70.0 70.5 64.5 61.9 58.3 73.8 76.0 70.4 19,080 23,523
v3 100.0 85.6 99.0 43.6 45.2 34.6 71.2 68.8 67.1 60.7 59.2 51.2 71.7 73.3 67.4 37,776 45,104
v4 100.0 88.8 99.4 46.0 41.6 35.1 73.0 68.2 67.5 63.0 56.7 52.0 73.0 73.7 67.3 87,000 42,540

N
E

L
L

-9
95

v1 97.5 94.7 96.4 77.0 18.0 80.0 87.5 58.5 88.5 86.0 30.3 87.4 85.7 52.6 89.6 402 662
v2 100.0 80.7 100.0 53.1 41.2 48.3 76.6 65.7 74.2 69.4 54.5 65.2 76.3 74.6 74.2 6,354 3,575
v3 100.0 85.8 100.0 47.3 45.6 55.3 73.7 69.0 77.6 64.2 59.6 71.2 69.3 75.3 77.6 36,090 13,456
v4 100.0 80.3 99.5 44.3 26.8 57.2 72.2 60.1 78.5 61.4 40.2 72.6 71.6 67.1 78.5 3,990 16,839

W
N

18
R

R v1 99.1 97.9 100.0 58.5 73.4 62.8 79.0 85.9 81.4 73.6 83.4 77.1 78.8 92.5 80.1 312 292
v2 100.0 96.3 100.0 75.7 69.8 60.8 87.9 83.6 80.4 86.2 80.9 75.6 59.8 87.4 80.3 2,856 856
v3 99.7 91.3 100.0 48.4 59.7 28.3 74.1 77.0 64.1 65.2 72.2 44.1 60.6 85.2 64.0 9,984 2,423
v4 99.9 98.3 100.0 71.6 65.6 58.0 85.8 82.2 79.0 83.4 78.7 73.4 59.0 93.9 79.0 1,638 409

Table 2: Results for AnyBURL (A), DRUM (D), and our MGNN-based system (M), in percentages

for testing does not favour any particular way of constructing negative examples for training. The
number of positive and negative examples was the same to ensure a balance between precision and
recall. For each system, we classified the positive and negative testing examples and computed the
precision, recall, accuracy, and F1 score in the usual way, as well as the area under the precision-
recall curve (AUC) by considering different classification thresholds between 0.01 and 0.99.

Training. Our system is trained as a denoising autoencoder (Vincent et al., 2010). The training
dataset T was split with a 9:1 ratio into an incomplete dataset TI and a set TM of missing facts that
should be added to TI . We used (TI , α) for each fact α ∈ TM as a positive example for training, and
we obtained negative examples (TI , β) by sampling β analogously to how this was done for testing.
We trained MGNNs with two layers and the ReLU activation function; we used cross-entropy loss
with a logistic sigmoid on λL(v) as the output probability; finally, we used the Adam optimisation
algorithm with the standard learning rate (0.01) and weight decay (5 × 10−4), and a maximum of
50, 000 epochs. We implemented the procedure in Pytorch Geometric v1.5.0, and we ran it on a
laptop running macOS 10.15.7 with 8 GB of RAM and an Intel Core i5 2.30 GHz CPU.

We trained the baseline systems using their (publicly available) code bases and their default config-
urations. For each system and benchmark, we computed the accuracy on the validation dataset for a
range of thresholds; in our tests, we used the threshold that maximised accuracy.

Evaluation results. Table 2 shows the results of our evaluation. As one can see, our system was
very competitive, and it outperformed both baselines on most benchmarks based on NELL-995.
Table 2 also shows the training times for DRUM and our system, which are are comparable; we
cannot show any times for AnyBURL since this system does not train a model.

Similarly to AnyBURL, our system attained extremely high precision scores; however, recall values
were significantly lower, especially for the benchmarks based on FB15K. This is because the testing
dataset SM was obtained from S by random splitting so it contains many facts of the form R(a, b)
where constants a and b do not occur together in any fact in SI . By Theorem 10 from Section 3, our
transformation can never produce such facts in the output. To confirm our hypothesis that this is the
main reason for low recall scores, we additionally split the testing dataset S so that a fact R(a, b) is
placed into SM only if SI contains a fact of the form S(a, b) or S(b, a) for some predicate S. The
results for our system obtained in this way are shown in Table 3. As one can see, precision scores
remain high, whereas recall values increase significantly; thus, accuracy, F1 score, and AUC values
improve accordingly. Our system significantly outperformed all baselines in this setting; however,

7

Benchmark Precision Recall Accuracy F1 Score AUC

FB
15

K
-2

37 v1 95.5 74.0 85.3 83.4 89.5
v2 90.3 70.0 79.9 76.9 85.8
v3 88.8 72.6 81.7 79.9 86.9
v4 90.5 79.7 85.6 84.7 91.7

N
E

L
L

-9
95

v1 92.3 98.8 95.2 95.5 93.3
v2 83.5 57.3 73.0 68.0 79.4
v3 82.3 71.1 77.9 76.3 89.0
v4 78.5 62.4 72.7 69.5 75.8

W
N

18
R

R v1 82.1 100.0 89.1 90.2 95.1
v2 91.7 98.0 94.6 94.7 98.7
v3 88.2 98.9 92.9 93.3 89.0
v4 83.8 99.0 89.9 90.8 97.7

Table 3: Evaluation of the MGNN transformation with alternative splitting of the testing dataset

Benchmark # Rules with...
1 body atom 2 body atoms

FB
15

K
-2

37 v1 2,102 41,341
v2 3,370 27,900
v3 3,199 42,590
v4 8,464 82,003

N
E

L
L

-9
95

v1 149 215
v2 1,784 3,087
v3 2,308 5,085
v4 1,308 4,348

W
N

18
R

R v1 19 3
v2 22 35
v3 23 19
v4 20 54

Table 4: Rules of PM extracted

Benchmark Total Tree-like Captured Captured
AnyBURL AnyBURL by TM on SI

FB
15

K
-2

37 v1 2812 252 72 1371
v2 2823 404 102 1048
v3 4805 490 118 1749
v4 3574 584 134 1046

N
E

L
L

-9
95

v1 891 51 49 707
v2 1123 181 112 650
v3 1104 277 181 603
v4 841 187 108 606

W
N

18
R

R v1 397 15 11 30
v2 522 21 14 35
v3 424 21 21 48
v4 511 16 12 23

Table 5: Comparison of rule extraction with AnyBURL

this way of splitting the data gives our system an unfair advantage in a comparison, so we refrain
from including in Table 3 the results of the baselines on these alternative testing datasets.

Rule Extraction. For each benchmark, we computed using Algorithm 1 in Appendix B the subset
P ⊆ PM of all nonredundant rules with at most two body atoms. Table 4 shows the size of each
such P . Operator TP thus approximates TM—that is, TP(D) ⊆ TM(D) holds for each dataset D.
To determine the quality of the approximation, we computed the precision and recall of TP on the
test dataset of each benchmark; Table 6 in Appendix C shows the complete results. One can see that
precision is largely the same as for TM, while recall decreases slightly (1.6% on average). Thus,
‘short’ rules seem to account for almost all predictions on the benchmarks.

We analysed P manually and noticed that our transformation was able to learn numerous sound
rules such as symmetry (e.g., sibling(x, y)← sibling(y, x) on FB15K-237), inverse relations (e.g.,
capitalOfArea(x, y)← areaHasCapital(y, x) on FB15K-237), and relationship subsumption (e.g.,
athletePlayedForTeam(x, y)← athleteLedSportsTeam(x, y) on NELL-995).

In addition, for each benchmark, we checked how many of the rules produced by AnyBURL are
captured by our transformation;2 the results are shown in Table 5. For each benchmark, the first
column shows the total number of rules produced by AnyBURL; the second column indicates how
many of those are tree-like as per Definition 9; the third column shows how many rules from the
second column are captured by our transformation as per Definition 6; and the fourth column shows
the number of rules produced by AnyBURL that are captured by TM on the specific dataset—
that is, rules r that satisfy Tr(SI) ⊆ TM(SI). As one can see, a significant proportion of tree-like
rules produced by AnyBURL are captured by TM. Additionally, a significant proportion of (not
necessarily tree-shaped) rules produced by AnyBURL are captured by TM on each specific dataset,
which partially explains why many of the predictions by AnyBURL are also obtained by TM.

2We could not do this for DRUM since the version of the system available online cannot produce the rules.

8

5 RELATED WORK

GNN-based approaches to KG completion (Hamaguchi et al., 2017; Schlichtkrull et al., 2018; Xu
et al., 2020; Teru et al., 2020; Zhang et al., 2020) are becoming increasingly popular because they
are more generally applicable than earlier solutions based on graph embeddings (Rossi et al., 2021).
Typically, the predictions made by these techniques cannot be fully explained symbolically.

Rule mining techniques for KGs fall in two categories. Systems in the first category learn a model
on training data and then extract rules from it. Neural-LP (Yang et al., 2017) is an influential such
approach, and it has inspired DRUM (Sadeghian et al., 2019) and Neural-Num-LP (Wang et al.,
2020). Other approaches use reinforcement learning (Xiong et al., 2017; Das et al., 2018), dynamic
neural module networks (Rocktäschel & Riedel, 2017; Campero et al., 2018), or graph embeddings
(Omran et al., 2018; Zhang et al., 2019). However, the formal relationship between the learned
model and the extracted rules is unspecified in these approaches; hence, the model and the rules can
make different predictions. Systems in the second category, such as AnyBURL, use training data to
identify path patterns in graphs that are represented as rules (Galárraga et al., 2015; Meilicke et al.,
2019; Ahmadi et al., 2020; Gu et al., 2020); hence, they do not train an ML model.

Inductive Logic Programming (ILP) generates rules given a dataset and examples of positive and
negative inferences so that rule application yields all positive and no negative examples (Muggleton,
1991). ILP techniques cannot typically handle noisy examples (Muggleton, 1991; Cropper & Mug-
gleton, 2014; Si et al., 2019; Raghothaman et al., 2020). To improve resilience to noise, recent ILP
systems such as ∂ILP (Evans & Grefenstette, 2018) interpret the ILP task as a binary classification
problem and provide a differentiable implementation of deduction. These approaches compare to
our work analogously to rule mining techniques. Moreover, they focus on learning rules from small
datasets and generally struggle with large-scale KGs.

Neuro-symbolic computation aims to integrate logic with neural networks (d’Avila Garcez et al.,
2002). To this end, it was shown that the immediate consequence operator of certain classes of logic
programs can be approximated by recurrent Hölldobler et al. (1999), fibring Bader et al. (2005), and
feed-forward networks Bader et al. (2007); however, these techniques do not show how to extract a
program from a trained network. A method to extract rules captured by feed-forward networks was
proposed by d’Avila Garcez et al. (2001); however, in contrast to our work, the extracted programs
do not contain variables, and they are not guaranteed to be equivalent to the network. Recently, Dong
et al. (2019) presented a network architecture that simulates application of function-free first-order
rules to a dataset, but no algorithm for extracting rules from a trained model was provided.

Existing methods for explaining the predictions of a GNN focus on identifying parts of the graph in
the embedding space that are most relevant to a given prediction (Ying et al., 2019; Luo et al., 2020;
Lin et al., 2021). These techniques are largely independent from the specifics of the model used. In
contrast, we focus on a specific type of GNN that can provide a logical proof of each prediction.

GNNs can express graph property tests such as isomorphism, existence of cliques, bipartiteness, and
planarity (Xu et al., 2019; Morris et al., 2019; Garg et al., 2020). Moreover, first-order logic queries
expressible by GNNs correspond to the description logic ALCQ (Barceló et al., 2020). Our work
follows this line of research by relating GNNs and Datalog.

Similarly to our work, techniques for neural learning of monotonic functions on the ordering of real
numbers (You et al., 2017; Gupta et al., 2016; Wehenkel & Louppe, 2019) also rely on nonnegative
matrices and monotonic activation functions. We, however, focus on learning monotonic functions
on the ordering induced by the existence of homomorphisms between datasets.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented a GNN-based transformation of datasets that mimics a round of applica-
tion of Datalog rules. The predictions made by our transformation can be explained symbolically,
and we have shown our approach to be practically feasible. We see many avenues for future work.
On the theoretical side, we shall develop extensions that capture more complex rules (e.g., transi-
tivity), as well as nonmonotonic extensions such as negation or aggregation. On the practical side,
we shall establish links with the existing approaches to rule mining and ILP, thus allowing us to
compare the performance of all of these heterogeneous approaches in a unified way.

9

ACKNOWLEDGMENTS

This work was supported by the AIDA project (Alan Turing Institute, EP/N510129/1), the SIR-
IUS Centre for Scalable Data Access (Research Council of Norway, project number 237889),
Samsung Research UK, Siemens AG, and the EPSRC projects AnaLOG (EP/P025943/1), OASIS
(EP/S032347/1) and UK FIRES (EP/S019111/1).

REFERENCES

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
Reading, MA, 1995.

Charu C. Aggarwal. Recommender Systems—The Textbook. Springer, 2016.

Naser Ahmadi, Viet-Phi Huynh, Venkata Vamsikrishna Meduri, Stefano Ortona, and Paolo Papotti.
Mining Expressive Rules in Knowledge Graphs. ACM Journal of Data and Information Quality,
12(2):8:1–8:27, 2020.

Sebastian Bader, Artur S. d’Avila Garcez, and Pascal Hitzler. Computing First-Order Logic Pro-
grams by Fibring Artificial Neural Networks. In Proc. of the 18th Int. Florida Artificial Intelli-
gence Research Society Conf. (FLAIRS 2005), pp. 314–319, 2005.

Sebastian Bader, Pascal Hitzler, Steffen Hölldobler, and Andreas Witzel. A Fully Connectionist
Model Generator for Covered First-Order Logic Programs. In Proc. of the 20th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2007), pp. 666–671, 2007.

Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo Silva.
The Logical Expressiveness of Graph Neural Networks. In Proc. of the 8th Int. Conf. on Learning
Representations (ICLR 2020), 2020.

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-Durán, Jason Weston, and Oksana Yakhnenko.
Translating Embeddings for Modeling Multi-relational Data. In Proc. of the 27th Conf. on Neural
Information Processing Systems (NeurIPS 2013), pp. 2787–2795, 2013.

Andres Campero, Aldo Pareja, Tim Klinger, Josh Tenenbaum, and Sebastian Riedel. Logical Rule
Induction and Theory Learning Using Neural Theorem Proving. CoRR, abs/1809.02193, 2018.

Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you Always Wanted to Know About Datalog
(And Never Dared to Ask). IEEE Transactions on Knowledge and Data Engineering, 1(1):146–
166, 1989.

Andrew Cropper and Stephen H. Muggleton. Logical Minimisation of Meta-Rules Within Meta-
Interpretive Learning. In Proc. of the 24th Int. Conf. on Inductive Logic Programming (ILP
2014), pp. 62–75, 2014.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishna-
murthy, Alex Smola, and Andew McCallum. Go for a Walk and Arrive at the Answer: Reasoning
Over Paths in Knowledge Bases using Reinforcement Learning. In Proc. of the 6th Int. Conf. on
Learning Representations (ICLR 2018), 2018.

Artur S. d’Avila Garcez, Krysia Broda, and Dov M. Gabbay. Symbolic knowledge extraction from
trained neural networks: A sound approach. Artificial Intelligence, 125(1-2):155–207, 2001.

Artur S. d’Avila Garcez, Krysia Broda, and Dov M. Gabbay. Neural-symbolic Learning Systems—
Foundations and Applications. Springer-Verlag, London, 2002.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2D
Knowledge Graph Embeddings. In Proc. of the 32nd AAAI Conf. on Artificial Intelligence (AAAI
2018), pp. 1811–1818, 2018.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural Logic
Machines. In Proc. of the 7th Int. Conf. on Learning Representations (ICLR 2019), 2019.

10

Richard Evans and Edward Grefenstette. Learning Explanatory Rules from Noisy Data. Journal of
Artificial Intelligence Research, 61:1–64, 2018.

Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast Rule Mining in
Ontological Knowledge Bases with AMIE+. VLDB Journal, 24(6):707–730, 2015.

V. K. Garg, S. Jegelka, and T. S. Jaakkola. Generalization and Representational Limits of Graph
Neural Networks. In Proc. of the 37th Int. Conf. on Machine Learning (ICML 2020), pp. 3419–
3430, 2020.

Yulong Gu, Yu Guan, and Paolo Missier. Efficient Rule Learning with Template Saturation for
Knowledge Graph Completion. CoRR, abs/2003.06071, 2020.

Maya R. Gupta, Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin Robert Canini, Alexander
Mangylov, Wojtek Moczydlowski, and Alexander Van Esbroeck. Monotonic calibrated interpo-
lated look-up tables. Journal of Machine Learning Research, 17:109:1–109:47, 2016.

Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. Knowledge Transfer
for Out-of-Knowledge-Base Entities: A Graph Neural Network Approach. In Proc. of the 26th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2017), pp. 1802–1808, 2017.

William L. Hamilton, Rex Ying, and Jure Leskovec. Representation Learning on Graphs: Methods
and Applications. IEEE Data Engineering Bulletin, 40(3):52–74, 2017.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo, Claudio
Gutiérrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, Axel-
Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen,
Juan F. Sequeda, Steffen Staab, and Antoine Zimmermann. Knowledge Graphs. ACM Computing
Surveys, 54(4):71:1–71:37, 2021.

Steffen Hölldobler, Yvonne Kalinke, and Hans-Peter Störr. Approximating the Semantics of Logic
Programs by Recurrent Neural Networks. Applied Intelligence, 11(1):45–58, 1999.

Wanyu Lin, Hao Lan, and Baochun Li. Generative Causal Explanations for Graph Neural Networks.
In Proc. of the 38th Int. Conf. on Machine Learning (ICML 2021), volume 139, pp. 6666–6679,
2021.

Zhiyuan Liu and Jie Zhou. Introduction to Graph Neural Networks. Morgan and Claypool Publish-
ers, 2020.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized Explainer for Graph Neural Network. In Proc. of the 34th Conf. on Neural
Information Processing Systems (NeurIPS 2020), 2020.

Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and Heiner Stuckenschmidt.
Anytime Bottom-Up Rule Learning for Knowledge Graph Completion. In Proc. of the 28th Int.
Joint Conf. on Artificial Intelligence (IJCAI 2018), pp. 3137–3143, 2019.

C. Morris, M. Ritzert, M. Fey, W/ L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler
and Leman Go Neural: Higher-Order Graph Neural Networks. In Proc. of the 33rd AAAI Conf.
on Artificial Intelligence (AAAI 2019), pp. 4602–4609, 2019.

Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. Parallel Materialisation of
Datalog Programs in Centralised, Main-Memory RDF Systems. In Proc. of the 28th AAAI Conf.
on Artificial Intelligence (AAAI 2014), pp. 129–137, 2014.

Stephen Muggleton. Inductive Logic Programming. New Generation Computing, 8(4):295–318,
1991.

Pouya G. Omran, Kewen Wang, and Zhe Wang. Scalable Rule Learning via Learning Representa-
tion. In Proc. of the 27th Int. Joint Conf. on Artificial Intelligence (IJCAI 2018), pp. 2149–2155,
2018.

11

Mukund Raghothaman, Jonathan Mendelson, David Zhao, Mayur Naik, and Bernhard Scholz.
Provenance-Guided Synthesis of Datalog Programs. Proceedings of the ACM on Programming
Languages, 4(62):1–27, 2020.

Tim Rocktäschel and Sebastian Riedel. End-to-End Differentiable Proving. In Proc. of the 31st
Conf. on Neural Information Processing Systems (NeurIPS 2017), pp. 3788–3800, 2017.

Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo Merialdo.
Knowledge Graph Embedding for Link Prediction: A Comparative Analysis. ACM Transactions
on Knowledge Discovery from Data, 15(2):14:1–14:49, 2021.

Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. DRUM: End-To-
End Differentiable Rule Mining On Knowledge Graphs. In Proc. of the 33rd Conf. on Neural
Information Processing Systems (NeurIPS 2019), pp. 15321–15331, 2019.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The Graph Neural Network Model. IEEE Transactions on Neural Networks and Learning Sys-
tems, 20(1):61–80, 2009.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In Proc. of the 15th Euro-
pean Semantic Web Conf. (ESWC 2018), pp. 593–607, 2018.

Xujie Si, Mukund Raghothaman, Kihong Heo, and Mayur Naik. Synthesizing Datalog Programs
using Numerical Relaxation. In Proc. of the 28th Int. Joint Conf. on Artificial Intelligence (IJCAI
2019), pp. 6117–6124, 2019.

Komal K. Teru, Etienne Denis, and Will Hamilton. Inductive Relation Prediction by Subgraph
Reasoning. In Proc. of the 37th Int. Conf. on Machine Learning (ICML 2020), volume 119 of
Proceedings of Machine Learning Research, pp. 9448–9457, 2020.

Rianne van den Berg, Thomas N. Kipf, and Max Welling. Graph Convolutional Matrix Completion,
2017.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol, and
Léon Bottou. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep
Network with a Local Denoising Criterion. Journal of Machine Learning Research, 11(12), 2010.

Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi Guo.
RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems.
In Proc. of the 27th ACM Int. Conf. on Information and Knowledge Management (CIKM 2018),
pp. 417–426, 2018.

Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, and Minyi Guo. Knowledge graph convolutional
networks for recommender systems. In Proc. of the 30th Web Conf. (WWW 2019), pp. 3307–3313,
2019a.

Peifeng Wang, Jialong Han, Chenliang Li, and Rong Pan. Logic Attention Based Neighborhood
Aggregation for Inductive Knowledge Graph Embedding. In Proc. of the 33rd AAAI Conf. on
Artificial Intelligence (AAAI 2019), pp. 7152–7159, 2019b.

Po-Wei Wang, Daria Stepanova, Csaba Domokos, and J. Zico Kolter. Differentiable learning of
numerical rules in knowledge graphs. In Proc. of the 8th Int. Conf. on Learning Representations
(ICLR 2020), 2020.

Antoine Wehenkel and Gilles Louppe. Unconstrained Monotonic Neural Networks. CoRR,
abs/1908.05164, 2019.

Wenhan Xiong, Thien Hoang, and William Yang Wang. DeepPath: A Reinforcement Learning
Method for Knowledge Graph Reasoning. In Proc. of the 2017 Conf. on Empirical Methods in
Natural Language Processing (EMNLP 2017), pp. 564–573, 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In Proc. of the 7th Int. Conf. on Learning Representations (ICLR 2019), 2019.

12

Xiaoran Xu, Wei Feng, Yunsheng Jiang, Xiaohui Xie, Zhiqing Sun, and Zhi-Hong Deng. Dynami-
cally Pruned Message Passing Networks for Large-scale Knowledge Graph Reasoning. In Proc.
of the 8th Int. Conf. on Learning Representations (ICLR 2020), 2020.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable Learning of Logical Rules for Knowl-
edge Base Reasoning. In Proc. of the 31st Conf. on Neural Information Processing Systems
(NeurIPS 2017), pp. 2319–2328, 2017.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNNExplainer:
Generating Explanations for Graph Neural Networks. In Proc. of the 33rd Conf. on Neural Infor-
mation Processing Systems (NeurIPS 2019), pp. 9240–9251, 2019.

Seungil You, David Ding, Kevin Robert Canini, Jan Pfeifer, and Maya R. Gupta. Deep lattice
networks and partial monotonic functions. In Proc. of the 31st Conf. on Neural Information
Processing Systems (NeurIPS 2017), pp. 2981–2989, 2017.

Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma. Collaborative Knowl-
edge Base Embedding for Recommender Systems. In Proc. of the 22nd ACM SIGKDD Conf. on
Knowledge Discovery and Data Mining (KDD 2016), pp. 353–362, 2016.

Wen Zhang, Bibek Paudel, Liang Wang, Jiaoyan Chen, Hai Zhu, Wei Zhang, Abraham Bernstein,
and Huajun Chen. Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning.
In Proc. of the 30th Web Conf. (WWW 2019), pp. 2366–2377, 2019.

Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi, and Le Song. Efficient
Probabilistic Logic Reasoning with Graph Neural Networks. In Proc. of the 8th Int. Conf. on
Learning Representations (ICLR 2020), 2020.

13

A PROOFS

A.1 PROOF OF PROPOSITION 7

Proposition 7. Let T be an operator on datasets, let r be a constant-free rule of form (2), let µ be a
substitution that maps each variable of r to a distinct constant, and let Dr = {B1µ, . . . , Bmµ}. If
T is monotonic under homomorphisms and Hµ ∈ T (Dr), then T captures r.

Proof. Consider T , r, Dr, and µ that satisfy the prerequisites of the proposition. Moreover, consider
an arbitrary dataset D and an arbitrary fact α ∈ Tr(D); we show that α ∈ T (D). By the definition
of operator Tr, there exists a substitution ν such that {B1ν, . . . , Bmν} ⊆ D and Hν = α. Now
let h be the mapping of constants to constants such that h(xµ) = xν for each variable x occurring
in r. This definition of h is correct since µ maps each variable in r to a distinct constant. Also,
rule r is constant-free, so h(Dr) = h({B1µ, . . . , Bmµ}) = {B1ν, . . . , Bmν} ⊆ D holds; more-
over, each constant in Dr is obtained by instantiating a variable of r, so h is defined on all of
cn(Dr). In other words, h is a homomorphism from Dr to D. Since T is monotonic under homo-
morphisms by the assumption of the proposition, h is also a homomorphism from T (Dr) to T (D).
Moreover, Hµ ∈ T (Dr) holds by our assumption, so the definition of homomorphisms ensures
h(Hµ) ∈ T (D). Finally, atom H is constant-free, which together with the definition of h ensures
h(Hµ) = Hν. Thus, we have Hν ∈ T (D), as required.

A.2 PROOF OF THEOREM 8

We prove Theorem 8 in two steps. First, we first introduce in Definition A.1 a notion of homomor-
phisms on (Col, δ)-graphs that is analogous to the notion of homomorphisms on datasets. Then, in
Lemma A.2 we show that the transformation of (Col, δ)-graphs by an MGNN preserves such ho-
momorphisms. Theorem 8 finally combines this result with our encoding and decoding steps. To
formalise these results, we extend the order ≤ on real numbers to a partial order on vectors so that
a1 ≤ a2 holds whenever (a1)i ≤ (a2)i holds for each position i.

Definition A.1. A label-respecting homomorphism from a (Col, δ)-graph ⟨V, {Ec}c∈Col, λ⟩ to a
(Col, δ)-graph ⟨V ′, {E′

c}c∈Col, λ
′⟩ is a mapping h : V → V ′ such that λ(v) ≤ λ′(h(v)) for each

vertex v ∈ V , and, for each colour c ∈ Col and each edge in Ec between vertices v and w, vertices
h(v) and h(w) are connected by an edge in E′

c.

Lemma A.2. For each (Col, δ)-MGNNM and all (Col, δ)-graphs G and G′, each label-respecting
homomorphism h from G to G′ is also a label-respecting homomorphism fromM(G) toM(G′).

Proof. Consider a (Col, δ)-MGNNMwith components as specified in Definition 3, (Col, δ)-graphs
G = ⟨V, {Ec}c∈Col, λ⟩ and G′ = ⟨V ′, {E′

c}c∈Col, λ
′⟩, and a label-respecting homomorphism h from

G to G′. SinceM(G) andM(G′) have the same edges as G and G′, respectively, h satisfies the
first condition of a label-preserving homomorphism fromM(G) toM(G′). We show that h also
satisfies the second condition. To this end, let λ0, . . . , λL and λ′0, . . . , λ′L be the sequences of vertex
labelling functions used in the computation ofM(G) andM(G′), respectively. We next show by
induction on 0 ≤ ℓ ≤ L that λℓ(v) ≤ λ′ℓ(h(v)) holds for each vertex v ∈ V1; since classification
function cls is monotonically increasing, this will imply that cls(λL(v)) ≤ cls(λ′L(h(v))) holds for
each vertex v ∈ V1 as well, which proves our claim.

The base case for ℓ = 0 holds immediately since λ0 = λ and λ′0 = λ′. For the inductive step, we
assume that, for some ℓ − 1, we have λℓ−1(v) ≤ λ′ℓ−1(h(v)) for each v ∈ V1, and we show that
λℓ(v) ≤ λ′ℓ(h(v)) also holds for each v ∈ V1. To this end, consider an arbitrary i between 1 and the
dimension of bℓ. By Definition 3, the i-th components of λℓ(v) and λ′ℓ(h(v)) are equal to σ(x1)
and σ(x2), where x1 and x2 are as in (3) and (4) for (Aℓ)i and (Bℓ

c)i the i-th rows of Aℓ and Bℓ
c,

respectively:

x1 = (Aℓ)i λ
ℓ−1(v) +

∑
c∈Col

(Bℓ
c)i max{λℓ−1(w) | w ∈ Nc(v)} + (bℓ)i, (3)

x2 = (Aℓ)i λ
′ℓ−1(h(v)) +

∑
c∈Col

(Bℓ
c)i max{λ′ℓ−1(u) | u ∈ Nc(h(v))}+ (bℓ)i. (4)

14

By the inductive hypothesis, we have λℓ−1(v) ≤ λ′ℓ−1(h(v)); moreover, all numbers in Aℓ are
nonnegative, so we clearly have (Aℓ)iλ

ℓ−1(v) ≤ (Aℓ)iλ
′ℓ−1(h(v)). In addition, mapping h

satisfies the first property of label-preserving homomorphisms so, for each colour c ∈ Col and
each w ∈ Nc(v), we have h(w) ∈ Nc(h(v)); moreover, by the inductive hypothesis, we have
λℓ−1(w) ≤ λ′ℓ−1(h(w)). By combining these two observations, we have

max{λℓ−1(w) | w ∈ Nc(v)} ≤ max{λ′ℓ−1(u) | u ∈ Nc(h(v))},

which, together with the fact that all numbers in (Bℓ
c)i are nonnegative, implies

(Bℓ
c)i max{λℓ−1(w) | w ∈ Nc(v)} ≤ (Bℓ

c)i max{λ′ℓ−1(u) | u ∈ Nc(h(v))}.

Consequently, we have x1 ≤ x2. Finally, activation function σ is monotonically increasing, so
σ(x1) ≤ σ(x2) holds, which completes our proof of the inductive step.

Theorem 8. For each (Col, δ)-MGNNM, mapping TM is monotonic under homomorphisms.

Proof. Consider an arbitrary (Col, δ)-MGNN M, arbitrary datasets D and D′, and an arbitrary
homomorphism h from D to D′; thus, h(D) ⊆ D′ holds. Now let GD and GD′ be (Col, δ)-graphs
obtained by transforming D and D′ as in Definition 2. Moreover, let g be the mapping from the
vertices of G1 to the vertices of G2 defined as follows:

• g(va) = vh(a) for each vertex va of G1; and
• g(va,b) = vh(a),h(b) for each vertex va,b of G1.

It is straightforward to see that g is a label-respecting homomorphism from GD to GD′ . By
Lemma A.2, mapping g is also a label-respecting homomorphism fromM(GD) toM(GD′). This,
however, implies that h is also a homomorphism from T (D) to T (D′), as required.

A.3 PROOF OF THEOREM 10

Theorem 10. For each (Col, δ)-MGNNM and each dataset D, we have TM(D) = TPM(D).

Proof. Consider arbitraryM, PM, and D as stated in the claim. Let L be the number of layers of
M, and let k be the dimension ofM. Since operator TPM captures each rule in PM by definition,
we clearly have TPM(D) ⊆ TM(D). For the converse, consider an arbitrary fact α ∈ TM(D). We
next construct a rule r for which we prove r ∈ PM and α ∈ Tr(D).

Let GD be the (Col, δ)-graph obtained from D by the transformation in Definition 2, and let VD be
the set of vertices of GD. For each ℓ ∈ {0, . . . , L}, let vℓ be the vector labelling each v ∈ VD in
the computation ofM(GD). Moreover, let µ be a substitution that maps each variable to a distinct
constant. We next construct an atom H , a conjunction C, a substitution ν from the variables in C to
cn(D), a set U of fresh vertices (i.e., vertices not occurring in GD) of the form ud and ud,e for d and
e constants from the image of µ, and mappings ξ : U → VD and Mc : U → 2VD for each c ∈ Col.
We also assign each vertex in U to a level between 0 and L, and we identify a single vertex from U
as the root vertex. In the rest of this proof, we use letters a and b for the constants in D, letters d and
e for the constants in the image of µ, possibly indexed letters v, w, and s for the vertices in VD, and
possibly indexed letters u and t for the vertices in U . Our construction is by induction from level L
down to level 1, and we prove in parallel the following properties:

P1. for each vertex of the form ud ∈ U , for x the variable such that µ(x) = d, and for a = ν(x),
we have ξ(ud) = va;

P2. for each vertex of the form ud,e ∈ U , for x and y variables such that µ(x) = d and
µ(y) = e, and for a = ν(x) and b = ν(y), we have ξ(ud,e) = va,b;

P3. conjunction C satisfies ν(C) ⊆ D; and

P4. if H is of the form A(x), conjunction C is (3k, L)-tree-like for x; otherwise, C is of the
form Cx ∧Bx,y ∧ Cy , where Cx and Cy are (3k, L)-tree-like conjunctions for x and y,
respectively, and Bx,y is a nonempty conjunction of atoms of the form S(x, y) or S(y, x).

15

We initialise C as the empty conjunction, and we set ν, ξ, and each Mc for c ∈ Col as the empty
mappings. For the induction base, we consider the form of the atom α ∈ TM(D) and proceed as
follows; the base case also identifies the root vertex. Properties P1–P4 clearly hold after these steps.

• If α is of the form A(a), then VD contains vertex va. We introduce a fresh variable x, and
we let d be the constant such that d = µ(x). We define ν(x) = a; we define H = A(x);
we introduce vertex ud of level L; we define ξ(ud) = va; and we make ud the root vertex.
Finally, we extend C with atom B(x) for each B(a) ∈ D. Note that C can be empty if
D does not contain a fact such as B(a). However, va ∈ VD implies that constant a must
occur in D in a fact of the form S(a, b) or S(b, a). Thus, Nc(va) ̸= ∅ for c ∈ {c1, c2, c4}.
Since L ≥ 1, vertex ud is processed in the inductive step below, which will extend C with
an atom that contains variable x.

• If α is of the form R(a, b), then VD contains vertices va,b and vb,a; due to the latter, D
contains at least one fact of the form S(a, b) or S(b, a), and so VD contains vertices va and
vb. We introduce fresh variables x and y, and we let d and e be constants such that d = µ(x)
and e = µ(y). We define ν(x) = a and ν(y) = b; we define H = R(x, y); we introduce
vertices ud, ue, ud,e, and ue,d of level L; we define ξ(ud) = va, ξ(ue) = vb, ξ(ud,e) = va,b,
and ξ(ue,d) = vb,a; and we make ud,e the root vertex. Moreover, we extend C with an atom
S(x, y) for each S(a, b) ∈ D, an atom S(y, x) for each S(b, a) ∈ D, an atom B(x) for each
B(a) ∈ D, and an atom B(y) for each B(b) ∈ D; note that C cannot be empty after this
step. Finally, we define Mc(u) = Nc(ξ(u)) for each u ∈ {ud,e, ue,d} and colour c ∈ Col;
note that Mc1(u), Mc2(u), and Mc3(u) are all singletons, and Mc4(u) = ∅.

Next, we consider each level ℓ with 1 ≤ ℓ ≤ L that has already been processed, and we con-
sider each vertex of the form ud of level ℓ. Let x be the variable such that µ(x) = d, and let
a = ν(x); property P1 ensures ξ(ud) = va. For each colour c ∈ {c1, c2, c4}, we choose a smallest
set Mc(ud) ⊆ Nc(va) such that, for each ℓ′ ∈ {0, . . . , ℓ− 1} and each i ∈ {1, . . . , k}, there exists
a vertex w ∈Mc(ud) satisfying

(wℓ′)i = max{(sℓ
′
)i | s ∈ Nc(va)}. (5)

Note that set Mc(ud) may not be unique, but any set satisfying (5) can be selected. There are at
most k distinct values of (wℓ′)i for each ℓ′, so set Mc(ud) contains at most kℓ elements. We also
define Mc3(ud) = ∅. We now consider each vertex v ∈Mc1(ud) ∪Mc2(ud) ∪Mc4(ud). By Def-
inition 2, such v is of the form va,b, vb,a, or vb for b ∈ cn(D), depending on the set from which v
is drawn. Set VD clearly also contains vertices vb,a and vb if v ∈Mc1(ud), and vertices va,b and vb
if v ∈Mc2(ud). Moreover, if v ∈Mc4(ud), then VD clearly contains vb, and Mc4(ud) ⊆ Nc4(va)
ensures that D contains a fact of the form S(a, b) or S(b, a); thus, VD also contains va,b and vb,a. We
introduce a fresh variable y, and we let e be the constant such that e = µ(y). We define ν(y) = b; we
introduce vertices ue, ud,e, and ue,d of level ℓ− 1; and we define ξ(ue) = vb, ξ(ud,e) = va,b, and
ξ(ue,d) = vb,a. Moreover, we extend C with an atom S(x, y) for each S(a, b) ∈ D, an atom S(y, x)
for each S(b, a) ∈ D, and an atom B(y) for each B(b) ∈ D. Finally, we define Mc(u) = Nc(ξ(u))
for each u ∈ {ud,e, ue,d} and colour c ∈ Col; note that Mc1(u), Mc2(u), and Mc3(u) are all sin-
gletons, and Mc4(u) = ∅. Since each Mc(ud) with c ∈ {c1, c2, c4} contains at most kℓ vertices and
we consider three colours, this step introduces at most 3kℓ fresh variables. Moreover, note that each
fresh variable y occurs in C in an atom of the form S(x, y) or S(y, x). Finally, it should be clear
that P1–P4 hold after level ℓ is processed.

This completes our inductive construction. At this point, either H = A(x) and C is a nonempty
(3k, L)-tree-like conjunction for x, or H = R(x, y) and C = Cx ∧Bx,y ∧ Cy where Cx and Cy

are (3k, L)-tree-like conjunctions for x and y, respectively, and Bx,y is a nonempty conjunc-
tion of atoms of the form S(x, y) or S(y, x). Thus, rule H ← C is of the form A(x)← Cx or
R(x, y)← Cx ∧Bx,y ∧ Cy . To complete the proof, we next show that this rule is captured by
TM. Then, Definition 9 ensures H ← C ∈ PM; together with Hν = α and ν(C) ⊆ D, we have
α ∈ TPM(D), which proves our claim.

We use Proposition 7 to show that H ← C is captured by TM. To this end, let DC = {αµ | α ∈ C},
and let GDC

be the (Col, δ)-graph constructed using vertices in U obtained by applying the encoding
from Definition 2 to dataset DC . Finally, let uℓ be the labelling associated with each vertex u ∈ U
in the computation ofM(GDC

). The construction of C clearly ensures the following two properties
for each colour c ∈ Col and each vertex u ∈ U :

16

Algorithm 1 Rule extraction algorithm
Input: m : natural number (max. num. of atoms in the bodies of extracted rules)

M : an MGNN
1: head to bodies := ∅
2: for i ≤ m do
3: for pred list ∈ COMBINATIONS(i) do
4: for body ∈ BODIES(pred list) do
5: if TREELIKE(body) then
6: input graph := ENCODE(body)
7: output graph :=M(input graph)
8: heads := DECODE(output graph)
9: for head ∈ heads do

10: new head, new body := NORMALISE(head, body)
11: not implied := true
12: for body′ ∈ head to bodies[new head] do
13: if IMPLIES(body′, new body) then not implied := false

14: if not implied then ADD(head to bodies[new head], new body)

15: extracted rules := ∅
16: for ⟨head, bodies⟩ ∈ head to bodies do
17: for body ∈ bodies do
18: ADD(extracted rules, head← body)

return extracted rules

R1. for each vertex v ∈Mc(u), there exists a vertex t ∈ Nc(u) such that ξ(t) = v; and

R2. for each vertex t ∈ Nc(u) in graph GDC
, we have ξ(t) ∈ Nc(ξ(u)).

We now show by the induction on ℓ that, for each 0 ≤ ℓ ≤ L and each vertex u ∈ U whose level is at
least ℓ, we have uℓ = vℓ for v = ξ(u). For the base case ℓ = 0, we have the following possibilities.

• Assume u is of the form ud. Let x be the variable such that d = µ(x), and let a = ν(x).
Property P1 ensures ξ(ud) = va, and the construction of C ensures B(x) ∈ C if and only
if B(a) ∈ D; thus, u0

d = v0
a holds.

• Assume u is of the form ud,e. Let x and y be variables such that µ(x) = d and µ(y) = e,
and let a = ν(x) and b = ν(y). Property P2 ensures ξ(ud,e) = va,b, and the construction
of C ensures S(x, y) ∈ C if and only if S(a, b) ∈ D; thus, u0

d,e = v0
a,b holds.

For the induction step, assume that the property holds for some ℓ− 1, and consider an arbitrary ver-
tex u ∈ U whose level is at least ℓ. Let v = ξ(u). The induction assumption ensures uℓ−1 = vℓ−1.
Also, for each colour c ∈ Col, our construction ensures that each vertex t ∈ Nc(u) is of level at least
ℓ− 1, so the induction assumption ensures tℓ−1 = wℓ−1 for w = ξ(t). Finally, property R2 ensures
that each tℓ−1 used to compute uℓ is considered when computing vℓ, and property R1 ensures that
the maximal values of tℓ−1 are also present in the computation of uℓ. Thus, uℓ = vℓ holds.

To complete the proof, let u be the root vertex, and let v = ξ(u). The above property ensures
uL = vL, and so cls(uL) = cls(vL) as well. Thus, we have µ(H) ∈ TM(DC), so Proposition 7
allows us to conclude that rule H ← C is captured by TM.

B OPTIMISED RULE EXTRACTION ALGORITHM

We now describe the rule extraction algorithm that we used to obtain the results shown in Table 4 of
Section 4. Our algorithm takes as input a positive integer m and an MGNNM of dimension k and
with L layers, and it produces a set of (3k, L)-tree-like rules with at most m body atoms that are
captured by TM. The algorithm ensures that no rule that is logically implied by any other individual
rule is included in the output. The algorithm’s pseudocode is shown in Algorithm 1, and it uses
several auxiliary functions that will be introduced shortly.

17

The algorithm initialises in line 1 an empty mapping head to bodies that will be used to store
pairs of the form ⟨S(x, y), {C1, C2, . . . , Cn}⟩ such that, for each Ci, rule S(x, y)← Ci is (3k, L)-
tree-like, has at most m body atoms, and is captured by TM. In each iteration i of the main loop
(lines 2–14), the algorithm produces rules with exactly i body atoms. To this end, the algorithm calls
COMBINATIONS(i) in line 3 to produce all ordered combinations (with repetition) of predicates of
length i. For each list of predicates pred list, the algorithm calls BODIES(pred list) in line 4 to
enumerate every possibly body over the predicates of pred list. For example, if pred list is [A,R],
where A is unary and R is binary, then BODIES(pred list) returns{

A(x) ∧R(x, x), A(x) ∧R(x, y), A(x) ∧R(y, x), A(x) ∧R(y, y)
}
.

Next, the algorithm filters out bodies that are not (3k, L)-tree-like (line 5), calls ENCODE(body)
to transform body into a (Col, δ)-graph by replacing each variable by a distinct constant and then
applying the encoding from Definition 2 (line 6), applies M to the resulting graph (line 7), and
finally calls DECODE(output graph) to reverse the encoding and obtain the set heads of candi-
date head atoms (line 8). Thus, for each head ∈ heads, operator TM captures head← body. For
each candidate head ∈ heads, the algorithm calls NORMALISE(head, body) to rewrite the can-
didate rule head← body into new head← new body to ensure that the head of each extracted
rule always uses variables x and y in this order (the body is rewritten accordingly). The algo-
rithm then checks whether rule new head← new body is implied by any rule previously stored
in head to bodies (lines 12–13); if not, it records the new rule by adding conjunction new body
to the set head to bodies(new head) (line 14). Finally, the algorithm transforms the mapping
head to bodies of heads to bodies into standard rules (lines 16–18).

Algorithm 1 satisfies the following property, which ensures its correctness.
Proposition B.1. Let P be the result of applying Algorithm 1 to an integer m ∈ N and a (Col, δ)-
MGNNM of dimension k and L layers.

1. Each rule r ∈ P is (3k, L)-tree-like with at most m body atoms, and it is captured by TM.

2. For each (3k, L)-tree-like rule r with at most m body atoms that is captured by TM, there
exists a rule in P that logically implies r.

Proof. The first claim is a direct consequence of Proposition 7 and the fact that Algorithm 1 only
considers (3k, L)-tree-like rules with at most m atoms in the body. For the second claim, if r is a
(3k, L)-tree-like rule with at most m body atoms, then lines 2–8 of Algorithm 1 check whether this
rule is captured by TM; if that is the case, then lines 9–14 ensure that r is either in the output of the
algorithm, or the algorithm’s output contains a rule that logically implies r.

C FULL RESULTS FOR THE RULE EXTRACTION EXPERIMENT

As we explained in Section 4, for each benchmark, we used Algorithm 1 with m = 2 to extract
the subset P ⊆ PM of all nonredundant rules with at most two body atoms, and then we applied
P to the testing dataset SI and computed the usual classification metrics. Complete results of this
experiment are shown in Table 6.

18

Benchmark Precision Recall Accuracy F1 Score

FB
15

K
-2

37 v1 98.5 32.7 66.1 49.1
v2 100.0 38.3 69.1 55.4
v3 100.0 33.1 66.5 49.7
v4 99.6 32.7 66.3 49.3

N
E

L
L

-9
95

v1 96.4 80.0 88.5 87.4
v2 100.0 45.2 72.6 62.2
v3 100.0 51.1 75.5 67.6
v4 99.7 53.9 76.9 70.0

W
N

18
R

R v1 100.0 61.7 80.9 76.3
v2 100.0 60.3 80.2 75.2
v3 100.0 27.9 64.0 43.7
v4 100.0 57.6 78.8 73.1

Table 6: Classification metrics for the programs extracted using Algorithm 1 with m = 2

19

	Introduction
	An MGNN-Based Transformation of Knowledge Graphs
	Extracting An Equivalent Set of Datalog Rules
	Evaluation
	Related Work
	Conclusion and Future Work
	Proofs
	Proof of Proposition 7
	Proof of Theorem 8
	Proof of Theorem 10

	Optimised Rule Extraction Algorithm
	Full Results for the Rule Extraction Experiment

