
User-driven Ontology Evolution Management

A. Maedche1, B. Motik1, L. Stojanovic1, N. Stojanovic2

1 FZI - Research Center for Information Technology at the University of Karlsruhe,
Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany

{maedche, Boris.Motik, Ljiljana.Stojanovic}@fzi.de

2 Institute AIFB, University of Karlsruhe,
76128 Karlsruhe, Germany

nst@aifb.uni-karlsruhe.de

Abstract. With rising importance of knowledge interchange, many industrial
and academic applications have adopted ontologies as their conceptual
backbone. However, industrial and academic environments are very dynamic,
thus inducing changes to application requirements. To fulfill these changes,
often the underlying ontology must be evolved as well. As ontologies grow in
size, the complexity of change management increases, thus requiring a well-
structured ontology evolution process. In this paper we identify a possible six-
phase evolution process and focus on providing the user with capabilities to
control and customize it. We introduce the concept of an evolution strategy
encapsulating policy for evolution with respect to user’s requirements.

1 Introduction

With rising importance of knowledge interchange, many industrial and academic
applications have adopted ontologies as their conceptual backbone. However,
business dynamics and changes in the operating environment often give rise to
continuous changes to application requirements, that may be fulfilled only by
changing the underlying ontologies [19]. This is especially true for WWW and
Semantic Web applications [2] that are based on heterogeneous and highly distributed
information resources and therefore need efficient mechanisms to cope with changes
in the environment. For example, MEDLINE, U.S. National Library of Medicine's
(NLM) premier bibliographic database containing over 11 million references to
articles from 4,600 worldwide journals in life sciences, is in irregular operation in
November and December as NLM makes the transition to a new year of Medical
Subject Headings1 (MeSH). Therefore, the methods for efficient copying with
changes in an ontology and dependent artifacts, i.e. ontology evolution, has become
an essential requirement for an ontology-based application [30].

Ontology evolution is the timely adaptation of an ontology to changed business
requirements, to trends in ontology instances and patterns of usage of the ontology-

1 MeSH, somewhere called medical ontology, is a controlled vocabulary thesaurus used to

index the articles [http://www.nlm.nih.gov/pubs/factsheets/medline.html]

based applications, as well as the consistent management/propagation of these
changes to dependent elements. A modification in one part of the ontology may
generate subtle inconsistencies in other parts of the same ontology, in the ontology-
based instances as well as in depending ontologies and applications [13]. This variety
of causes and consequences of the ontology changes makes ontology evolution a very
complex operation that should be considered as both, an organizational and a
technical process [25]. It requires a careful analysis of the types of the ontology
changes [24, 27] that can trigger evolution as well as the environment in which the
whole ontology evolution process is realized [28].

Although evolution over time is an essential requirement for useful ontologies [6],
methods and tools to support this complex task completely are missing. This level of
ontology management is necessary not only for the initial development [9] and
maintenance of ontologies, but is essential during deployment, when scalability,
availability, reliability and performance are absolutely critical [20].

In this paper we analyze ontology evolution requirements and present a novel,
process-oriented approach that fulfils them. We specifically focus on the problem that
ontology has to remain consistent under complex changes during evolution. As for
some changes there may be several different consistent states of the ontology, we
introduce the notion of evolution strategy, allowing the user to customize the process
according to her needs. In that way user has the possibility to transfer ontology in the
desired consistent state. Moreover, user can be suggested to make some additional
changes in the ontology that may yield ontology better suited for user’s needs and we
discuss the possibility of continuous ontology improvement by semi-automatic
discovery of such changes. Finally, we substantiate our discussion on ontology
evolution by presenting its current implementation within the KAON2 framework.

The paper is organized as follows: Section 2 identifies the requirements for the
ontology evolution and derives an ontology evolution process that fulfils them.
Section 3 explores the complexity of the semantics of change problem and introduces
different evolution strategies that allow user to control and to customize the evolution
process. Section 4 contains a short description how ontology evolution has been
realized within KAON framework. After a discussion of related work, concluding
remarks summarize the importance of the presented approach and outline some future
work.

2 Ontology Evolution Requirements

Based on our experience in building ontologies and using them in several applications
(e.g. [16], [28]), we have formulated the following set of design requirements for
ontology evolution:

1. It has to (i) enable resolving the given ontology changes [7, 18] and (ii) ensure
the consistency of the underlying ontology and all dependent artifacts [27];

2. It should be supervised allowing the user to manage changes more easily [31];
3. It should offer advice to user for continual ontology refinement [8, 22].

2 http://kaon.semanticweb.org

The first requirement is the essential one for any ontology evolution approach –

after applying a change to a consistent ontology, the ontology should remain in
consistent state. The second requirement complements the first one by presenting the
user with information needed to control changes and make appropriate decisions. The
last one states that potential changes improving the ontology may be discovered semi-
automatically from ontology-based data and through analysis of user’s behavior.

More careful analysis of these requirements (e.g. the changes have to be captured,
analyzed, applied and validated by the user) implies the necessity to consider the
ontology evolution problem as a composition of several subproblems realized in a
determined sequence. This sequence of activities, resolving ontology changes in a
composite way, is called the ontology evolution process. Consequently, the system,
i.e. software, which copes with the ontology evolution problem has to be process-
based, following currently the most popular programming paradigm in the business
software development.

In the remainder of this section, we analyze the above-mentioned requirements and
derive an ontology evolution process that fulfils them.

2.1 Resolving Changes While Keeping Consistency

Consistency requirement states that after applying and resolving changes in an
ontology already in a consistent state3, the ontology, its instances and dependent
ontologies/applications must remain in the consistent state. This requirement
encompasses two crucial aspects of the ontology evolution: enabling resolution of
changes and maintenance the consistency of the system, and may be realized through
four phases shown in Figure 1.

Change Representation
To resolve changes, they have to be identified and represented in a suitable format
[15, 23]. Elementary changes in the ontology shown in Table 1 are derived from our
ontology definition given in [16] specifying fine-grained changes that can be
performed in the course of ontology evolution. However, this granularity of ontology
evolution changes is not always appropriate. Often, intent of the changes may be
expressed on a higher level. For example, the user may need to generate a common
superconcept sc of two concepts c1 and c2. She may bring the ontology into desired
state through successive application of a list of elementary changes, such as
‘Add_concept sc’, ‘Delete_SubConceptOf relation from c1 to its current parent’,
‘Add_SubConceptOf relation from c1 to sc’, ‘Delete_SubConceptOf relation from c2
to its current parent’ and ‘Add_SubConceptOf relation from c2 to sc’. However, this
has significant drawbacks:

3 A consistent state of an ontology is the state in which all constraints, which are defined on the

structure and content of an ontology are satisfied. An example of the structural constraints is
the need to define the domain and the range for each relation in the ontology. Content
constraints are related to the axioms in the ontology

• There is an impedance mismatch between the intent of the request and the
way the intent is achieved. It is required to create a superconcept of two
concepts, but one needs to translate this operation into five separate steps,
making the whole process error prone.

• A lot of unnecessary changes may be performed if each change is applied
alone. For example, removing sub-concept-of relation from c1 may introduce
changes to property instantiations that should be reversed when assign sub-
concept-of relation from c1 to sc.

Figure 1. Four Elementary Phases of Ontology Evolution Process

Table 1. Elementary changes in the ontology and associated metadata

Change Elementary change
Add Add_Concept

Add_SubConceptOf Add_Property
Add_SubPropertyOf
Add_Domain
Add_Axiom
Add_InstanceOf
Add_PropertyInstanceOf

Delete Delete_Concept
Delete_SubConceptOf
Delete_Property
Delete_SubPropertyOf
Delete_Domain
Delete_Axiom
Delete_InstanceOf
Delete_PropertyInstanceOf

Modify Set_Property_Range

To avoid these drawbacks, it should be possible to express changes on a more

coarse level, with the intent of change directly visible. This leads to composite
changes that represent a group of elementary changes applied together. A set of such
changes is shown in the table 2.

Above mentioned changes are represented as instances of an evolution ontology –
a special ontology which explicitly represents semantic information about ontology

entities, changes in the ontology and mechanisms to discover and resolve changes.
Detailed discussion of this ontology is out of scope of this paper and is given in [15].

Table 2. Composite changes in the ontology

Composite change Description
Merge concepts Replace several concepts with one and aggregate all

instances.
Extract subconcepts Split a concept into several subconcepts and distribute

properties among them.
Extract superconcept Create a common superconcept for a set of unrelated

concepts and transfer common properties to it.
Extract related concept Extract related information into a new concept and

relate it to the original concept.
Shallow concept copy Duplicate a concept with all its properties.
Deep concept copy Recursively apply shallow copy to all subconcepts of a

concept.
Pull up properties Move properties from a subconcept to a superconcept.
Pull down properties Move properties from a superconcept to a subconcept.
Move properties Move properties from one concept to another concept.
Shallow property copy Duplicate a property with same domain and range.
Deep property copy Recursively apply shallow copy to all subproperties of

a property.
Move Instance Moves an instance from one concept to another.

Semantics of Change
Application of an elementary change in the ontology can induce inconsistencies in
other parts of the ontology. We distinguish syntax and semantic inconsistency. Syntax
inconsistency arises when undefined entities at the ontology or instance level are used
or ontology model constraints are invalidated. Semantic inconsistency arises when
meaning of an ontology entity is changed due to changes performed in the ontology
[32].

For example, removal of a concept, which is the only element of domain set for
some property results in syntax inconsistency [11]. Resolving that problem is treated
as a request for a new change in the ontology, which can induce new problems that
cause new changes and so on. Therefore, one change can potentially trigger other
changes and so on. If an ontology is large, it may be difficult to fully comprehend the
extent and meaning of each induced change. The task of ‘semantics of change’ phase
is to enable resolution of induced changes in a systematic manner, ensuring
consistency of the whole ontology. To help in better understanding of effects of each
change, this phase should contribute maximum transparency providing detailed
insight into each change being performed. Some mechanisms used in this phase are
described in the section 3.

In the course of evolution, actual meaning of concepts often shifts to better
represent the structure of the real world. While some shifts of concept meaning are
performed explicitly, a meaning of a concept can sometimes shift implicitly through
changes in other parts of the ontology. For example, consider an ontology describing
a relationship between jaguars and persons represented in Figure 2.

Figure 2. Concept Properties Define Its Meaning

In this ontology the meaning of the concept Jaguar is clear through the existence
of the property eats that links Jaguars and Persons – it is obvious that concept Jaguar
stands for an animal from the feline family. For any reason one may delete the
concept Person, which may result in the removal of the property eats as well. After
the change is performed, the semantics of concept Jaguar is not clear any more – is it
a Jaguar cat or a Jaguar car? These kinds of ambiguities can be eliminated in several
ways. The simplest solution is by introducing a superconcept Animal before the
change is performed. However, if the ontology is large, such issues may be easily
overlooked because it is very hard to keep the complete ontology structure in mind at
once.

This problem can be avoided using a richer description [15] determining semantic
role of ontology entities. By attaching meta-information about e.g. essential properties
of a concept [10, 32], deeper knowledge about concept meaning is provided.
Moreover, semantic ambiguities of ontology entities may be resolved through
additional documentation, such as who is the author of an entity, what is the purpose
of introducing an entity etc. Contrary to meta-information determining the semantic
role of ontology entities, “documentation” meta-information cannot be used for
formal consistency checking.

Change Implementation
In order to avoid performing undesired changes, before applying a change to the
ontology, a list of all implications to the ontology should be generated and presented
to the user [31]. He should be able to comprehend the list and approve or cancel the
change. When the changes are approved, they are performed by successively
resolving changes from the list. If changes are cancelled, the ontology should remain
intact. This is more elaborated in the description of implementation (section 4).

Change Propagation
When the ontology is modified, ontology instances need to be changed to preserve
consistency with the ontology [11]. This can be performed in three steps. If the
instances are on the Web, as for example in the case of MEDLINE, they are collected
in the knowledge base [16]. In the second step, modification of instances is performed
according to the changes in the ontology [26]. In the last step “out-of-date” instances
on the Web are replaced with corresponding “up-to-date” instances.

Ontologies often reuse and extend other ontologies. Therefore, an ontology update
might also corrupt ontologies that depend on the modified ontology and consequently,
all artifacts that are based on these ontologies. This problem can be solved by
recursive applying the ontology evolution process on these ontologies. However,
besides of the syntax inconsistency, the semantic inconsistency can also arise when,

for example, the dependent ontology already contains a concept that is added in the
original ontology.

Moreover, when an ontology is changed, applications based on the changed
ontology may not work correctly. An ontology evolution approach has to recognize
which change in the ontology can affect the functionality of dependent applications
[12, 24] and to react correspondingly. More information about possible problems in
this phase and ways for solving them are given in [27].

2.2 User’s Management of Changes

As mentioned above, a change in one part of the ontology can have far reaching
consequences for other parts of the ontology and dependent artifacts. The semantics
of changes phase was introduced to the evolution process to help the ontology
engineers comprehend the effect of a change. Moreover, a mechanism is required for
users to manage changes resulting not in an arbitrary consistent state, but in a
consistent state fulfilling some constraints (e.g. minimal number of changes). This can
be done by using evolution strategies, elaborated in the section 3.

This can help in reducing the number of accidental ontology changes and can even
guide the ontology refinement process. Still, there are numerous circumstances where
it may be desired to reverse the effects of ontology evolution, to name just a few:

• The ontology engineer may fail to understand the actual effect of the change and
approve the change that shouldn’t be performed.

• It may be desired to change the ontology for experimental purposes.
• When working on an ontology collaboratively, different ontology engineers may

have different ideas about how the ontology should be changed.
In order to enable recovering from these situations, we introduce the validation

phase in the ontology evolution process (see Figure 3). It enables analysis of
performed changes and undoing them at user’s request. It is important to note that
reversibility means undoing all effects of some change, which may not be the same as
simply requesting an inverse change manually. For example, if a concept is deleted
from a concept hierarchy, its subconcepts will need to be either deleted as well,
attached to the root concept, or attached to the parent of the deleted concept.
Reversing such a change is not equal to recreating the deleted concept – one needs,
also, to revert the concept hierarchy into original state.

The problem of reversibility is typically solved by creating evolution logs. An
evolution log tracks information about each change in the system, allowing to
reconstruct the sequence of changes leading to current state of the ontology. With
each change evolution logs additionally associate following information [15]:

• Meta-information such as change description [21], cost of change, time of
change, cause of the change etc.,

• Identity of the change author.

2.3 Continual Improvement

In ontology evolution we may distinguish two types of changes: top-down and
bottom-up, whose generation is part of the “capturing phase” in the ontology
evolution process. Top-down changes are explicit changes, driven, for example, by
top-manager who want to adapt the system to new requirements and can be easily
realized by an ontology evolution system. However, some changes in the domain are
implicit, reflected in the behavior of the system and can be discovered only through
analysis of its behavior. For example, if a customer group doesn’t contain members
for a longer period of time, it may mean that it can be removed. This second type of
changes mined from the set of ontology instances are called bottom-up changes.

Another source of bottom-up changes is the structure of the ontology itself [22].
Indeed, the previously described “validation phase” results in an ontology which may
be in a consistent state, but contains some redundant entities or can be better
structured with respect to the domain. For example, multiple users may be working on
different parts of an ontology without enough communication. They may be deleting
subconcepts of a common concepts at different points in time to fulfill their
immediate needs. As a result, it may happen that only one subconcept is left. Since
classification with only one subclass beats the original purpose of classification, we
consider such ontology to have a suboptimal structure. To aid users in detecting such
situations, we investigated the possibilities of applying the self-adaptive systems
principles and proactively make suggestions for ontology refinements – changes to the
ontology with the goal of improving ontology structure, making the ontology easier to
understand and cheaper to modify. As known to authors, none of existing systems for
ontology development and maintenance offer support for (semi-)automatic ontology
improvement.

Based on heuristics and/or data mining algorithms [14], suggestions for changes
that refine ontology structure may be induced by analysis of data in following
sources:

• ontology structure itself
− If all subconcepts have the same property, the property may be moved to the

parent concept.
− A concept with a single subconcept should be merged with its subconcept.
− If there are more than a dozen subconcepts for a concept, then an additional

layer in the concept hierarchy may be necessary.
− Concept without properties is a candidate for deletion.
− If a direct parent of a concept can be achieved though a non-direct path, then

the direct link should be deleted.
• ontology instances

− A concept with no instances may probably be deleted.
− If no instance of a concept C use any of the properties defined for C, but only

properties inherited from the parent concept, we can make an assumption that
C is not necessary.

− A concept with many instances is a candidate for being split into subconcepts
and its instances distributed among newly generated concepts.

• information describing patterns of ontology usage

− By tracking when concept has last been retrieved by a query, it may be
possible to discover that some concepts are out of date and should be deleted
or updated.

2.4 Ontology Evolution Process

The overall ontology evolution process derived from our discussion of ontology
evolution requirements is presented in Figure 3. It has a cyclic structure, since
validation of realized changes may (automatically) induce new changes in order to
obtain model consistency or to satisfy users’ expectations. The first requirement from
section 2 for ontology consistency results in phases 2 to 5, the second requirement for
user supervision results in phase 6 and the third requirement for continual ontology
refinement results in phase 1.

Figure 3. Ontology Evolution Process

3 Evolution Strategy

As mentioned, the role of the “semantics of change” phase in ontology evolution
process if to figure out which elementary changes need to be performed for one
change request, e.g. deletion of a concept. If this were left to the user, evolution
process would be too error-prone and time consuming – it is unrealistic to expect that
humans will be able to comprehend entire ontology and interdependencies in it [31].
This requirement is especially hard to fulfill if the rationale behind domain
conceptualization is ambiguous or if the user does not have the experience. There are
many ways to achieve consistency after a change request. For example, when a
concept from the middle of the hierarchy is being deleted, all subconcepts may either

be deleted or reconnected to other concepts. If subconcepts are preserved, then
properties of the deleted concept may be propagated, its instances distributed, etc..
Thus, for each change in the ontology, it is possible to generate different sets of
additional changes, leading to different final consistent states. Most of existing
systems for the ontology development [25] provide only one possibility for realizing a
change and this is usually the simplest one. For example, the deletion of a concept
always causes the deletion of all its subconcepts.

Thus, to resolve a change, the evolution process needs to determine answers at
many resolution points – branch points during change resolution where taking a
different path will produce different results. Each possible answer at each resolution
point is an elementary evolution strategy. Common policy consisting of a set of
elementary evolution strategies, each giving an answer for one resolution point, is an
evolution strategy and is used to customize the ontology evolution process. Thus, an
evolution strategy unambiguously defines the way how elementary changes will be
resolved [3]. Typically a particular evolution strategy is chosen by the user at the start
of the ontology evolution process.

To derive the set of resolution points within an evolution strategy, we started by
considering types of changes that may be applied to an ontology. Next we analyzed
what consequences can each change have on the ontology with respect to its
definition [16] and dependencies between ontology entities. We isolated changes that
can provoke syntax inconsistencies and, consequently, cannot be applied. For
example, “Add_SubConceptOf” change is not allowed if it causes an inheritance
hierarchy cycles. Further, we identified that some changes can generate the need for
subsequent changes, some of them offering different ways of resolution. For each
particular resolution way we defined an elementary evolution strategy. For each
elementary change we defined an algorithm containing resolution points encountered
during change resolution (c.f. Figure 5). Each resolution point represents a branching
point, and each elementary evolution strategy represents one possible branch. The
choice of exactly one elementary evolution strategy for each possible resolution point
forms an evolution strategy.

3.1 Evolution Strategy Example

Let us explain our approach through an example of deleting a concept C embedded in
a complex concept hierarchy. In order to keep the ontology in a consistent state,
following resolution points may be observed:

• what to do with orphaned subconcepts of C;
• what to do with all properties whose domain is C;
• what to do with properties that subconcepts of C inherit from C’s parents;
• what to do with the properties whose range is C;
• what to do with instances of C;
• what to do with instances of other concepts having relations with instances of C.

For each of these resolution points, there is a set of elementary evolution strategies

defining possible options. E.g., in case of the first resolution point, as illustrated in
Figure 4, orphaned subconcepts of C may be:

• connected to the parent concept(s) of C;
• connected to the root concept of the hierarchy;
• deleted as well.

Figure 4. Resolution Points for Deleting Concept C: a) Original ontology; b) Connection to the

parent concept; c) Connection to the root concept; d) Deletion of the subconcepts

Similarly we may elicit remaining elementary strategies for all mentioned
resolution points. The part of the algorithm for deletion of a concept with
corresponding resolution points and available elementary evolution strategies is given
in Figure 5.

Figure 5. Part of algorithm for Concept Deletion, represented in the pseudo-code

 3.2 Advanced Evolution Strategies

In real business the choice of how a change (e.g. deletion of a concept) should be
resolved may be based on characteristics of the final state of the ontology (e.g. make

depth of a hierarchy as small as possible) or on characteristics of the process for
resolving changes itself (e.g. incur minimal cost of changes).

In order to enable such customization of the ontology evolution process, the user
may choose an advanced evolution strategy. It represents a mechanism to prioritieze
and arbitrate among different evolution strategies available in a particular situation,
relieving the user of choosing elementary evolution strategies individually.

Advanced evolution strategy automatically combines available elementary
evolution strategies to satisfy user’s criteria. We have identified the following set of
advanced evolution strategies:

• structure-driven strategy – resolves changes according to criteria based on the
structure of the resulting ontology, e.g. the number of levels in concept
hierarchy. This strategy follows the requirements of the real-word ontology-
based applications, e.g. MEDLINE. MEDLINE requires a weekly update,
usually involving only supplementary concept records. However, concept
hierarchy is updated annually. This kind of changes is performed by keeping the
hierarchy minimal, because it alleviates, according to the authors of MEDLINE,
the understanding of the conceptualization.

• process-driven strategy – resolves changes according to process of changes
itself, for example optimized per cost4 of the process or per a number of steps
involved5. Determining what has to be change and how to change it, requires a
deep understanding of how the ontology entities interact one with another. We
cannot expect that the user spends time explaining the reasons for all performed
changes and their ordering, but this opportunity can be very useful in some
cases. One strategy enabling that the user can easily follow and understand
sequences of the changes is to perform the minimal number of the updates.

• instance-driven strategy – resolves changes to achieve an explicitly given state
of the instances. This relieves the user of the necessity to newly add or
redistribute the instances, which can be time consuming and error prone task.

• frequency-driven strategy – applies the most used or last recently used
evolution strategy.

Due to lack of space, we present only an example for the instance-driven advanced

strategy, because of its relevance in business situations. Figure 6 depicts a typical
university organizational structure where there is no distinction between students
helping in projects and regular researchers. The university may decide to introduce a
separate concept for working students. Instances W1 and W2 should, accordingly,
cease to be instances of the Researcher concept and become instances of the
WorkingStudent concept. The number of changes to do that may be significant,
especially if W1 and W2 have many properties instantiated. In this case an instance-
driven evolution strategy may be used. By specifying only the final state of instances,
the evolution strategy will derive the following set of changes needed to achieve the
goal, expressing them as composite changes when appropriate:

4 Cost may be defined by the number of instances that must be updated.
5 The application of process-driven evolution with the minimal number of the changes for the

ontology shown in the figure 4a) results in solution (d). Since instances are missing from the
figure, a cost-based evolution strategy cannot be chosen.

• Add_Concept(WorkingStudent)
• Add_SubConceptOf(WorkingStudent, Student)
• Move_Instance(W1, WorkingStudent)
• Move_Instance(W2, WorkingStudent)

An efficient instance-driven evolution strategy should analyze the difference

between the initial and final state of instances and try to achieve final state in the most
efficient manner. The process to achieve that is based on logical inference [5] and its
description is out of scope for this paper.

Figure 6. Instance-driven evolution strategy

4 Ontology Evolution within the KAON Framework

The Karlsruhe Ontology and Semantic Web framework (KAON) builds on available
resources and provides tools for the engineering, discovery, management, and
presentation of ontologies and metadata. It’s primary goal is to establish a platform
needed to apply Semantic Web technologies [2] to a wide range of applications, e.g.
E-commerce and B2B applications, intranet-based knowledge management, Web
portals, E-Learning, etc. In this section we describe how has ontology evolution been
realized within KAON.

The simplified conceptual architecture of KAON emphasizing points of interest
related to ontology evolution is presented in Figure 7. Roughly, KAON components
can be divided into three layers:

• Applications and Services Layer realizes UI applications and provides interfaces
to non-human agents. Among many applications realized, OntoMat-SOEP
provides ontology and metadata engineering capabilities. It realizes many
requirements related to ontology evolution and is described next in more detail.

• KAON API as part of the Middleware Layer is the focal point of KAON
architecture since it realizes the model6 of ontology based applications. Client
can access the API through a sublayer providing different types of interfaces
(local, remote or Web service interface). The bulk of requirements related to
ontology evolution is realized in this layer and is described in the next section.

6 The term model refers to the model component of the Model-View-Controller architectural

pattern.

For RDF applications, an implementation of KAON API based on a modified
version of RDF API7 may be used. To persist RDF models, KAON RDF Server
may be used.

• Data and Remote Services Layer provides data storage facilities, currently
offering file- and J2EE-based storage. This layer also realizes concurrency and
transactional atomicity of updates. Further elaboration of this layer is out of
scope for this paper.

 Other User Interface

Applications
and Services

Applications
& Services

KAON Access Interface

KAON-API

Middleware

Data and
Remote Services

OntoMat-SOEP Ontology and
Metadata

Engineering Tool

RDF API

KAON RDF Server

Evolution
Strategy

Reversibility
Services

Evolution
Logging

Persistence, Transactions, Security

Figure 7. Conceptual KAON Architecture with Respect to Ontology Evolution

4.1 Ontology Evolution in KAON API

Before the ontology evolution process is started, a particular evolution strategy must
be configured. Changes to the ontology are performed by assembling elementary and
composite changes into a sequence. However, before the ontology is actually updated,
this sequence is passed to the preset evolution strategy to perform steps described in
section 3 on “semantics of change” phase of the ontology evolution process, resulting
in an extended sequence of changes.

To ensure atomicity of updates, either all or no change from the extended sequence
of changes should succeed, so validity of change sequence is checked before any
updates are actually performed. Transparency is realized by presenting the extended
sequence of changed to the user for approval. To further aid the understanding of why
some changes are performed, the evolution strategy may group related elementary
actions and provide explanations why particular change is necessary, thus greatly
increasing the chances that all side-effects of changes will be properly understood.

After changes are reviewed by the user, they are passed to the ontology and
executed, performing steps from the “change implementation” phase.

7 http://www-db.stanford.edu/~melnik/rdf/api.html

It is obvious that for each elementary change there is exactly one inverse change
that, when applied, reverses the effect of the original change. With such infrastructure
in place, it is not hard to realize the reversibility requirement: to reverse the effect of
some extended sequence of changes, a new sequence of inverse changes in reverse
order needs to be created and applied.

As mentioned in section 2, evolution log needs to associate additional information
with each change. Effectively, the log is treated as an instance of a special evolution
ontology [15] consisting of concepts for each change, making it is easy to add meta-
information to log entries. Structure of the log may be easily customized by editing
the evolution ontology. Further, available services for persisting ontology data may be
used to persist the log, removing the need to devise yet another type of persistent
storage.

Evolution logging and reversibility services are provided as special services of the
KAON API, allowing different applications reuse these powerful features. E.g.,
actions performed in one application may be easily reverted in another.

4.2 Ontology Evolution in KAON Applications

As mentioned in the previous section, ontology evolution is primarily realized
through the KAON API. However, UI applications provide human-computer
interaction for evolution, whose primary role is to present change information in an
orderly way, allowing easy spotting of potential problems. Also, any application that
changes the ontology must realize the reversibility requirement in its user interface as
well.

Currently evolution requirements are realized within the OntoMat-SOEP ontology
and metadata engineering tool, as follows:

• As shown in left part of Figure 8, users may set up the desired evolution
strategy.

• Before changes are performed, their impact is reported to the user. Presentation
of changes follows the progressive disclosure principle: related changes are
grouped together and organized in a tree-like form. The user initially sees only
the general description of changes. If he is interested in details, he can expand
the tree and view complete information. He may cancel the operation before it is
actually performed. This is depicted in the right part of Figure 8 and further
elaborated in an example.

• An unlimited undo-redo function is provided. Although is this function by large
the responsibility of the KAON API, the user interface is responsible for
restoring the visual context after an undo operation. For example, if a concept in
hierarchy was selected and then deleted, when operation is undone, the same
concept must be selected. If the hierarchy was scrolled in the meanwhile, the
original scroll position must be restored. These features are necessary for the
user to quickly recognize a familiar state and proceed with her work. If not done
properly, although an action is undone, the user may not realize this and may
mistakenly request another undo operation.

A sample screenshot of setting up an evolution strategy is given in Figure 8. We
see an evolution strategy consisting of four resolution points. For each resolution
point the user must choose appropriate elementary evolution strategy.

A sample screenshot of OntoMat-SOEP is given in the right part of Figure 8. In
this scenario, user requested to remove Student concept. The evolution strategy
decided to push property studiesAt of that concept to children. By opening a node in
the tree, the user can see what changes will actually be performed. Hence, the change
information can be viewed at different levels of granularity. Similarly, the strategy
decided that children of the concept will be attached to parent of the deleted concept.
For each child a detailed list elementary changes needed to achieve that is presented.

Figure 8. Ontology Evolution in KAON framework: Evolution Strategy Set-up and Ontology
Evolution User Interface in OntoMat-SOEP

5 Related work

In the last decade there has been very active research in the area of ontology. The
majority of research in this area is focused on construction issues. However, coping
with the changes and providing maintenance facilities require an additional approach.
We cannot say that there exist commonly agreed methodologies and guidelines for
ontology evolution. Thus, there are very few approaches investigating the problems of
changing in the ontologies.

Heflin [11] points out that ontologies on the Web will need to evolve and he
provides a new formal definition of ontologies for the use in dynamic, distributed
environments. He presents SHOE, a web-based knowledge representation language
that supports multiple versions of ontologies. Although good design may prevent
many ontological errors, some errors will not be realized until the ontology is put to
use. However, this problem as well as the problem of the change propagation are not
treated in the work of Heflin. Moreover, the user cannot customize the way of
performing the change and the problem of the identification of the change is not
analysed.

In contrast to the ontology evolution that allows access to all data (to ontology
itself and to dependent artefacts) only through the newest ontology, ontology
versioning allows access to data through different version of the ontology. Thus,
ontology evolution can be treated as a part of the ontology versioning. Ontology
versioning is analysed in [13]. Authors provide an overview of causes and
consequences of the changes in the ontology. However, they do not provide a detailed
analysis of the effect of specific changes on the interpretation of data which is a
constituent part of our work.

More philosophical arguments concerning the need for ontology revision are made
by Foo [8]. Based on this research, our approach for the handling of ontology
evolution in dynamic environments relies heavily on the usage of meta-primitives,
also represented in the form of ontologies.

Oliver et al. [23] discuss the kinds of changes that occur in medical ontologies and
propose the CONCORDIA concept model to cope with these changes. The main
aspects of CONCORDIA are that all concepts have a permanent unique identifier.
Concepts are given a retired status instead of being physically deleted. Moreover
special links are maintained to track the retired parents and children of each concept.
However, this approach is insufficient for managing a change on the Semantic Web
especially while there are no possibilities to control the whole process.

In [19] the author presents the guiding principles laid down in the fields of
conceptual graphs, description logics, general frame systems, object-oriented
modelling, knowledge acquisition, etc. for building consistent and principled
ontologies in order to alleviate their creation, the usage and the maintenance in the
distributed environments. Authors analyse the requirements for the tool environments
that enforces consistency Many of these operational guidelines are included (and
implemented) in our process-based solution

[32] presents an extended ontology knowledge model that represents semantic
information about concepts explicitly. However, this enriched semantic is not used for
supporting evolution problems, but to describe what is known by agents in a multi-
agent system.

Other research communities also have influences on our work. The problem of
schema evolution and schema versioning support has been extensively studied in
relational and database papers. However, there are several differences that steam from
different knowledge models and different usage paradigms.

Knowledge model for ontologies is richer than the relational model that is the
underlying model of databases. For example, the integral part of ontologies are
axioms that have to be formally represented [29]. Most ontology languages provide,
at least, support for the standard axioms like inverse or transitive rules. Thus, the

number of the possible changes in the ontology is larger and the consequences of each
change are more complex. Moreover, in contract to the ontology, database schemas
do not provide explicit semantics that can be used for the consistency checking.

The usage of ontologies is often more complex than that of database schemas. The
ontology itself can be part of the queries in ontology-based application [28]. Thus, the
change propagation phase of the ontology evolution process resolving the effect of the
changes in the ontology to the dependent application, has to consider not only the way
applications access instances but also the queries. Other problem is how to find an
application that uses the ontology that is changed. An application can be semi-
automatic maintained or informed about changes only if exists metadata describing
which ontology and/or ontological entities that application uses. Thus, annotation of
applications is necessary [27].

Furthermore, ontology-based instances can be on the Web. This makes the change
propagation phase more complex. Some modifications of the instances can be done
automatically [26], but for the instances that are “write-protected” the notification has
to be sent to the author of the annotation in order to inform her/him about the changes
and to suggest how to correct the instance. This problem does not exist in the database
evolution, because database modification is a centralized process.

An ontology may depend of other ontologies. For example, ontology merging
creates a new ontology from two or more existing ontologies with overlapping parts
or ontology mapping relates similar (according to some metric) concepts and relations
from different sources to each other. The changes of one export ontology causes the
modification of all correspondences related to this information source. Thus, ontology
evolution has to take into account these dependencies between ontologies.

Various systems have proposed solutions to the problems of semantics of change
and change propagation for schema evolution in relational and object-oriented
database systems. To support semantics of change, the most common approach is to
define a number of invariants that must be satisfied by the schema, along with a set of
rules and procedures that maintain the invariants with each schema change [1]. To
support change propagation problem, one solution is to explicitly coerce objects to
coincide with the new definition of the schema. [24] provides an excellent survey on
the main issues concerned.

Research in ontology evolution can also benefit from the many years of research in
knowledge-based system evolution [3, 18]. However, if we compare ontologies and
the model for the knowledge-based systems, we will find important differences as
well. Anyway, the research in the script-based knowledge evolution [31] that
identifies typical sequences of changes to knowledge base and represents them in a
form of scripts, is similar to our approach. In contrast to the knowledge-scripts that
allow the tool to understand the consequences of each change, we go step further by
allowing the user to control how to complete the overall modification and by
suggesting the changes that could improve the ontology.

6 Conclusion

In this paper we presented a novel approach for copying with the ontology changes
due to dynamic of the (business) environment. The approach is based on a six-phase
evolution process, which systematically analyses the causes and the consequences of
the changes and ensures the consistency of the ontology and depending artifacts after
resolving these changes. In order to enable the user to obtain the ontology most
suitable to her needs, we specifically focus on the possibilities to customize the
ontology evolution process. We identify two means to do that: (i) to enable the user to
set up one of predefined or advanced evolution strategies that are used for resolving
the changes and (ii) to suggest the user to generate some change, implied by the
analysis of the structure of the ontology, ontology instances or user behaviors in the
underlying ontology-based applications. In order to prove the reality of our approach,
we made the implementation within the KAON framework.

The benefits of the proposed approach are manifold: (i) the user can customize the
ontology evolution process determining the evolution strategies or the final state of
the ontology according to the given task, (iii) the ontology evolution process enables
continuous ontology improvement by semi-automatic discovery of changes, (iii) the
evolution strategies and the validation phase help the user in better understanding of
effects of each change providing detailed insight into each change being performed, to
name but a few

Although our implementation is in an early phase and therefore a real-world
evaluation is missing, we made some experiments with one of our ontology-based
applications, particular AIFB portal [28]. The analyses of duration of resolving some
complex changes ”per-hand”, shows the real necessity for the methodological support
for the ontology evolution, even for the very experienced ontology engineers.
Moreover, the detailed analysis of the possibility to use our approach in the case of
highly-distributed Web applications, such MEDLINE, shows many benefits of the
presented approach for the large-scale ontologies and motivates our further research
in that direction.

References

1. J. Banerjee, W. Kim, H.J. Kim, H. Korth, Semantics and implementation of schema
evolution in object-oriented databases, In proceedings of the Annual Conference on
Management of Data, pp- 211-322, ACM SIGMOD, May 1997.

2. T. Berners-Lee, XML 2000 – Semantic Web talk, 2000,
http//www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html, 2000.

3. P. Breche, M. Wörner, How to remove a class in an ODBS, In ADBS’95, 2nd
International Conference on Application Database, Santa Clara, California, 1995

4. A. Bultman, J. Kuipers and F. van Harmelen, Maintenance of KBS’s by domain
experts: The Holy Grail in Practice, Lecture Notes in AI, IEA/AIE’00, 2000.

5. S. Decker, M. Erdmann, D. Fensel and R. Studer, Ontobroker: Ontology based
access to distributed and semi-structured information, Meersman, R. et al. (Eds.),
Database Semantics: Semantic Issues in Multimedia Systems, pp. 351–369. Kluwer
Academic Publisher, 1999.

6. D. Fensel, Ontologies: Dynamics Networks of Meaning, In Proceedings of the the 1st
Semantic web working symposium, Stanford, CA, USA, July 30th-August 1st, 2001.

7. E. Franconi, F. Grandi, and F. Mandreoli, A semantic approach for schema evolution
and versioning in object-oriented databases, Proc. CL2000, 2000.

8. N. Foo, Ontology Revision, In Conceptual Structures; Third International
Conference, 16-31. Berlin: Springer-Verlag, 1995.

9. A. Gomez-Perez, Ontological engineering: A state of the art, Expert Update, 2(3):33-
43, Autumn 1999.

10. N. Guarino and C. Welty, Identity, unity and individuality: Towards a formal toolkit
for ontological analysis, In W. Horn, editor, Proceedings of the 14th European
Conference on Artificial Intelligence (ECAI), Amsterdam, IOS Press, 2000.

11. J. Heflin, Towards the Semantic Web: Knowledge Representation in a Dynamic,
Distributed Environment, Ph.D. Thesis, University of Maryland, College Park. 2001.

12. W. Hürsch, Maintaining consistency and behaviour of object-oriented systems during
evolution, In Proceedings of the ACM Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA '97), ACM SIGPLAN Notices,
Vol.32 No. 10, pp1-21, 1997.

13. M. Klein and D. Fensel, Ontology versioning for the Semantic Web, Proc.
International Semantic Web Working Symposium (SWWS), USA, July 30 - August
1, 2001.

14. A. Maedche and S. Staab, Ontology Learning for the Semantic Web, IEEE Intelligent
Systems, 16(2), March/April 2001. Special Issue on Semantic Web, 2001.

15. A. Maedche, L. Stojanovic, R. Studer, R. Volz: Managing Multiple Ontologies and
Ontology Evolution in Ontologging, Proceedings of the Conference on Intelligent
Information Processing, World Computer Congress 2002, Montreal, Canada, 2002
2002/09/01

16. A. Maedche, Ontology Learning for Semantic Web, Kluwer Academic Publishers,
2002

17. A. Maedche, M. Ehrig, S. Handschuh, L. Stojanovic, R. Volz, Ontology-Focused
Crawling on Documents and Relational Metadata, Proceedings of the Eleventh
International World Wide Web Conference WWW-2002, (Poster), Hawaii, 2002

18. T. Menzis, Knowledge maintenance: The state of the art. The Knowledge
Engineering Review, 10(2), 1998.

19. D. McGuinness, Conceptual Modeling for Distributed Ontology Environments, In the
Proceedings of the ICCS 2000, August 14-18, Darmstadt, Germany , 2000.

20. D. McGuinness, R. Fikes, J. Rice, and S. Wilder, An environment for merging and
testing large ontologies, In Proceedings of KR-2000. principle of Knowledge
Representation and Reasoning. Morgan-Kaufman, 2000.

21. F. Nickols, Change Management 101: A Primer,
http://home.att.net/~nickols/change.htm

22. N. F. Noy, D. McGuinness, Ontology Development 101: A Guide to creating your
first Ontology, Stanford Knowledge Systems Laboratory Technical Report KSL-01-
05 and Stanford Medical Informatics Technical Report SMI-2001-0880, March 2001

23. D. E. Oliver, Y. Shahar, M. A. Musen, and E. H. Shortliffe, Representation of change
in controlled medical terminologies, Artificial Intelligence in Medicine,15(1):53–76,
1999.

24. J.F. Roddick, A Survey of Schema Versioning Issues for Database Systems,
Information and Software Technology, 37(7):383-393, 1996.

25. S. Staab, H.-P. Schnurr, R. Studer and Y. Sure, Knowledge Processes and
Ontologies, IEEE Intelligent Systems. 16(1), Jan./Feb. 2001. Special Issue on
Knowledge Management, 2001.

26. L. Stojanovic, N. Stojanovic and R. Volz, Migrating data-intensive Web Sites into the
Semantic Web, To appear: ACM Symposium on Applied Computing SAC, 2002.

27. L. Stojanovic, N. Stojanovic, S. Handschuh, Evolution of the Metadata in the
Ontology-based Knowledge Management Systems, In Proceedings of Experience
Management 2002, Berlin, 2002.

28. N. Stojanovic, A. Maedche, S. Staab, R. Studer and Y. Sure, SEAL — A Framework
for Developing SEmantic PortALs, ACM K-CAP 2001. October, Vancouver, 2001.

29. N. Stojanovic, L. Stojanovic, Searching for the Knowledge in the Semantic Web, The
15th International FLAIRS Conference, Pensacola, Florida, May 14-16, 2002.

30. N. Stojanovic, L. Stojanovic: Evolution in the ontology-based knowledge
management system, To appear: Proceedings of the Xth European Conference on
Information Systems - ECIS 2002, Gdañsk, Poland 2002/06/06

31. M. Tallis, Y. Gil, Designing Scripts to Guide Users in Modifying Knowledge-based
Systems, AAAI/IAAI 1999: 242-249

32. V.A.M. Tamma and T.J.M Bench-Capon, A conceptual model to facilitate
knowledge sharing in multi-agent systems, In Proceedings of the OAS 2001.
Montreal, pp. 69-76, 2001.

