
Bridging the Gap Between OWL and Relational Databases
∗

Boris Motik
University of Manchester

Manchester, UK

Ian Horrocks
University of Manchester

Manchester, UK

Ulrike Sattler
University of Manchester

Manchester, UK

ABSTRACT

Schema statements in OWL are interpreted quite differently
from analogous statements in relational databases. If these
statements are meant to be interpreted as integrity con-
straints (ICs), OWL’s interpretation may seem confusing
and/or inappropriate. Therefore, we propose an extension
of OWL with ICs that captures the intuition behind ICs in
relational databases. We discuss the algorithms for checking
IC satisfaction for different types of knowledge bases, and
show that, if the constraints are satisfied, we can disregard
them while answering a broad range of positive queries.

Categories and Subject Descriptors

I.2.4 [Knowledge Representation Formalisms and

Methods]: OWL

General Terms

Theory, Languages

Keywords

Semantic Web, Relational Databases, OWL

1. INTRODUCTION
The Web Ontology Language (OWL) is the W3C standard

language for modeling ontologies in the Semantic Web. The
logical underpinning for OWL is provided by description
logics (DLs) [3]. OWL can be seen as an expressive schema
language; however, its axioms have a different meaning from
analogous statements in relational databases. When OWL
axioms are meant to be interpreted as integrity constraints
(ICs), the formal semantics of OWL may seem confusing
and/or inappropriate.

To understand the nature of the problem, consider an ap-
plication for managing tax returns in which each person is
required to have a social security number. In a relational
database, this would be captured by an inclusion depen-
dency stating that a social security number must exist for
each person. During database updates, such a dependency
is interpreted as a check: whenever a person is added to the
database, a check is performed whether that person’s social

∗This work was funded by the EPSRC project REOL.

Copyright is held by the International World Wide Web Conference Com
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 9781595936547/07/0005.

security number has been specified as well; if not, the update
is rejected. An analogous dependency can be expressed in
OWL by means of an existential restriction, but will result
in a quite different behavior: adding a person without a so-
cial security number to the ontology does not raise an error,
but only leads to the inference that the person in question
has some (unknown) social security number.

In Section 2, we study this problem by comparing OWL
with relational databases w.r.t. their schema languages, rea-
soning problems, and constraint checking. Our analysis sug-
gests that OWL ontologies can be understood as incomplete
databases [15]. Many databases encountered in practice are,
however, complete. To obtain a flexible schema language, we
would like to explicitly control the degree of incompleteness.
Integrity constraints (ICs)—formulae that check whether all
necessary information has been provided explicitly—seem to
be the proper mechanism for this purpose.

Extending logic-based KR formalisms with database-like
ICs has already been considered in the literature. Reiter ob-
served that ICs are not objective sentences about the world,
but are epistemic sentences about the database state [23].
Based on this idea, constraints have been added to DLs using
nonmonotonic modal [11] or rule extensions [24, 20]. Such
ICs, however, just constrain the shape of an ABox; they are
not a part of the core conceptual model and do not affect
schema reasoning at all. In contrast, ICs have a dual role
in relational databases: they describe the possible worlds as
well as the states of the databases [1], so they are used both
in data reasoning (e.g., for checking database integrity) and
in schema reasoning (e.g., for computing query subsump-
tion). The semantic relationship between these two roles of
ICs is clear, which simplifies their usage.

In Section 3, we introduce extended DL knowledge bases,
which allow a modeler to designate a subset of the TBox ax-
ioms as ICs. For schema (TBox) reasoning, these axioms are
treated as usual. For data (ABox) reasoning, these axioms
do not derive new information; instead, they are interpreted
as checks. Thus, the relationship between the interpreta-
tions of ICs in TBox and ABox reasoning is clear, and is
analogous to relational databases. In fact, in Section 4, we
show that, if an ABox satisfies the ICs, we can disregard the
ICs while answering positive ABox queries. In Section 5, we
discuss the typical usage patterns of our approach. Finally,
in Section 6, we discuss algorithms for checking IC satisfac-
tion. Due to space limitations, we present only the intuition
behind our algorithms; for details, please refer to [19].

Our notion of ICs solves common problems of OWL-based
applications: through constraint satisfaction checking, these

applications can ensure that all required data has explicitly
been specified in an ontology, and thus detect potential er-
rors in the data. Furthermore, we expect significant per-
formance improvements in query answering, especially in
applications that would use ICs extensively.

We assume the reader to be familiar with the basics of
OWL and DLs; please refer to [3] for an introduction. It is
well-known that the OWL DL variant of OWL corresponds
to the DL SHOIN (D). Because of that, in this paper we
refer to OWL and DLs interchangeably.

2. OWL VS. RELATIONAL DATABASES
An obvious distinction between OWL/DLs and relational

databases is that the former use open-world, whereas the
latter use closed-word semantics. In this section, we argue
that such a classification is too superficial; rather, we should
see both semantics as complementary to each other.

2.1 Schema Language
The schema part of a DL knowledge base is typically called

a TBox (terminology box), and is a finite set of (possibly re-
stricted) universally quantified implications. For example, a
TBox can state that each person has a social security num-
ber (SSN), that a person can have at most one SSN, and
that each SSN can be assigned to at most one individual.
These statements are expressed using these TBox axioms:

Person ⊑ ∃hasSSN .SSN (1)

Person ⊑ ≤ 1 hasSSN (2)

SSN ⊑ ≤ 1 hasSSN− (3)

Most DLs can be seen as decidable fragments of first-order
logic [7]. Hence, the axioms (1)–(3) can be translated into
the following first-order formulae:

∀x : [Person(x)→ ∃y : hasSSN (x, y) ∧ SSN (y)] (4)

∀x, y1, y2 : [Person(x) ∧
hasSSN (x, y1) ∧ hasSSN (x, y2)→ y1 ≈ y2]

(5)

∀x, y1, y2 : [SSN (x) ∧
hasSSN (y1, x) ∧ hasSSN (y2, x)→ y1 ≈ y2]

(6)

The schema of a relational database is defined in terms of
relations and dependencies. Different types of dependencies
have been considered, such as functional, inclusion, or join
dependencies. As discussed in [1], most dependencies can
be represented as first-order formulae of the form (7), where
ψ and ξ are conjunctions of function-free atoms:

∀x1, . . . , xn : [ψ(x1, . . . , xn) →
∃y1, . . . , ym : ξ(x1, . . . , xn, y1, . . . , ym)]

(7)

Although the expressivity of DLs underlying OWL and of
relational dependencies is clearly different, the schema lan-
guages of the two are quite closely related. In fact, the for-
mula (4) corresponds to an inclusion dependency, whereas
(5) and (6) correspond to key dependencies.

2.2 Interpreting the Schema
DL TBoxes and relational schemas are interpreted accord-

ing to standard first-order semantics: they distinguish the
legal from the illegal relational structures—that is, the struc-
tures that satisfy all axioms from the structures that violate
some axiom. In DLs, the legal structures are called mod-
els, whereas in relational databases they are called database
instances; the underlying principle is, however, the same.

There is a slight technical difference between models and
database instances: models can typically be infinite, whereas
database instances must typically be finite. The latter is
due to the fact that only finite databases can be stored in
practical systems. For certain classes of dependencies, the
restriction to finite structures is not really relevant: when-
ever an infinite relational structure satisfying the schema
exists, a finite structure exists as well (this is the so-called
finite model property). For languages such as OWL, this
does not necessarily hold: some ontologies are satisfied only
in infinite models [3]. Even though the complexity of finite
model reasoning is, for numerous DLs, the same as the com-
plexity of reasoning w.r.t. arbitrary models, the former is
usually more involved [18]. Hence, in the rest of this pa-
per, we drop the restriction to finite database instances and
consider models and database instances to be synonymous.

2.3 Domains and Typing
Relational databases assign types to columns of relations;

for example, the second position of hasSSN could be re-
stricted to strings of a certain form. Typing is used in prac-
tice to determine the physical layout of the database. In
contrast, typing is often not considered in theory (e.g., in al-
gorithms for checking query containment); rather, columns
draw their values from a common countable domain set [1].

To provide for explicit typing of relationships, the DLs
underlying OWL have datatypes—a simplified variant of the
so-called concrete domains [4].

In this paper, we consider neither typed relational schemas
nor DL knowledge bases with concrete domains, and simply
interpret both relational schemata and TBoxes in first-order
logic. This simplifies both formalisms significantly. For ex-
ample, adding key constraints to untyped DLs is not a prob-
lem [8], whereas adding them to DLs with typed predicates
is much more involved [17].

2.4 Schema Reasoning
Checking subsumption relationships between concepts has

always been a central reasoning problem for DLs. A concept
C is subsumed by a concept D w.r.t. a DL TBox T if the
extension of C is included in the extension of D in each
model I of T . This inference has many uses; for example, in
ontology modeling, derived subsumption relationships can
be used to detect modeling errors. Concept subsumption
has been used to optimize query answering [13], especially
when generalized to subsumption of conjunctive queries [10,
12]. Another important TBox inference is checking concept
satisfiability—that is, determining whether a model of T
exists in which a given concept has a nonempty extension.
Concepts are usually unsatisfiable due to modeling errors,
so this inference is also useful in ontology modeling.

Reasoning about the schema is certainly not the most
prominent feature of relational databases, yet a significant
amount of research has been devoted to it. The most im-
portant schema-related inference in databases is checking
query containment [1]: a query Q1 is contained in a query
Q2 w.r.t. a schema T if the answer of Q1 is contained in the
answer of Q2 for each database instance that satisfies T .
This inference is used by virtually all database systems to
rewrite queries into equivalent ones that can be answered
more efficiently. Another useful inference is dependency
minimization—that is, computing a minimal schema that
is equivalent to the given one.

In both DLs and relational databases, schema reasoning
problems correspond to checking whether some formula ϕ
holds in each model (i.e., database instance) of T—that is,
checking whether T |= ϕ. In other words, the terminological
problems in both DLs and relational databases correspond
to first-order consequences of a first-order theory. Since the
problems are the same, it should not come as a surprise that
the methods used to solve them are closely related. Namely,
reasoning in DLs is typically performed by tableau algo-
rithms [5], whereas the state-of-the-art reasoning technique
in relational databases is chase [1]. Apart from notational
differences, the principles underlying these two techniques
are the same: they both try to construct a model that sat-
isfies the schema T but not the formula ϕ.

To summarize, DLs and databases treat schema reasoning
problems in the same way. Thus, DLs can be understood as
expressive but decidable database schema languages.

2.5 Query Answering
Apart from the schema (or TBox) part, a DL knowl-

edge base K typically also has a data (or ABox) part. The
main inference for ABoxes is instance checking—that is,
checking whether an individual a is contained in the exten-
sion of a concept C in each model of K, commonly written
as K |= C(a). Instance checking can be generalized to an-
swering conjunctive queries over DL knowledge bases [10,
12]. Thus, a DL query can be viewed as a first-order for-
mula ϕ with free variables x1, . . . , xn. Like schema reason-
ing, the semantics of query answering in DLs is defined as
first-order entailment; hence, it takes into account all mod-
els of K: a tuple a1, . . . , an is an answer to ϕ over K if
K |= ϕ[a1/x1, . . . , an/xn], where the formula ϕ[a/x] is ob-
tained by replacing in ϕ all free occurrences of x with a.

Queries in relational databases are first-order formulae
(restricted in a way to make them domain independent) [1],
so they are similar to queries in DLs. A significant difference
between DLs and relational databases is the way in which
the queries are evaluated. Let ϕ be a first-order formula with
the free variables x1, . . . , xn. A tuple a1, . . . , an is an answer
to ϕ over a database instance I if I |= ϕ[a1/x1, . . . , an/xn].
Hence, unlike in DLs, query answering in relational data-
bases does not consider all databases instances that satisfy
the knowledge base K; instead, it considers only the given
instance I . In other words, query answering in relational
databases is not defined as entailment, but as model check-
ing, where the model is the given database instance.

Although the definition of query answering in relational
databases from the previous paragraph is the most widely
used one, a significant amount of research has also been de-
voted to answering queries over incomplete databases [15]—
a problem that is particularly interesting in information in-
tegration. An incomplete database K is described by a set
A of incomplete extensions of the schema relations and a set
T of dependencies specifying how the incomplete extensions
relate to the actual database instance. Queries in incomplete
databases are also (possibly restricted) first-order formulae.
In contrast to complete databases, a tuple a1, . . . , an is a
certain answer to ϕ over K if I |= ϕ[a1/x1, . . . , an/xn] for
each database instance I that satisfies A and T . In other
words, query answering in incomplete databases is defined
as first-order entailment, exactly as in DLs. Consequently,
DL query answering can be understood as answering queries
in incomplete databases.

2.6 Constraint Checking
In DLs, one can check whether an ABox A is consistent

with a TBox T—that is, whether a model I of both A and T
exists—and thus detect possible contradictions in A and T .
This inference is not, however, a suitable basis for constraint
checking. For example, let T contain the axioms (1)–(3),
and let A contain only the following axiom:

Person(Peter) (8)

If (1) were interpreted as an integrity constraint, we would
expect it to be violated by A ∪ T : the ABox states that
Peter is a person without specifying his social security num-
ber. The knowledge base A∪ T is, however, satisfiable: the
axiom (1) is not interpreted as a check; rather, it implies
the existence of some (unknown) SSN. Thus, T describes
the legal models, but not the legal ABoxes. In fact, the
DLs underlying OWL do not provide any means to express
database-like integrity constraints.

In contrast, constraints play a central role in relational
databases, where they are used to ensure the integrity of
data. As in DLs, a relational schema T is a set of formulae
that must hold for any database instance. A relational data-
base instance, however, corresponds to exactly one model,
whereas a DL ABox typically has infinitely many models.
Just like query answering, constraint checking in relational
databases corresponds to model checking: given a database
instance I , a relational database checks the satisfaction of
the schema constraints T by checking whether I |= T .1 In
our example, if the ABox A is taken as the database in-
stance I , then, clearly, I 6|= T—as expected, the integrity
constraints are not satisfied.

2.7 Discussion
OWL users have frequently complained about the “open-

world semantics of OWL” or “the unintuitive constraints in
OWL.” From our experience, this is often due to incorrect
interpretation of the fundamental assumptions behind OWL
and relational databases, respectively.

From the standpoint of conceptual modeling, DLs pro-
vide a very expressive, but still decidable language that has
proven to be implementable in practice. The open-world se-
mantics is natural for a schema language since a schema se-
lects the legal database instances. In fact, when computing
the subsumption relationship between concepts or queries,
we do not have a fixed instance. Therefore, we cannot inter-
pret the schema in either OWL or the relational databases
under closed-world assumption; rather, we must employ the
open-world semantics in order to consider all instances.

In our experience, complaints from OWL users are most
common in data-centric applications—that is, applications
that focus on the management of large volumes of data. In
practice, relational databases are typically complete: any
missing information is either encoded metalogically (e.g.,
users often include fields such as hasSpecifiedSSN to signal
that particular data has been supplied in the database), or it
is represented by null-values (which are also interpreted out-
side first-order logic). In contrast, ABoxes in DLs are closely
related to incomplete (relational) databases. Clearly, prob-
lems may arise if certain aspects of the information about

1In practice, constraints are incrementally checked after
database updates; these dynamic aspects are, however, not
important for this discussion.

individuals in ABoxes are expected to be complete. To un-
derstand the problems that occur in such cases, consider the
following example. Biopax2 is an ontology used for data ex-
change between biological databases. It defines a property
NAME and states its domain to be the union of bioSource ,
entity , and dataSource :

∃NAME .⊤ ⊑ bioSource ⊔ entity ⊔ dataSource (9)

The intention behind this axiom is to define which objects
can be named—that is, to ensure that a name is stated only
for objects of the appropriate type. In fact, the data in the
Biopax ontology is complete w.r.t. this constraint: each ob-
ject with a name is also typed (sometimes indirectly through
the class hierarchy) to at least one of the required classes.
The axiom (9), however, does not act as a constraint; in-
stead, it says that, if some object has a name, then it can be
inferred to be either a bioSource , an entity , or a dataSource .
Therefore, (9) cannot be used to check whether all data is
correctly typed. Furthermore, since the concept in the con-
sequent is a disjunction, the axiom (9) requires reasoning
by case, which is one of the reasons why DL reasoning is
intractable [3, Chapter 3]. Hence, the axiom (9) causes two
types of problems: on the one hand, it does not have the
desired semantics and, on the other hand, it introduces a
performance penalty during reasoning.

Representing incomplete information is, however, needed
in many applications. Consider the following axiom stating
that married people are eligible for a tax cut:

∃marriedTo.⊤ ⊑ TaxCut (10)

To apply this axiom, we do not necessarily need to know
the name of the spouse; we only need to know that a spouse
exists. Thus, we may state the following fact:

(∃marriedTo.Woman)(Peter) (11)

We are now able to derive that Peter is eligible for a tax
cut even without knowing the name of his spouse. Provid-
ing complete information can be understood as filling in a
“Spouse name” box on a tax return, whereas providing in-
complete information can be understood as just ticking the
“Married” box. The existential quantifier can be understood
as a well-behaved version of null-values that explicitly speci-
fies the semantics of data incompleteness. For use cases that
require reasoning with incomplete information, DLs provide
a sound and well-understood foundation.

Thus, one would ideally like to be able to explicitly con-
trol “the amount of incompleteness” in an ontology. Such a
mechanism would allow the ontology modeler to explicitly
state which data must be fully specified and which can be
left incomplete. This goal can be achieved through an ap-
propriate form of integrity constraints that check whether all
data has been specified as required. Transforming inappro-
priate and/or erroneously introduced axioms into integrity
constraints should also speed up query answering by elimi-
nating unintended and potentially complex inferences.

3. CONSTRAINTS FOR OWL
In this section, we extend DL knowledge bases with ICs

in order to overcome the problems discussed in the previous
section. Since TBoxes are first-order formulae, it is straight-
forward to apply the model checking approach described in

2http://www.biopax.org/

Section 2 to DLs. In such an approach, an ABox would
be interpreted as a single model and the TBox axioms as
formulae that must be satisfied in a model; the constraints
would be satisfied if A |= T . Such an approach, however,
is not satisfactory, as it requires an “all-or-nothing” choice:
we then have to assume that all information in the ABox is
complete; furthermore, TBox axioms could only be used to
check whether an ABox is of an appropriate form and would
not imply new facts. To obtain a more versatile formal-
ism, we propose a combination of inferencing and constraint
checking. For example, let A1 be the following ABox:

Student(Peter) (12)

hasSSN (Peter ,nr12345) (13)

SSN (nr12345) (14)

Student(Paul) (15)

Furthermore, let T1 be the following TBox:

Student ⊑ Person (16)

Person ⊑ ∃hasSSN .SSN (17)

Let us assume that we want to treat (17) as a constraint,
but (16) as a normal axiom. Then, we derive Person(Peter)
and Person(Paul) by (16). The constraint (17) is satisfied
for Peter due to (12), (13), and (14); however, an SSN has
not been specified for Paul , so we expect (17) to be violated.

Following this intuition, we define extended DL knowl-
edge bases to distinguish the axioms that imply new facts
from the ones that check whether all necessary information
is derivable. Our definition is applicable to any DL.

Definition 3.1. An extended DL knowledge base is a
triple K = (S ,C,A) such that

• S is a finite set of standard TBox axioms,

• C is a finite set of constraint TBox axioms, and

• A is a finite set of ABox assertions (¬)A(a), R(a, b),
a ≈ b, or a 6≈ b, for A an atomic concept, R a role,
and a and b individuals.

In Definition 3.1, we restrict ourselves to ABoxes with
only possibly negated atomic concepts. This does not result
in any loss of generality because S can be used to introduce
names for nonatomic concepts.

Next, we discuss how to define an appropriate semantics
for extended DL knowledge bases. The simplest solution is
to interpret A ∪ S in the standard first-order way and to
require C to be satisfied in each model I for which we have
I |= A ∪ S. The following example, however, shows that
this does not satisfy our intuition. Let A2 contain only the
fact (12), S2 = ∅, and let C2 contain only the axiom (17).
The interpretation I = {Student(Peter),Person(Peter)} is
a model of A2 ∪ S2 that does not satisfy C2, which would
make C2 not satisfied for A2 ∪ S2. Intuitively, though, the
fact Person(Peter) is not implied by A2 ∪ S2, so we should
not check whether Peter has an SSN at all; C2 should hold
only for the facts that are implied by A2 ∪ S2.

These considerations might suggest that C should hold for
all first-order consequences of A∪ S. In the example from
the previous paragraph, this produces the desired behavior:
Person(Peter) is not a consequence of A2 ∪ S2, so the axiom
from C2 should not be checked for Peter . Consider, however,
the ABox A3 containing only the following axiom:

Cat(ShereKahn) (18)

Furthermore, let S3 contain the following axiom:

Cat ⊑ Tiger ⊔ Leopard (19)

Finally, let C3 contain the following two axioms:

Tiger ⊑ Carnivore (20)

Leopard ⊑ Carnivore (21)

Now neither Tiger(ShereKahn) nor Leopard(ShereKahn) is
a first-order consequence of A3 ∪ S3, which means that the
axioms from C3 are satisfied; furthermore, we have

A3 ∪ S3 6|= Carnivore(ShereKahn).

This answer does not satisfy our intuition: in each model of
A3 ∪ S3, either Tiger(ShereKahn) or Leopard(ShereKahn)
holds, but Carnivore(ShereKahn) does not necessarily hold
in either case. Hence, by treating (20)–(21) as constraints
and not as standard axioms, we neither get a constraint
violation nor derive the consequence Carnivore(ShereKahn).

Intuitively, the constraints should check whether the facts
derivable from A∪ S ∪ C are also derivable usingA ∪ S only.
This notion seems to be nicely captured by minimal models;
hence, we check C only w.r.t. the minimal models of A∪ S .
Roughly speaking, a model I with an interpretation domain
△I of a formula ϕ is minimal if each interpretation I ′ over
△I such that I ′ ⊂ I is not a model of ϕ, where we consider
an interpretation to be represented by the set of all positive
ground facts that are true in it. Consider again A2, S2, and
C2. The fact Person(Peter) is not derivable from A2 ∪ S2 in
any minimal model (in fact, there is only a single minimal
model), so the constraint axiom (17) is not violated. In
contrast, A3 ∪ S3 has exactly two minimal models:

I1 = {Cat(ShereKahn),Tiger(ShereKahn)}
I2 = {Cat(ShereKahn),Leopard (ShereKahn)}

These two models can be viewed as the minimal sets of deriv-
able consequences. The constraint TBox C3 is not satisfied
in all minimal models (in fact, it is violated in each of them).
In contrast, let A4 = A3 and C4 = C3, and let S4 contain
the following axiom:

Cat ⊑ (Tiger ⊓ Carnivore) ⊔ (Leopard ⊓ Carnivore) (22)

Now Carnivore(ShereKahn) is derivable whenever we can
derive either Tiger(ShereKahn) or Leopard (ShereKahn), so
the constraints should be satisfied. Indeed, A4 ∪ S4 has the
following two minimal models:

I3 = I1 ∪ {Carnivore(ShereKahn)}
I4 = I2 ∪ {Carnivore(ShereKahn)}

Both I3 and I4 satisfy C4. Furthermore, we do not lose any
consequences, despite the fact that we treat (20)–(21) as
constraints, since the following holds:

A4 ∪ S4 |= Carnivore(ShereKahn)

Minimal models have been used, with minor differences,
in an extension of DLs with circumscription [6] and in the
semantics of open answer set programs [14]. Consider, how-
ever, the following ABox A5:

Woman(Alice) (23)

Man(Bob) (24)

Furthermore, let S5 = ∅ and C5 contain the following axiom:

Woman ⊓Man ⊑ ⊥ (25)

No axiom implies that Alice and Bob should be interpreted
as the same individual, so we expect them to be differ-
ent “by default” and the constraint to be satisfied. Now
the definitions from [6, 14] consider all interpretation do-
mains, so let △I = {α}. Because △I contains only one ob-
ject, we must interpret both Alice and Bob as α. Clearly,
I = {Woman(α),Man(α)} is a minimal model of A5, and it
does not satisfy C5.

This problem might be remedied by making the unique
name assumption (UNA)—that is, by requiring each con-
stant to be interpreted as a different individual. This is,
however, rather restrictive, and is not compatible with OWL.
Another solution is to interpret A∪ S in a Herbrand model
(i.e., a model in which each constant is interpreted by it-
self) where ≈ is a congruence relation; then, we minimize
the interpretation of ≈ together with all the other pred-
icates. In such a case, the only minimal model of A5 is
I ′ = {Woman(Alice),Man(Bob)} since the extension of ≈
is empty due to minimization, so C5 is satisfied in I ′.

Unfortunately, existential quantifiers pose a whole range
of problems for constraints. Let A6 contain these axioms:

HasChild(Peter) (26)

HasHappyChild(Peter) (27)

TwoChildren(Peter) (28)

Furthermore, let S6 contain these axioms:

HasChild ⊑ ∃hasChild .Child (29)

HasHappyChild ⊑ ∃hasChild .(Child ⊓Happy) (30)

Finally, let C6 contain the following constraint:

TwoChildren ⊑ ≥ 2 hasChild .Child (31)

It seems intuitive for C6 to be satisfied in A ∪ S6: no axiom
in S6 forces the children of Peter—the two individuals whose
existence is implied by (29) and (30)—to be the same, so we
might conclude that they are different.

Now consider the following quite similar example. Let
C7 = C6, and let A7 contain the following axioms:

HasChild(Peter) (32)

TwoChildren(Peter) (33)

Furthermore, let S7 contain the following axiom:

HasChild ⊑ ∃hasChild .Child ⊓ ∃hasChild .Child (34)

As in the previous example, C7 is satisfied in A7 ∪ S7 since
(34) introduces two (possibly identical) individuals in the
extension of Child . Let S ′

7 be a standard TBox containing
only the axiom (35):

HasChild ⊑ ∃hasChild .Child (35)

Now C7 is not satisfied in A∪ S ′
7 since (35) implies the exis-

tence of only one child. Given that S ′
7 is semantically equiv-

alent to S7, this is rather unsatisfactory; furthermore, it
suggests that C7 should not be satisfied in A7 ∪ S7, since
(34) requires the existence of only one individual. Recall,
however, that S6 and S7 are quite closely related: the effect
of (34) with respect to Child is the same as that of (29) and
(30). Hence, if (34) should introduce only one individual,

then (29) and (30) should do so as well, which is in conflict
with our intuition that C6 should be satisfied in A6 ∪ S6.

Thus, our intuition does not give us a clear answer as
to the appropriate treatment of existential quantifiers in the
standard TBox: the names of the concepts and the structure
of the axioms suggest that the existential quantifiers in (29)
and (30) should introduce different individuals, whereas the
existential quantifiers in (34) should “reuse” the same indi-
vidual. These two readings pull in opposite directions, so a
choice between the two should be based on other criteria.

The example involving S7 and S ′
7 reveals an important

disadvantage of one possible choice: if we require each exis-
tential quantifier to introduce a distinct individual, then it
is possible for a constraint TBox C to be satisfied in A∪ S ,
but not in A∪ S ′, even though S and S ′ are semantically
equivalent. As we have seen, C7 is satisfied in A7 ∪ S7, but
not in A7 ∪ S

′
7, even though S7 and S ′

7 are equivalent. It
is clearly undesirable for IC satisfaction to depend on the
syntactic structure of the standard TBox.

Introducing distinct individuals for each existential quan-
tifier can be justified by skolemization [21], the well-known
process of representing existential quantifiers with new func-
tion symbols. For example, for ϕ = ∃y : [R(x, y) ∧ C(y)], by
skolemization we obtain sk(ϕ) = R(x, f(x)) ∧ C(f(x)): the
variable y is replaced by a term f(x), for f a new func-
tion symbol. Skolemized formulae are usually interpreted
in Herbrand models, whose domain consists of all ground
terms built from constants and function symbols in the for-
mula. If the formula contains at least one function symbol,
then Herbrand models are infinite; furthermore, the models
of DL axioms are forest-like (i.e., they can be viewed as trees
possibly interconnected at roots). We use these properties
in our procedure for checking IC satisfaction in Section 6.

Definition 3.2. Let ϕ be a first-order formula and sk(ϕ)
the formula obtained by outer skolemization of ϕ [21]. A
Herbrand interpretation w.r.t. ϕ is a Herbrand interpreta-
tion defined over the signature of sk(ϕ). A Herbrand in-
terpretation I w.r.t. ϕ is a model of ϕ, written I |= ϕ, if
it satisfies ϕ in the usual sense. A Herbrand model I of
ϕ is minimal if I ′ 6|= ϕ for each Herbrand interpretation I ′

such that I ′ ⊂ I. We write sk(ϕ) |=MM ψ if I |= ψ for each
minimal Herbrand model I of ϕ.

We now define the notion of IC satisfaction. We use an
operator π that translates a set of DL axioms S into an
equivalent formula π(S) of first-order logic with equality and
counting quantifiers [3, 7].

Definition 3.3. Let K = (S ,C,A) be an extended DL
knowledge base. The constraint TBox C is satisfied in K if
sk(π(A∪ S)) |=MM π(C). By an abuse of notation, we often
omit π and simply write sk(A∪ S) |=MM C.

Note that the addition of constraints does not change the
semantics of DLs or OWL: Definition 3.3 is only concerned
with the semantics of constraints, and a traditional knowl-
edge base (T ,A) can be seen as an extended knowledge base
(T , ∅,A). For subsumption and concept satisfiability tests,
we can use S ∪ C together as the schema, as usual. As dis-
cussed above, skolemization introduces a new function sym-
bol for each existential quantifier, which effectively intro-
duces a new individual for each quantifier. We invite the
reader to convince himself that Definition 3.3 closely follows

our intuition on the examples presented thus far. Further-
more, in Section 4 we show that, if the constraints are sat-
isfied, we can throw them away without losing any positive
consequences; that is, we can answer positive queries by tak-
ing into account only A and S . We take this as confirmation
that our semantics of IC satisfaction is intuitive.

We now discuss a nonobvious consequence of our seman-
tics. Let A8 be an ABox with only the following axioms:

Vegetarian(Ian) (36)

eats(Ian, soup) (37)

Furthermore, let S8 = ∅, and let C8 contain only the follow-
ing constraint:

Vegetarian ⊑ ∀eats .¬Meat (38)

One might intuitively expect C8 not to be satisfied for A8

since the ABox does not state ¬Meat(soup). Contrary to
our intuition, C8 is satisfied in A8: the interpretation I con-
taining only the facts (36) and (37) is the only minimal
Herbrand model of A8 and I |= C8. In fact, the axiom (38)
is equivalent to the following axiom:

Vegetarian ⊓ ∃eats .Meat ⊑ ⊥ (39)

When written in the latter form, the axiom should be intu-
itively satisfied, since Meat(soup) is not derivable.

As this example illustrates, the intuitive meaning of con-
straints is easier to grasp if we transform them into the
form C ⊑ D, where both C and D are negation-free con-
cepts. Namely, our constraints check the positive facts. To
check negative facts, we must give them atomic names. Let
A9 = A8; furthermore, let S9 contain the following axiom:

NotMeat ≡ ¬Meat (40)

Finally, let C9 contain the following axiom:

Vegetarian ⊑ ∀eats .NotMeat (41)

The constraint (41) is now of the “positive” form C ⊑ D, so
it is easier to understand the intuition behind it: everything
that is eaten by an instance of Vegetarian should provably
be NotMeat . Now, A9 ∪ S9 has the following two minimal
models, and I5 6|= C9, so C9 is not satisfied for A9:

I5 = {Vegetarian(Ian), eats(Ian, soup),Meat(soup)}
I6 = {Vegetarian(Ian), eats(Ian, soup),NotMeat(soup)}

If we add to A9 the fact NotMeat(soup), then only I6 is
a minimal model, and C9 becomes satisfied as expected.
Hence, it is advisable to restrict constraints to positive for-
mulae in order to avoid such misunderstandings.

We finish this section with a note that different appli-
cations might choose to treat different subsets of the same
ontology as ICs. In practice, this might be addressed by a
mechanism that allows one to create an application-specific
view of an OWL ontology. The discussion of such a mecha-
nism is, however, out of scope of this paper; here, we focus
on the semantic and computational aspects of ICs.

4. CONSTRAINTS AND QUERIES
We now state an important result about answering unions

of positive conjunctive queries in extended DL knowledge
bases: if the ICs are satisfied, we need not consider them
in query answering. This shows that our semantics of IC
satisfaction is reasonable: constraints are checks and, if they

are satisfied, we can discard them without losing relevant
consequences. Moreover, this result is practically important
because it simplifies query answering. In Section 6, we show
that, for certain types of OWL ontologies, both checking IC
satisfaction and query answering can be easier than standard
DL reasoning. Before proceeding, we first remind the reader
of the definition of unions of conjunctive queries.

Definition 4.1. Let x be a set of distinguished and y

a set of nondistinguished variables. A conjunctive query
Q(x,y) is a finite conjunction of positive atoms of the form
A(t1, . . . , tm), where ti are either constants, distinguished,
or nondistinguished variables.3 A union of n conjunctive
queries is the formula γ(x) =

Wn
i=1 ∃yi : Qi(x,yi). A tuple

of constants c is an answer to γ(x) over a DL knowledge
base K, written K |= γ(c), if π(K) |= γ(x)[c/x].

Our result is captured by the following theorem, whose
proof can be found in [19]:

Theorem 4.2. Let K be an extended DL knowledge base
that satisfies C. Then, for any union of conjunctive queries
γ(x) over K and any tuple of constants c, we have

A ∪ S ∪ C |= γ(c) if and only if A∪ S |= γ(c).

Consider, for example, the following knowledge base. Let
the standard TBox S10 contain the following axioms:

Cat ⊑ Pet (42)

∃hasPet .Pet ⊑ PetOwner (43)

Let the constraint TBox C10 contain the following axiom:

CatOwner ⊑ ∃hasPet .Cat (44)

Finally, let the ABox A10 contain the following assertions:

CatOwner (John) (45)

hasPet(John,Garfield) (46)

Cat(Garfield) (47)

Under the standard semantics, we can draw the following
conclusion from K:

S10 ∪ C10 ∪A10 |= PetOwner(John)

Furthermore, it is easy to see that the constraint (44) is
satisfied in K: the only derivable fact about CatOwner is
CatOwner(John) and the ABox contains the explicit infor-
mation that John owns Garfield who is a Cat . Therefore,
we do not need the axiom (44) to imply the existence of the
owned cat: whenever we can derive CatOwner(x) for some
x, we can derive the information about the cat of x as well.
Hence, we can disregard (44) during query answering, but
our conclusion holds just the same:

S10 ∪A10 |= PetOwner (John)

Note that both entailments in Theorem 4.2 use the stan-
dard semantics of DLs; that is, we do not assume a closed-
world semantics for query answering. Furthermore, The-
orem 4.2 does not guarantee preservation of negative con-
sequences; in fact, such consequences may change, as the

3The predicate A can be the equality predicate ≈, an atomic
concept, a role, or an n-ary predicate in case of n-ary DLs.

following example demonstrates. Let S11 = ∅, C11 contain
the axiom

Cat ⊓ Dog ⊑ ⊥ (48)

and A11 contain the axiom (47). By taking S11 into account,
we get the following inference:

S11 ∪ C11 ∪ A11 |= ¬Dog(Garfield)

Furthermore, the constraint is satisfied; however, if we dis-
regard C11, we lose this consequence:

S11 ∪A11 6|= ¬Dog(Garfield)

A similar example can be given for queries containing uni-
versal quantifiers.

Theorem 4.2 has an important implication with respect to
TBox reasoning. Let γ1(x) and γ2(x) be unions of conjunc-
tive queries such that π(K) |= ∀x : [γ1(x)→ γ2(x)]. Pro-
vided that C is satisfied in K, each answer to γ1(x) w.r.t.
A ∪ S is also an answer to γ2(x) w.r.t. A∪ S. To summa-
rize, we can check subsumption of unions of conjunctive as
usual, by treating C ∪ S as an ordinary DL TBox. Subse-
quently, for knowledge bases that satisfy C, we can ignore C
when answering queries, but query answers will still satisfy
the established subsumption relationships between queries.

5. TYPICAL USAGE PATTERNS
The notion of ICs from Section 3 is very general. To

provide practical guidance for modelers, we discuss in this
section the typical usage patterns.

5.1 Participation Constraints
Participation constraints involve two concepts C and D

and a relation R between them, and they state that each in-
stance of C must participate in one or more R-relationships
with instances of D; often, they also define the cardinality of
the relationship. The general form of such constraints is as
follows, where ⊲⊳∈ {≤,≥,=} and n is a nonnegative integer:

C ⊑ ⊲⊳ nR.D (49)

Participation constraints are similar to inclusion dependen-
cies in relational databases.

A typical participation constraint is the axiom (1), which
states that each person must have an explicitly specified
SSN. Another example is the following statement, which al-
lowes each person to have at most one spouse:

Person ⊑ ≤ 1marriedTo.Person (50)

To understand the difference in treating (50) as a standard
axiom or a constraint, consider the following ABox A:

Person(Peter) (51)

marriedTo(Peter ,Ann) (52)

marriedTo(Peter ,Mary) (53)

If (50) were a part of the standard TBox S , then A∪ S
would be satisfiable; furthermore, due to (50), we would de-
rive Ann ≈ Mary . If we put (50) into the constraint TBox C,
then the only minimal model of A contains exactly the facts
(51)–(53). Namely, the equality predicate ≈ is minimized as
well, so Ann is different from Mary . This matches our intu-
ition because no other knowledge requires Ann and Mary to
be the same. Thus, Peter is married to two different people,
so the constraint (50) is not satisfied in A.

5.2 Typing Constraints
Constraints can be used to check whether objects are cor-

rectly typed. A typical example of such constraints are do-
main and range restrictions: for a role R and a concept C,
they state that R-links can only point from or to objects that
are explicitly typed as C. In this way, these constraints act
as checks, saying that R-relationships can be asserted only
for objects in C. The general form of domain constraints is

∃R.⊤ ⊑ C (54)

whereas for range constraints it is

⊤ ⊑ ∀R.C. (55)

A typical example of a domain constraint is (9), which
ensures that a name can be given only to objects that are
either bioSource , entity , or dataSource . Another example is
the following axiom, which states that it is only possible to
be married to a Person :

⊤ ⊑ ∀marriedTo.Person (56)

To understand the difference in treating (56) as a standard
axiom or a constraint, consider an ABox A containing only
the fact (52). If (56) were a part of the standard TBox S ,
then A ∪ S would be satisfiable; furthermore, due to (56),
we would derive Person(Ann). If we put (56) into the con-
straint TBox C, then the only minimal model of A contains
only the fact (52). Thus, Ann is not explicitly typed to be
a Person , so the IC (56) is not satisfied in A.

5.3 Restrictions to Known Individuals
Sometimes, we might want to check whether certain ob-

jects are known by name. For example, an application for
the management of tax returns might deal with two types of
people: those who have submitted a tax return for process-
ing, and those who are somehow related to the people from
the first group (e.g., their spouses or children). For the ap-
plication to function properly, it might not be necessary to
explicitly specify the SSN for all people; only the SSNs for
the people from the first group are of importance. In such
an application, we might use axioms (1)–(3) not as ICs, but
as elements of the standard TBox S . Furthermore, to distin-
guish people who have submitted the tax return, we would
introduce a concept PersonTR for persons with a tax return
and would make it a subset of Person in S :

PersonTR ⊑ Person (57)

Two things should hold for each instance of PersonTR:
first, we might require each such person to be explicitly
known by name, and second, we might require the SSN of
each such person to be known by name as well. Although
ICs can be used to check whether an individual is present in
an interpretation, they cannot distinguish named (known)
from unnamed (unknown) individuals. We can, however,
solve this problem using the following “trick.” We can use a
special concept O to denote all individuals known by name
and state the following two constraints:

PersonTR ⊑ O (58)

PersonTR ⊑ ∃hasSSN .(O ⊓ SSN) (59)

Furthermore, we add the following ABox assertion for each
individual a occurring in an ABox:

O(a) (60)

Now in any minimal model of S ∪ A, the assertions of the
form (60) ensure that O is interpreted exactly as the set of
all known objects. Hence, (58) ensures that each PersonTR
is known, and (59) ensures that the social security number
for each person is known as well.

One can object that this solution is not completely model-
theoretic: it requires asserting (60) for each known individ-
ual, which is a form of procedural preprocessing. We agree
that our solution is not completely clean in that sense; how-
ever, we believe that it is simple to understand and imple-
ment and is therefore acceptable.

For TBox reasoning, statements of the form (60) are, by
definition, not taken into account. Finally, instead of the ax-
ioms (60), one could be tempted to use the following state-
ment, where ai are all individuals from the ABox:

O ≡ {a1, . . . , an} (61)

This, however, requires nominals in the DL language, which
makes reasoning more difficult [25]. Furthermore, since O
occurs only in the constraint axioms, the axioms of the form
(60) are sufficient: the minimal model semantics ensures
that O contains exactly the individuals a1, . . . , an.

6. CHECKING IC SATISFACTION
We now present an algorithm for checking IC satisfaction.

Our algorithm uses an alternative characterization of Defi-
nition 3.3 based on logic programming. Note that, since the
semantics of other reasoning problems is defined as usual,
they can be solved using existing algorithms.

Definition 6.1. Let K = (S , C,A) be an extended DL
knowledge base, ϕ = sk(π(S)),4 and ϕ′ be the result of trans-
forming ϕ into conjunctive normal form.

Then, LP(S) is the logic program obtained by (i) con-
verting each clause ¬A1 ∨ . . . ∨ ¬An ∨B1 ∨ . . . ∨Bm from
ϕ′ into a rule A1 ∧ . . . ∧An → B1 ∨ . . . ∨ Bm; (ii) adding
an atom HU (x) to the body of each rule in which the vari-
able x occurs in the head but not in the body; (iii) adding a
fact HU (c) for each constant c; and (iv) adding the follow-
ing rule for each n-ary function symbol f :

HU (x1) ∧ . . . ∧HU (xn)→ HU (f(x1, . . . , xn))

Furthermore, CN(ϕ) is the stratified datalog program de-
fined as follows, where µ and sub are defined in Table 1:

CN(ϕ) = µ(ϕ) ∪
[

ψ∈sub(ϕ)

CN(ψ)

Finally, let CN(C) = CN(π(C)) and EC = Eπ(C).

The following theorem, whose proof is given in [19], shows
that IC satisfaction can be checked using logic programming.

Theorem 6.2. The constraint TBox C is satisfied in an
an extended DL knowledge base K = (S ,C,A) if and only if
A ∪ LP(S) ∪ CN(C) |=c EC.

The program LP(S) is obtained by translating S into a
first-order formula π(S), skolemizing it, and translating the
result into conjunctive normal form. The last step does not

4Please remember that π is an operator that translates a set
of DL axioms into a first-order formula.

Table 1: Translating Formulae into Constraints
ϕ µ(ϕ) sub(ϕ)

1 A(t1, . . . , tm) A(t1, . . . , tm)→ Eϕ(x1, . . . , xn) ∅

2 ¬ψ HU (x1) ∧ . . . ∧ HU (xn) ∧ not Eψ(x1, . . . , xn)→ Eϕ(x1, . . . , xn) {ψ}

3 ψ1 ∧ ψ2 Eψ1
(y1, . . . , ym) ∧Eψ2

(z1, . . . , zk)→ Eϕ(x1, . . . , xn) {ψ1, ψ2}

4 ψ1 ∨ ψ2
HU (x1) ∧ . . . ∧ HU (xn) ∧Eψ1

(y1, . . . , ym)→ Eϕ(x1, . . . , xn)
HU (x1) ∧ . . . ∧HU (xn) ∧Eψ2

(z1, . . . , zk)→ Eϕ(x1, . . . , xn)
{ψ1, ψ2}

5 ∃y : ψ Eψ(y1, . . . , ym)→ Eϕ(x1, . . . , xn) {ψ}

6 ∀y : ψ HU (x1) ∧ . . . ∧ HU (xn) ∧ not E∃y:¬ψ(x1, . . . , xn)→ Eϕ(x1, . . . , xn) {∃y : ¬ψ}

7 ∃≥ky : ψ
kV
i=1

Eψ(y1, . . . , ym)[yi/y] ∧
V

1≤i<j≤k

not yi ≈ yj → Eϕ(x1, . . . , xn) {ψ}

8 ∃≤ky : ψ HU (x1) ∧ . . . ∧ HU (xn) ∧ not E∃≥k+1y:¬ψ(x1, . . . , xn)→ Eϕ(x1, . . . , xn) {∃≥k+1y : ¬ψ}

Note: For ϕ a first-order formula, x1, . . . , xn are the free variables of ϕ, and Eϕ is a fresh n-ary predicate
unique for ϕ. Furthermore, y1, . . . , ym are the free variables of ψ and ψ1, and z1, . . . , zk are the free
variables of ψ2. The predicate A can be ≈, and not is the negation-as-failure of logic programs.

change the models, so the minimal models of LP(S) are in
a one-to-one correspondence with the minimal models of
sk(π(S)). The only difference between them is that each
model of LP(S) contains an enumeration of the entire Her-
brand universe in the predicate HU ; this is used to make the
rules from LP(S) and CN(C) safe (i.e., to ensure that each
variable occurring in a rule also occurs in a positive body
atom). The program LP(S) can be exponentially larger than
S , so in [19] we discuss possible ways of avoiding this.

The program CN(C) from Definition 6.1 is similar to the
Lloyd-Topor transformation [16], which transforms logic pro-
grams with first-order formulae in rule bodies into ordinary
logic programs. Given an interpretation I and an n-tuple of
constants a1, . . . , an, we have I |= Eϕ(a1, . . . , an) if and only
if I |= ϕ[a1/x1, . . . , an/xn]. Hence, CN(C) “evaluates” C in
I ; furthermore, π(C) is a quantifier-free formula, so I |= C if
and only if I |= EC.

Theorem 6.2 is now a simple consequence of the following
two facts: the minimal models of A∪ LP(S) correspond to
the minimal models of sk(π(S ∪ A)), in which CN(C) “eval-
uates” the ICs; thus, the ICs are satisfied if and only if each
such “evaluation” derives EC.

The difficulty in applying Theorem 6.2 is primarily de-
termined by the complexity of the standard TBox S . To
pinpoint the main source of difficulty, we use the following
definition: a standard TBox S is existential-free if no axiom
in S contains either a existential quantifier under positive or
a universal quantifier under negative polarity. For example,
such a TBox may contain (62), but not (63):

∃R.C ⊑ D (62)

C ⊑ ∃R.D. (63)

The axioms of existential-free TBoxes cannot imply the exis-
tence of unknown individuals. For example, the axiom (62)
only checks whether there is an R-link to an object in C,
whereas, for each individual in C, the axiom (63) implies
the existence of an R-link to some (unknown) individual in
D. For an existential-free TBox S , the program LP(S) does
not contain function symbols, so we can limit our attention
to the individuals explicitly mentioned in A ∪ S. For finite
ontologies, the number of such individuals is finite, which
implies that checking IC satisfaction is decidable.

It is easy to see that CN(C) is stratified, so the complex-
ity of IC satisfaction checking is determined by the program
LP(S). If the latter is nondisjunctive, then constraint check-
ing and, by Theorem 4.2, answering positive queries can be
performed in polynomial time; this holds even if S ∪ C is ex-
pressed in a DL such as SHOIN (D). Thus, our approach
allows for efficient query answering for languages beyond ex-
isting polynomial DLs (e.g., DL-lite [9] or EL++ [2]), pro-
vided that the “difficult” axioms occur only as ICs.

If we apply this algorithm to S10, C10, and A10 from Sec-
tion 4, we obtain the following program CN(S10):

Pet(x)← Cat(x) (64)

PetOwner(x)← hasPet(x, y) ∧ Pet(y) (65)

Furthermore, we obtain CN(C10) as follows (for readability,
we omit certain intermediate rules):

E1(x)← hasPet(x, y) ∧ Cat(y) (66)

E2 ← CatOwner(x) ∧ not E1(x) (67)

EC ← not E2 (68)

Now A10 ∪ S10 |=c EC, so the constraints are satisfied.

If S is not existential-free, then LP(S) contains function
symbols; effectively, this means that S has only infinite Her-
brand models. Due to skolemization, however, we can re-
strict our attention to infinite forest-like models, which con-
sist of infinite trees possibly connected at their roots. To ob-
tain a decision procedure, we clearly cannot examine such
structures in their entirety. In [19], we present a decision
procedure for checking IC satisfaction if S is an ALCHI
knowledge base. The algorithm is based on a reduction of
our problem to the problem of checking satisfiability of an
SkS formula—a monadic second-order formula on k-ary in-
finite trees [22]. Intuitively, we encode K in an SkS formula
ϕ such that the forest-like models of K correspond to the
models of ϕ. To enforce minimality of models, we use the
second-order quantification of SkS . Due to its high compu-
tational complexity, we do not expect this algorithm to be
used in practice; rather, it should be taken as evidence that
constraint satisfaction checking is possible for nontrivial log-
ics. We shall try to establish tight complexity bounds and
derive a practical algorithm in future.

7. CONCLUSION
Motivated by the problems encountered in the applica-

tions of OWL to data-centric problems, we have compared
OWL and relational databases w.r.t. their approaches to
schema modeling, schema and data reasoning problems, and
constraint checking. We have seen that both databases and
DLs employ the standard first-order semantics for schema
reasoning. The differences between the two become appar-
ent when we consider data reasoning problems. In relational
databases, answering queries and IC satisfaction checking
correspond to model checking whereas, in DLs, the only form
of constraint checking available is checking satisfiability of an
ABox w.r.t. a TBox—a problem that is not concerned with
the form of the data. This often causes misunderstandings
in practice: OWL ontologies can be understood as incom-
plete databases, while the databases encountered in practice
are usually complete.

To control the degree of incompleteness in an ontology, we
have proposed the notion of extended DL knowledge bases,
in which a certain subset of TBox axioms can be designated
as constraints. For TBox reasoning, constraints behave just
like normal TBox axioms; for ABox reasoning, however, they
are interpreted in the spirit of relational databases. We de-
fine the semantics of IC satisfaction in such a way that they
indeed check whether all mandatory assertions are entailed
by the given ABox and TBox.

We have also shown that, if the constraints are satis-
fied, we can disregard them while answering positive queries.
This indicates that our semantics of constraint satisfaction
is indeed reasonable, and means that answering queries un-
der constraints may be computationally easier since we may
have a smaller input TBox. Finally, we have sketched algo-
rithms for checking IC satisfaction.

In future, we will try to obtain tight complexity bounds
for constraint checking in the case of knowledge bases that
are not existential-free. Furthermore, we plan to implement
our approach in the OWL reasoner KAON2 and test its
usefulness on practical problems.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison Wesley, 1995.

[2] F. Baader, S. Brandt, and C. Lutz. Pushing the EL
Envelope. In Proc. IJCAI 2005, pages 364–369,
Edinburgh, UK, 2005.

[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,
and P. F. Patel-Schneider, editors. The Description
Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, 2003.

[4] F. Baader and P. Hanschke. A Scheme for Integrating
Concrete Domains into Concept Languages. In Proc.
IJCAI ’91, pages 452–457, Sydney, Australia, 1991.

[5] F. Baader and U. Sattler. An Overview of Tableau
Algorithms for Description Logics. Studia Logica,
69:5–40, 2001.

[6] P. Bonatti, C. Lutz, and F. Wolter. Description Logics
with Circumscription. In Proc. KR 2006, pages
400–410, Lake District, UK, 2006.

[7] A. Borgida. On the Relative Expressiveness of
Description Logics and Predicate Logics. Artificial
Intelligence, 82(1–2):353–367, 1996.

[8] D. Calvanese, D. D. Giacomo, and M. Lenzerini. Keys

for free in description logics. In Proc. DL 2000,
Aachen, Germany, 2000.

[9] D. Calvanese, G. D. Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati. Data Complexity of
Query Answering in Description Logics. In Proc. KR
2006, pages 260–270, Lake District, UK, 2006.

[10] D. Calvanese, G. D. Giacomo, and M. Lenzerini. On
the Decidability of Query Containment under
Constraints. In Proc. PODS ’98, pages 149–158,
Seattle, WA, USA, 1998.

[11] F. M. Donini, D. Nardi, and R. Rosati. Description
Logics of Minimal Knowledge and Negation as Failure.
ACM Transactions on Computational Logic,
3(2):177–225, 2002.

[12] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler.
Conjunctive Query Answering for the Description
Logic SHIQ. In Proc. IJCAI 2007, India, 2007.

[13] V. Haarslev and R. Möller. Incremental Query
Answering for Implementing Document Retrieval
Services. In Proc. DL 2003, Rome, Italy, 2003.

[14] S. Heymans, D. V. Nieuwenborgh, and D. Vermeir.
Conceptual Logic Programs. Annals of Mathematics
and Artificial Intelligence, 2006. To appear.

[15] A. Y. Levy. Obtaining Complete Answers from
Incomplete Databases. In Proc. VLDB ’96, pages
402–412, Mumbai, India, 1996.

[16] J. W. Lloyd and R. W. Topor. Making Prolog More
Expressive. Journal of Logic Programming,
1(3):225–240, 1984.

[17] C. Lutz, C. Areces, I. Horrocks, and U. Sattler. Keys,
Nominals, and Concrete Domains. Journal of
Artificial Intelligence Research, 23:667–726, 2005.

[18] C. Lutz, U. Sattler, and L. Tendera. The Complexity
of Finite Model Reasoning in Description Logics.
Information and Computation, 199:132–171, 2005.

[19] B. Motik, I. Horrocks, and U. Sattler. Integrating
Description Logics and Relational Databases.
Technical report, University of Manchester, UK, 2006.

[20] B. Motik and R. Rosati. A Faithful Integration of
Description Logics with Logic Programming. In Proc.
IJCAI 2007, Hyderabad, India, 2007.

[21] A. Nonnengart and C. Weidenbach. Computing Small
Clause Normal Forms. In Handbook of Automated
Reasoning, volume I, chapter 6, pages 335–367.
Elsevier Science, 2001.

[22] M. O. Rabin. Decidability of second-order theories
and automata on infinite trees. Transations of the
American Mathematical Society, 141:1–35, 1969.

[23] R. Reiter. What Should a Database Know? Journal of
Logic Programming, 14(1–2):127–153, 1992.

[24] R. Rosati. DL + log: A Tight Integration of
Description Logics and Disjunctive Datalog. In Proc.
KR 2006, pages 68–78, Lake District, UK, 2006.

[25] S. Tobies. Complexity Results and Practical
Algorithms for Logics in Knowledge Representation.
PhD thesis, RWTH Aachen, Germany, 2001.

