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Abstract. In description logics, concrete domains are used to model
concrete properties such as weight, name, or age, having concrete
values such as integers or strings, with built-in predicates, such as ≤
or =. Until now, reasoning with concrete domains has been studied
predominantly in the context of tableaux and automata calculi. In this
paper, we present a general approach for concrete domain reasoning
in the resolution framework. We apply this approach to devise an
optimal decision procedure for SHIQ(D), the extension of SHIQ
with a restricted form of concrete domains, serving as the logical
underpinning of the web ontology language OWL-DL.

1 Introduction
Description logics are a family of knowledge representation for-
malisms closely related to first-order and modal logic. They are use-
ful in various application fields, such as reasoning about database
conceptual models, as the logical underpinning of ontology lan-
guages, for schema representation in information integration systems
or for metadata management [1]. Practical applications of DLs usu-
ally require concrete properties with values from a fixed domain,
such as integers or strings, supporting built-in predicates. In [2], DLs
were extended with concrete domains, where partial functions map
objects of the abstract domain to values of the concrete domain, and
can be used for building complex concepts. For example, the follow-
ing axiom defines minors as those humans whose age is at most 17:
Minor ≡ Human u ∃age.≤17. In [2, 7, 15, 16, 10] decidabil-
ity, computational complexity, and reasoning algorithms for differ-
ent DLs with concrete domains have been studied. This research in-
fluenced the design of the Ontology Web Language (OWL), which
supports a basic form of concrete domains, so-called datatypes.

Recently, resolution-based decision procedures for various DLs
have been developed [14, 12]. To extend these algorithms with sup-
port for concrete domains, we present a general approach for reason-
ing with a concrete domain in clausal calculi whose completeness
proof is based on the model generation method. Hence, our approach
can be combined with most state-of-the-art calculi, such as basic su-
perposition [4]. The main difference to (ordered) theory resolution
[19, 5] is that our calculus is compatible with redundancy elimina-
tion. Moreover, we address the problem of identifying the minimal
subset of clauses unsatisfiable in the theory. We next apply our ap-
proach to the decision procedure for SHIQ from [13], and show that
adding concrete domains does not increase reasoning complexity.

Due to space limitations, we are not able to include all technical
details in this paper, and refer the interested reader to [12].
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2 Resolution with Concrete Domains
Definition of a Concrete Domain. With x we denote a vector of

variables x1, . . . , xn and, for a function δ, with δ(x) we denote a
vector of values δ(x1), . . . , δ(xn).

Definition 1. A concrete domain D is a pair (4D, ΦD), where 4D

is a set, called the domain of D, and ΦD is a finite set of predicate
names. Each d ∈ ΦD is associated with an arity n and an extension
dD ⊆ 4n

D. A concrete domain D is admissible if: (i) ΦD is closed
under negation, i.e. for each d ∈ ΦD, there exists d ∈ ΦD with
dD = 4D \ dD, (ii) it contains a unary predicate >D interpreted
as 4D, and (iii) D-satisfiability of finite conjunctions of the form∧n

i=1 di(xi) is decidable. The latter is the case if there is a solution
δ such that δ(xi) ∈ dD

i , for each 1 ≤ i ≤ n.

Sometimes, we consider conjunctions over literals containing
terms, rather than variables. Let S = {di(ti)} be a set of literals,
where ti is a vector of terms ti1, . . . , tik. With Ŝ we denote a con-
junction C =

∧
di(xi), obtained from S by replacing each occur-

rence of a term with the same variable, such that different terms are
replaced with distinct variables. For two conjunctions C1 and C2, we
write C1 ≡ C2 if they are equivalent up to variable renaming.

We use the standard definitions of first-order clausal logics (see,
e.g. [6]). To separate the extension of the concrete and abstract do-
main, we assume a two-sorted signature with sorts a and c for the
abstract and the concrete domain. Moreover, we consider only ad-
missible concrete domains D, so we may assume that all predicates
from ΦD occur positively in clauses.

Definition 2. Let D be an admissible concrete domain, N a set of
clauses over a signature that includes all predicates from ΦD, and I
a “classic” Herbrand model of N , written I |= N , where concrete
predicates are treated as “normal” predicates. Let S = {di(ti)}
be the set of all concrete domain literals di(ti) ∈ I . Then I is a
D-model of N , written I |=D N , if, additionally, Ŝ is D-satisfiable.

Concrete Domain Resolution on Ground Clauses. We now
present the ground concrete domain resolution calculus, GD for
short, which extends the ordered resolution calculus from [3] with a
concrete domain resolution rule. As usual, GD is parameterized with
a reduction ordering � total on ground literals such that ¬A � A. A
literal L is (strictly) maximal in a clause C ∨ L if there is no literal
L′ ∈ C such that L′ � L (L′ � L). With � we also denote the
multiset extension of the literal ordering to clauses.

Definition 3. A set S = {di(ti)} of positive concrete literals is a
D-constraint if Ŝ is not D-satisfiable. A D-constraint S is minimal
if Ŝ′ is D-satisfiable, for each S′ ( S; S is connected if it cannot be
decomposed into two subsets without a common term.



It is easy to see [12] that each minimal D-constraint S is con-
nected, or conversely, if S is not connected, it is not minimal.

We now present the rules of GD. The clauses C ∨A∨ . . .∨A and
D ∨ ¬A are called main premises, whereas the clauses C ∨ A and
Ci ∨ di(ti) are called side premises.

Positive factoring:

C ∨ A ∨ . . . ∨ A

C ∨ A

(i) A is strictly maximal in C.

Ordered resolution:

C ∨ A D ∨ ¬A

C ∨ D

(i) A is strictly maximal in C,
(ii) ¬A is maximal in D.

Concrete domain resolution:

Ci ∨ di(ti), 1 ≤ i ≤ n

C1 ∨ . . . ∨ Cn

(i) di(ti) are strictly maximal in Ci,
(ii) the set S = {di(ti)} is a minimal

D-constraint.

It is well-known that effective redundancy elimination criteria are
necessary for theorem proving to be applicable in practice. A pow-
erful standard notion of redundancy was introduced in [3]. We adapt
this notion slightly to take into account the fact that the concrete do-
main resolution rule does not have a main premise. Then we show
the soundness and completeness of GD.

Definition 4. Let N be a set of ground clauses. A ground clause C
is redundant in N if there are clauses Di ∈ N , C � Di, such that
D1, . . . , Dm |= C. A ground inference π with side premises Ci and
a conclusion D is redundant in N if there are clauses Di ∈ N , such
that C1, . . . , Cn, D1, . . . , Dm |= D; if π has a main premise C,
then additionally C � Di.

Lemma 1 (Soundness). Let N be a set of ground clauses, I a D-
model of N , and N ′ = N ∪ {C}, where C is the conclusion of an
inference by GD with premises from N . Then I is a D-model of N ′.

Proof. For positive factoring or ordered resolution, soundness is triv-
ial [3]. Let C be obtained by the concrete domain resolution rule,
with S being as in the rule definition. Since S is a D-constraint, I is
a D-model of N only if some di(ti) ∈ S exists such that di(ti) /∈ I .
Since Ci ∨ di(ti) is by assumption true in I , some literal from Ci

must be true in I . Since Ci ⊆ C, C is true in I as well.

Lemma 2 (Completeness). Let N be a set of clauses such that each
inference by GD from premises in N is redundant in N . If N does
not contain the empty clause, then N is D-satisfiable.

Proof. (Sketch) We extend the model building method from [3] to
handle the concrete domain resolution rule. For a set of ground
clauses N , we define an interpretation I by induction on the clause
ordering � as follows: for some clause C, we set IC =

⋃
C�D

εD ,
where εD = {A} if (i) D ∈ N , (ii) D is of the form D′ ∨ A, such
that A is strictly maximal in D′, and (iii) D is false in ID; otherwise,
εD = ∅. Let I =

⋃
εD . A clause D such that εD = {A} is called

productive, and it said to produce the atom A in I .
Invariant (*): if C is false in IC ∪ εC , then C is false in I . Since

C is false in IC , all negative literals from C are false in IC , and
since IC ⊆ I , all negative literals from C are false in I as well.
Furthermore, since ¬A � A, any atom produced by a clause D � C
must be larger than any literal occurring in C, so no clause greater
than C can produce an atom that will make C true.

We now show that, if all inferences from premises in N are re-
dundant, I is a D-model of N . Assume that this were not the case.

The first possibility is that there is a counter-example clause from
N which is false in I . This case is identical to the one from [3],
so we omit the details. Roughly speaking, since � is well-founded
and total, there is a smallest counterexample C. Furthermore, there
is a redundant inference by GD with the main premise C and side
premises Ci which are true in I , and a conclusion D which is false
in I . Since the inference is redundant, there are clauses Di ∈ N ,
C � Di, such that D1, . . . , Dm, C1, . . . Cn |= D. Since C is the
smallest clause false in I and all Di are smaller than C, all Di are
true in I , so D would have to be true in I , which is a contradiction.

The second possibility is that all clauses from N are true in I , but
the set of concrete domain literals in I is not D-satisfiable. Then, I
contains a minimal connected D-constraint S = {di(ti)}. By defini-
tion of I , literals in S were produced by some Ei = Ci∨di(ti) ∈ N ,
where Ei is false in IEi

. For any i, since di(ti) is strictly maximal
in Ci, Ci is false in IEi

∪ εEi
, and by (*) Ci is false in I . Since

N is saturated, the inference by concrete domain resolution resulting
in D = C1 ∨ . . . ∨ Cn is redundant in N . Obviously, D is false in
I . Since the inference is redundant, non-redundant clauses Di ∈ N
exist, such that D1, . . . , Dm, C1 ∨ d1(t1), . . . , Cn ∨ dn(tn) |= D.
All Di and Ci ∨ di(ti) are by assumption true in I , implying that D
is true in I , which is a contradiction.

A fair derivation by GD is defined as usual, as a sequence of clause
sets N0, N1, . . . where Ni = Ni−1∪{C} and C is a consequence of
an inference rule of GD from premises in Ni−1 or Ni = Ni−1 \{C}
where C is redundant in Ni−1, and no inference is delayed indefi-
nitely. With N∞ we denote the set of clauses which never become
redundant in a derivation. By Lemmata 1 and 2, and the fact that N∞

is saturated, we get the following result:

Theorem 1. The set of ground clauses N is D-unsatisfiable iff the
limit N∞ of a fair derivation by GD contains the empty clause.

Concrete Domain Resolution on General Clauses. Lifting GD

to general clauses is not trivial. Consider e.g. the clause set N =
{d1(x1, y1), d2(x2, y2)}. A connected D-constraint can be obtained
by {x1 7→ x2, y1 7→ y2}, {x1 7→ y2, x2 7→ y1}, or similar substi-
tutions. To check all possible D-constraints at the ground level, one
has to consider all possible substitutions producing a connected D-
constraint at the non-ground level. We formalize this idea as follows.

Definition 5. Let S = {di(ti)} be a multiset of positive concrete
domain literals. A substitution σ is a partitioning unifier of S if the
set Sσ is connected. Furthermore, σ is a most general partitioning
unifier if, for any partitioning unifier θ such that Ŝσ ≡ Ŝθ, a substi-
tution η exists such that θ = ση. With MGPU(S) we denote the set
of all most general partitioning unifiers of S.

In [12], we show the property (♦): if θ is a partitioning unifier
of S, then there exists a most general partitioning unifier σ unique
up to variable renaming, such that Ŝσ ≡ Ŝθ. Also, in [12] we give
a complete, but inefficient algorithm for computing MGPU(S). In
Section 4 we present a specialized algorithm suitable for SHIQ(D).

We assume, as usual, that all clauses involved in an inference rule
do not have variables in common. The rules of the concrete domain
resolution calculus, RD for short, are given next, along with the
adaptation of the lifting lemma.

Lemma 3 (Lifting). Let N be a set of clauses with the set of ground
instances NG. For each ground inference πG by GD applicable to
premises CG

i ∈ NG, there is an inference π by RD applicable to
premises Ci ∈ N , where πG is an instance of π.



Positive factoring:

C ∨ A ∨ B

Cσ ∨ Aσ

(i) σ = MGU(A, B),
(ii) Aσ is strictly maximal in Cσ.

Ordered resolution:

C ∨ A D ∨ ¬B

Cσ ∨ Dσ

(i) σ = MGU(A, B),
(ii) Aσ is strictly maximal in Cσ,
(iii) ¬Bσ is maximal in Dσ.

Concrete domain resolution:

Ci ∨ di(ti), 1 ≤ i ≤ n

C1σ ∨ . . . ∨ Cnσ

(i) Ci ∨ di(ti) are not necessarily unique,
(ii) for S = {di(ti)}, σ ∈ MGPU(S),
(iii) di(ti)σ are strictly maximal in Ciσ,
(iv) Sσ is a minimal D-constraint.

Proof. If πG is an inference by positive factoring or ordered reso-
lution, the argumentation is the same as in the case of ordered res-
olution [3]. Let πG be an inference by concrete domain resolution,
and let S = {di(ti)} be the set of corresponding non-ground lit-
erals. Since Sτ is a minimal D-constraint, it is connected, so τ is
obviously a partitioning unifier of S. By (♦), there is a most general
partitioning unifier σ such that τ = ση for some η, and Ŝσ ≡ Ŝτ .
Obviously, if Sτ is a minimal D-constraint, so is Sσ. Furthermore,
if literals from Sτ are strictly maximal in CG

i , corresponding literals
from Sσ are strictly maximal in Ciσ, so DG = Dη.

We briefly comment on the constraint (i) of the concrete domain
resolution rule. Consider a clause d(x, y). It is possible that, for the
set S = {d(a, b), d(b, c)} of ground instances of d(x, y), the con-
junction Ŝ is D-unsatisfiable. This is detected by the concrete do-
main resolution rule only if several “copies” of the clause d(x, y) are
considered simultaneously. Without any assumptions on the nature of
the predicate d, there is no upper bound on the number of “copies”
that should be considered simultaneously. This property of the cal-
culus obviously leads to undecidability in the general case. To obtain
a decision procedure for SHIQ(D), in Section 4 we show that the
number of such “copies” to be considered is bounded.

The notion of redundancy is lifted as usual [3]: a clause C (an
inference π) is redundant in N if all ground instances of C (π) are
redundant in NG. This is enough for soundness and completeness of
RD, shown in [12] in the usual way, as in [3].

Theorem 2. The set of clauses N is D-unsatisfiable if and only if
the limit N∞ of a fair derivation by RD contains the empty clause.

Combining Concrete Domains with other Calculi. The concrete
domain resolution rule may be added to any calculus whose com-
pleteness proof is based on the model generation method [3]: the
usual arguments show that, if N∞ does not contain the empty clause,
then it has a model. Furthermore, the argument that I is a D-model
from Lemma 2 applies to each such calculus without modification.

3 Deciding SHIQ by Basic Superposition

We briefly overview our previous work on deciding SHIQ by ba-
sic superposition from [13], which provides the foundation for the
decision procedure we present in Section 4.

SHIQ Description Logic. Let NC and NRa
be sets of concept

and abstract role names, respectively. An abstract role is an abstract
role name or the inverse S− of an abstract role name S. A SHIQ
RBox R is a finite set of abstract role inclusion axioms R v S and
transitivity axioms Trans(R). The set of SHIQ concepts is defined

as the smallest set containing NC and, for C and D SHIQ con-
cepts, R an abstract role, S an abstract simple role (i.e. a role without
transitive subroles) and n an integer, ¬C, C u D, C t D, ∃R.C,
∀R.C, ≥ n S.C, and ≥ n S.C are also SHIQ concepts. A SHIQ
knowledge base KB consists of an RBox KBR, a TBox KBT (i.e.
a finite set of concept inclusion axioms C v D for C, D possibly
complex concepts), and an ABox KBA (i.e. a finite set of axioms
C(a), R(a, b), and (in)equalities a ≈ b and a 6≈ b). In [13], the se-
mantics of KB is given by translating KB into first-order logic, by
means of the operator π, in the standard way.4 The basic inference
problem for SHIQ is checking KB satisfiability, i.e. determining
whether a first-order model of π(KB) exists. ALCHIQ is the logic
obtained from SHIQ by disallowing transitivity axioms.

Basic Superposition Calculus. The basic superposition calculus,
BS for short, has been developed to optimize theorem proving with
equality [4]. A similar calculus was independently developed in [17].
The main feature of BS is that it prohibits superposition into terms
introduced by previous unification steps. Consider the following ex-
ample, where the initial clause set contains clauses (1) – (5). Clauses
(1), (2) and (3) can be resolved to produce (6). In [a] ≈ [b], a and b
have been produced through unification, which is denoted by mark-
ing them with [ ]. Clause (6) is superposed into (1) to obtain (7).
Since b in (7) is marked, superposition into it is prohibited. Hence,
(7) is resolved with (4) to produce (8) and then with (5) to produce
the empty clause.

(1) A(a) (6) [a] ≈ [b]
(2) B(b) (7) A([b])
(3) ¬A(x) ∨ ¬B(y) ∨ x ≈ y (8) C([b])
(4) ¬A(x) ∨ C(x) (9) 2

(5) ¬C(b)

In BS, clauses with marked terms are called closures. Further-
more, BS is parameterized with an admissible ordering on terms �,
and a selection function, selecting negative literals in the closure. For
the inference rules of BS, we direct the reader to [12]. Under the
notion of redundancy from [4], BS is sound and complete.

Deciding SHIQ by BS. To decide satisfiability of a SHIQ
knowledge base KB , we first eliminate transitivity axioms from KB

by translating it into an equisatisfiable ALCHIQ knowledge base
Ω(KB). A slight variant of this relatively standard transformation
has been presented in [20].

Next, we translate Ω(KB) into an equisatisfiable set of first-order
formulae π(KB), which we then transform into an equisatisfiable set
of closures Ξ(KB) using structural transformation [18]. For unary
coding of numbers, these steps are polynomial. By definition of π and
Ξ, we can show that Ξ(KB) contains only eight different so-called
ALCHIQ-closure types, presented below, where 〈t〉 means that t
may or may not be marked. ALCHIQ-closures share the following
property (♠): the depth of a functional term in a closure is limited
to two, and the number of variables in a closure is limited by the
maximal number n occurring in number restrictions ≥ n R.C and
≤ n R.C. The maximal number of different ALCHIQ-closures is
at most exponential in |KB |, for unary coding of numbers.

With BSDL we denote BS parameterized with a specific lexico-
graphic path ordering [3] and a selection function which selects all
negative binary literals. We saturate Ξ(KB) using BSDL with ea-
ger elimination of redundancy. The chosen parameters make BSDL

perform inferences only on literals containing a term of maximal

4 The set-theoretic semantics of SHIQ from [11] coincides with the one
provided by the translation operator π.



1 ¬R(x, y) ∨ Inv(R)(y, x)
2 ¬R(x, y) ∨ S(x, y)

3 Pf (x) ∨ R(x, 〈f(x)〉)

4 Pf (x) ∨ R([f(x)] , x)
5 P1(x) ∨ P2(〈f(x)〉) ∨

∨
〈fi(x)〉≈/6≈ 〈fj(x)〉

6 P1(x) ∨ P2([g(x)]) ∨ P3(〈f([g(x)])〉) ∨
∨

〈ti〉≈/6≈ 〈tj〉
where ti and tj are either f([g(x)]) or x

7 P1(x) ∨
∨

¬R(x, yi) ∨ P2(y) ∨
∨

yi ≈ yj

8 R(〈a〉 , 〈b〉) ∨ P(〈t〉) ∨
∨

〈ti〉≈/6≈ 〈tj〉
where t, ti and tj are either some constant b or fi([a])

depth. This, combined with the fact that basic superposition prohibits
inferences into terms introduced by previous unification steps, im-
plies another key property (♣): applying a BSDL inference rule to
ALCHIQ-closures results in an ALCHIQ-closure or is redundant.

Properties (♠) and (♣) imply that any BSDL derivation from
Ξ(KB) terminates: in the worst case, all possible ALCHIQ clo-
sures are computed. The number of such closures is exponential in
|KB |, and this set can be computed in time exponential in |KB |. Fi-
nally, since BSDL is sound and complete, saturation of Ξ(KB) by
BSDL decides satisfiability of KB .

Unfortunately, BSDL decides only the ALCHIQ− fragment of
ALCHIQ, where number restrictions are allowed only on roles
without subroles. E.g., a superposition from [f(g(x))] ≈ [h(g(x))]
into R(x, f(x)) results in C = R([g(x)] , [h(g(x))]). Such a closure
is not redundant in the general case and is not an ALCHIQ-closure.
In further inferences, C can produce closures with functional terms
of depth more than two, so termination of saturation is not guaran-
teed. We solve this problem by a technique called decomposition,
which does not affect completeness of BSDL. It replaces certain clo-
sures with simpler ones, which do not cause termination problems.
E.g., for C, decomposition introduces a new predicate QR,h, and re-
places C with QR,h([g(x)]) and ¬QR,h(x) ∨ R(x, [h(x)]). These
two closures are ALCHIQ-closures, so the properties (♠) and (♣)
hold. The predicate QR,h is unique for a pair of role and function
symbols R and h. Since there are only finitely many such pairs, only
a finite number of predicates is introduced, so saturation by BSDL

and eager decomposition terminates.

4 Deciding SHIQ(D) Description Logic
We now apply the concrete domain resolution to obtain a decision
procedure for SHIQ(D).

SHIQ(D) Description Logic. Apart from abstract roles, we as-
sume a disjoint set of concrete roles NRc

. For D an admissible con-
crete domain, SHIQ(D) is the extension of SHIQ with concepts
of the form ∃T1, . . . , Tm.d, ∀T1, . . . , Tm.d, ≤ n T , and ≥ n T , for
T(i) ∈ NRc

and d ∈ ΦD. Role inclusion axioms are not allowed
between abstract and concrete roles, and inverse concrete roles are
not allowed. The new concepts are translated into FOL as follows:

πy(./ n T, x) = ∃./ny : T (x, y), for ./∈ {≤,≥}
πy(∀T1, . . . , Tm.d, x) = ∀yi :

∧
Ti(x, yi) → d(y1, . . . , ym)

πy(∃T1, . . . , Tm.d, x) = ∃yi :
∧

Ti(x, yi) ∧ d(y1, . . . , ym)

Closures with Concrete Predicates. With BSD

DL we denote
the BSDL calculus extended with the concrete domain resolution
rule and eager decomposition. Transitivity elimination applies to
SHIQ(D) as well [13], so in the rest we focus on deciding satis-
fiability of an ALCHIQ knowledge base KB . Besides ALCHIQ-
closures, Ξ(KB) can additionally contain closures of the form listed
below. We call such closures ALCHIQ(D)-closures, and show that
the analogue of (♣) holds for them as well.

8 closure can additionally contain
. . . ∨ T(〈a〉 , 〈b〉) ∨ d(〈t1〉 , . . . , 〈tn〉) ∨

∨
〈ti〉≈/6≈ 〈tj〉

where ti and tj are either a constant b or a term fi([a])
9 ¬T (x, y) ∨ U(x, y)

10 Pf (x) ∨ T (x, 〈f(x)〉)
11 P(x) ∨ d(〈f1(x)〉 , . . . , 〈fn(x)〉) ∨

∨
〈fi(x)〉≈/6≈ 〈fj(x)〉

12 P(x) ∨
∨

¬T (x, yi) ∨
∨

yi ≈ yj

13 P(x) ∨
∨

¬Ti(x, yi) ∨ d(y1, . . . , yn)

Lemma 4. Let Ξ(KB) = N0, . . . , Ni∪{C} be a BSD

DL-derivation,
where C is the conclusion derived from premises in Ni. Then C is
either an ALCHIQ(D)-closure or it is redundant in Ni.

Proof. (Sketch) ALCHIQ(D)-closures are almost identical in
structure to ALCHIQ-closures. Hence, it is easy to see that this
property holds for all inferences by BSDL as before. The new aspect
is the application of the concrete domain resolution rule. Consider
n side premises Ci ∨ di(〈ti〉), each possibly having a free variable
xi, and let S = {di(ti)}. For any most general partitioning unifier
σ of S, Sσ is connected, so there are two possibilities. If all side
premises are of type 11, σ is of the form {x2 7→ x1, . . . , xn 7→ x1},
so the result is of type 11. If there is a side premise of type 8, since
Sσ is connected, it may not contain a variable, so σ is of the form
{x1 7→ c1, . . . , xn 7→ cn}, and the result is of type 8.

Termination and Complexity Analysis. We define the size of the
new constructs as follows: |∃T1, . . . , Tm.d| = |∀T1, . . . , Tm.d| =
2 + m. Let m denote the maximal arity of a concrete domain pred-
icate, d the number of concrete domain predicates, and f the num-
ber of function symbols in the signature of Ξ(KB). As in [12], f
is linear in |KB | for unary coding of numbers, since in skolem-
izing each ∃T1, . . . , Tm.d, we introduce m new function symbols.
ALCHIQ(D)-closures additionally contain literals of the form
d(〈f1(x)〉 , . . . , 〈fm(x)〉). The maximal non-ground closure will
contain all such literals, whose number is bounded by d(2f)m (the
factor 2 allows each functional term to be marked or not). Hence,
there are at most 2d(2f)m

closures containing different combinations
of literals. Thus we have to decide whether m is a parameter of the
input, or generally bounded. In the former case, the number of clo-
sures is doubly-exponential in the size of the input, whereas it is
“only” exponential in the latter. Note that this latter choice is jus-
tifiable from a practical view point: it is hard to imagine a concrete
domain with predicates of unbounded arity as well as a sequence of
concrete domains with increasing arities, but where the arity of each
domain is bounded. Under this assumption, m is a constant, the max-
imal length of a closure is polynomial in |KB |, and the number of
closures is exponential in |KB |. The following lemma is the last step
in determining the complexity of the decision algorithm.

Lemma 5. The maximal number of side premises participating
in a concrete domain resolution rule in a BSD

DL-derivation from
Lemma 4 is at most polynomial in |KB |, assuming a limit on the
arity of concrete predicates.

Proof. In an application of the concrete domain resolution rule, Sσ
does not contain repeated literals; otherwise Ŝσ contains repeated
conjuncts and is not minimal. Hence, in the worst case, each di(ti)σ
should be unique in Sσ. Let i be the number of individual names in
Ξ(KB). There are at most `ng = dfm distinct non-ground concrete
domain literals, and at most `g = d(i + if)m distinct ground con-
crete domain literals. Assuming a bound on m and unary coding of
numbers, both `ng and `g are polynomial in |KB |.

If all side premises are non-ground, since Sσ should be connected,
σ must be {x2 7→ x1, . . . , xn 7→ x1}. Hence, Sσ contains only one



variable x1, so the number of distinct literals in Sσ is bounded by
`ng . The number of non-ground side premises is also bounded by
`ng , and all side premises are unique up to variable renaming.

If there is a ground side premise, since Sσ should be connected,
σ is {x1 7→ c1, . . . , xn 7→ cn}. All literals in Sσ are ground, and
the number of distinct such literals is bounded by `g . The number of
side premises to be considered in this case is bounded by `g .

Theorem 3. Let KB be an ALCHIQ(D) knowledge base, defined
over an admissible concrete domain D, for which D-satisfiability of
finite conjunctions over ΦD can be decided in deterministic exponen-
tial time. Then saturation of Ξ(KB) by BSD

DL with eager elimina-
tion of redundancy decides D-satisfiability of KB and runs in time
exponential in |KB |, for unary coding of numbers and assuming a
bound on the arity of concrete predicates.

Proof. Since property (♣) holds for ALCHIQ(D)-closures, the ap-
plication of BSD

DL inferences to ALCHIQ(D)-closures can be per-
formed in exponential time. In addition, we show that applying the
concrete domain resolution rule does not take “too long”.

To apply the concrete domain resolution rule to a set of closures
N , one selects a subset N ′ ⊆ N . By Lemma 5, ` = |N ′| is polyno-
mial in |KB |, and N ′ contains at most ` variables. If all closures from
N ′ are non-ground, there is exactly one σ which unifies all of these
variables. If there is at least one ground closure, then each one of `
variables can be assigned to one of i individuals, thus giving i` com-
binations, which is exponential in |KB |. Closures in N ′ are chosen
from the maximal set of all closures which is exponential in |KB |,
and since |N ′| is polynomial in |KB |, the number of different sets N ′

is exponential in |KB |. Hence, the maximal number of D-constraints
that needs to be examined by the concrete domain resolution rule
is exponential in |KB |, where the length of each D-constraint is
polynomial in |KB |. Since satisfiability of each D-constraint can be
checked in deterministic exponential time, all necessary inferences
by BSD

DL can be performed in exponential time.

Lemma 5 demonstrates how to implement the concrete domain
resolution rule. For non-ground closures, the most general partition-
ing unifier is σ = {x2 7→ x1, . . . , xn 7→ x1}. Hence, one should
consider only closures with maximal literals unique up to variable
renaming, so several “copies” of a closure need not be considered.

For a concrete domain resolution inference where at least one clo-
sure is ground, one first chooses a connected set of ground closures
∆. Let ∆c be the set of constants, and ∆f the set of function sym-
bols occurring in a ground functional term f(c) in a closure from ∆.
The most general partitioning unifier σ may contain only mappings
of the form xi 7→ c, where c ∈ ∆c. Hence, one selects the set ∆ng

of non-ground closures containing a functional term in ∆f . To ap-
ply the concrete domain resolution rule, one considers at most |∆c|
“copies” of a closure from ∆ng , since σ might assign a distinct value
from ∆c to each such closure.

5 Conclusion
In this paper we have shown how a wide range of resolution-based
decision procedures for first order logic can be extended with ad-
missible concrete domains. Our approach is applicable to any clausal
calculus whose completeness proof is based on the model generation
method. We have exemplified the usefulness of our approach by ex-
tending the basic superposition decision procedure for SHIQ with
concrete domains, thus providing an optimal decision procedure for
SHIQ(D), a logic lying at the heart of the Semantic Web ontology

language OWL-DL. These algorithms can be used to extend the re-
duction of SHIQ knowledge bases to disjunctive datalog presented
in [13] to handle SHIQ(D) knowledge bases.

Part of our future theoretical work will be the extension of our de-
cision procedure to handle nominals. This is a non-trivial task since,
in the presence of nominals, we will have to handle novel forms of
closures, and thus have to find new termination mechanisms. On the
practical side, we are currently implementing a new description logic
reasoner using the calculus presented here and the above mentioned
reduction to disjunctive datalog. Once the reasoner is complete, we
shall compare its performance with state-of-the-art systems such as
FaCT and Racer [9, 8] to validate our approach in practice.
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