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Abstract

Answering queries over large datasets extended with Datalog rules plays a key role in numerous data management applications,
and it has been implemented in several highly optimised Datalog systems in both academic and commercial contexts. Many
systems implement reasoning via materialisation, which involves precomputing all consequences of the rules and the dataset in
a preprocessing step. Some systems also use incremental reasoning algorithms, which can update the materialisation efficiently
when the input dataset changes. Such techniques allow queries to be processed without any reference to the rules, so they are
often used in applications where the performance of query answering is critical.

Existing materialisation and incremental reasoning techniques enumerate all possible ways to apply rules to the data in order
to derive all relevant consequences. This, however, can be inefficient because derivations of rules commonly used in practice are
redundant; for example, rules axiomatising a binary predicate as symmetric and transitive can have a cubic number of applica-
tions, yet they can derive at most a quadratic number of facts. Such redundancy can be a significant source of overhead in practice
and can prevent Datalog systems from successfully processing large datasets. To address this issue, in this paper we present a
novel framework for modular materialisation and incremental reasoning. Our key idea is that, for certain combinations of rules
commonly used in practice, all consequences can be derived using specialised procedures that do not necessarily enumerate all
possible rule applications. Thus, our framework supports materialisation and incremental reasoning via a collection of modules.
Each module is responsible for deriving consequences of a subset of the program, by using either standard rule application or
proprietary algorithms. We prove that such an approach is complete as long as each module satisfies certain properties. Our
formalisation of a module is very general, and in fact it allows modules to keep arbitrary auxiliary information.

We also show how to realise custom procedures for four types of modules: transitivity, symmetry–transitivity, chain rules,
and sequencing elements of a total order. Finally, we demonstrate empirically that using our custom procedures can speed
up materialisation and incremental reasoning by several orders of magnitude on several well-known benchmarks. Thus, our
technique has the potential to significantly improve the scalability of Datalog reasoners.

1. Introduction

Datalog [1] is a prominent formalism that can be used to describe a domain of interest using a set of ‘if-then’ rules that
can be applied to a set of explicitly given facts to produce fresh facts describing the domain. Rules are iteratively applied up to
a fixpoint, which allows Datalog to express common second-order properties such as reachability and transitive closure. This
expressive power has made Datalog very popular in academia and practice. In the database community, Datalog is often seen as
a quintessential recursive query language [8, 18, 34, 74]. In the artificial intelligence community, it is often used as a knowledge
representation formalism [26]. In the Semantic Web community, Datalog is frequently used as mechanism for answering queries
over ontologies; for example, answering queries over OWL 2 RL [59] ontologies, possibly extended with SWRL rules [42], can
be realised using Datalog. The computational properties and expressive power of Datalog are well understood [19]. Moreover,
many useful extensions of basic Datalog have been proposed, such as stratified [71], well-founded [84], or stable [30] negation-
as-failure; disjunction [31, 27]; and aggregation [49, 28, 75].

A key computational task in Datalog applications is answering queries over facts derived from a set of Datalog rules and a
set of explicitly given facts; this is also known as Datalog reasoning in knowledge representation and reasoning—a prominent
branch of AI. While not the only one, a common way to solve this problem is to precompute and store all derived facts so that
queries can be directly evaluated over all (i.e., both explicitly given and derived) facts without further consulting the rules. We
refer to both this process and its output as materialisation. Materialisation-based query answering has been implemented in
many systems, including but not limited to WebPIE [82], VLog [16], Oracle’s RDF Store [89], OWLIM [12], and RDFox [66].
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The naïve materialisation strategy involves repeatedly apply the Datalog rules until no new fact can be derived. The seminaïve
evaluation strategy [1] optimises this process by requiring each inference to involve at least one fact derived in the previous
iteration; this ensures that each combination of a rule and a set of facts matching the ‘if’ part are considered exactly once.

Recomputing the materialisation ‘from scratch’ whenever the input facts change is often infeasible in practice. Thus, a key
challenge in materialisation-based systems is the incremental update problem, which is to update the materialisation efficiently
(i.e., without repeating most of the work). Fact addition can be handled effectively using the seminaïve algorithm, but fact deletion
is much more involved since one has to check whether deleted facts have derivations that persist after the update. The Counting
[39] and Delete/Rederive (DRed) [39, 78] algorithms are two widely known and used solutions to the incremental update problem,
with the former one being applicable to nonrecursive rules only. The basic ideas behind Counting and DRed have been further
extended, and several highly optimised algorithms such as the Backward/Forward (B/F) algorithm [64], the Forward–Backward–
Forward (FBF) algorithm [65], and DRedc and B/Fc [43] have been presented recently. All of these approaches use a variant of
the seminaïve evaluation to apply rules to sets of facts.

These techniques have successfully been used in many practical applications. For example, Datalog has been used to suc-
cinctly express and evaluate network protocols [56, 54, 55], describe complex quality measures from healthcare records [70],
express data analytics tasks in distributed computing [5, 6], specify information extraction tasks over unstructured and semi-
structured data [32, 76], capture program analysis tasks [15, 87], and encode security policies [22, 47]. This growing interest in
Datalog has motivated the development of many highly optimised academic and commercial systems, such as VLog, Oracle’s
RDF store, RDFox, LogicBlox [7], Vadalog [11], GraphDB [33], and Datomic [20].

This growing body of experience has uncovered a new source of inefficiency in Datalog-based applications: Datalog rules
commonly used in practice are redundant in the sense that one fact is often derived by several different rule applications. Thus,
although seminaïve evaluation ensures that each rule application is considered just once, the same fact can nevertheless be
derived afresh for each distinct rule application; for example, when applied to facts R(a, b1), . . . ,R(a, bn), rule R(x, y)→ S (x)
derives S (a) using n distinct rule applications. To see how this can be detrimental to the scalability of Datalog systems, consider
Datalog rules that axiomatise a binary predicate as symmetric and transitive. In Section 4 we show that, given facts that encode
a graph consisting of n connected vertices, these rules have O(n3) possible applications. Note, however, that the symmetric–
transitive closure of a binary relation over n elements contains only n2 facts; thus, each fact is repeatedly derived by n rule
applications. Since the seminaïve algorithm enumerates all possible rule applications, its running time is also cubic. In contrast,
the symmetric–transitive closure can be computed in quadratic time: we first compute the strongly connected components of the
graph in O(n) steps, and then for each component we introduce an edge between all component vertices. In other words, using
a customised procedure we can solve the problem without enumerating all possible rule applications. In Sections 4, 6.4, and 6.5
we show further examples of commonly used rules and facts on which seminaïve evaluation suffers from similar redundancy.

In this paper we explore ways of improving the performance of materialisation and incremental updates by handling specific
Datalog rules using specialised algorithms (instead of using generic seminaïve evaluation). Similar attempts have already been
made in the literature. For example, several techniques have been developed for maintaining transitive closure of a binary
relation [46, 51, 50, 21], and they have been used to compute closure of transitive and symmetric properties in RDFS-Plus [80].
An extensive body of research has been devoted to the investigation of database properties (e.g., connectivity, transitive closure,
or domain parity) by evaluating first-order queries over the database and the updates [69, 24, 25, 53]. While these approaches
have proved to be very effective, all of them handle only a specific set of rules, and it is unclear how to integrate them into a
general framework that supports arbitrary rules. For example, if a set of Datalog rules axiomatises a predicate as transitive and
the same predicate is used in other rules, then the facts derived by transitivity may trigger other rules and vice versa; thus, a
custom procedure for transitivity needs to exchange information with other custom procedures and/or seminaïve evaluation. As
we show in this paper, organising this communication in an efficient way is far from straightforward. Moreover, many of these
approaches cannot handle deletion of input facts, which is a key problem in incremental updates.

To address these issues, in Section 5 we present a framework for materialisation and incremental updates that integrates
specialised algorithms with the seminaïve evaluation in a truly modular way. In our approach, a Datalog program is partitioned
into disjoint subsets called modules. For each module, one must provide three functions that compute certain consequences of
the module’s rules. There are no restrictions on how these functions are realised, and, if no specialised algorithms are available,
one can use seminaïve evaluation for this purpose. We then present algorithms for computing the materialisation and incremental
updates that, instead of using seminaïve evaluation directly, call the three functions for the modules of the program. Effectively,
the key aspect of our framework is organising the exchange of information between different modules. We prove that our
algorithms are sound, complete, and terminating as long as all module functions satisfy certain formal properties. Moreover, our
framework retains the good properties of standard materialisation algorithms in the sense that, when all module functions are
implemented using seminaïve evaluation, then each rule application is considered exactly once.

A key challenge in our work is to capture the formal requirements on module functions in a sufficiently general way. A key
problem is to allow modules to maintain auxiliary information that can speed up the computation of updates. For example, in the
case of the symmetric–transitive closure mentioned earlier, it is beneficial to maintain the list of strongly connected components.
To obtain a general framework, we should not make any assumptions about the structure of information maintained by each
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module, which in turn makes formalising the requirements on module functions difficult. We address this issue by imposing
conditions not just on each individual function call, but also on the sequence of calls over the lifetime of a module.

Next, in Section 6.1 we introduce a concept that allows modules to exchange information about the truth of facts after the
update; most modules we discuss in this paper use this concept to avoid overdeleting facts that can be easily shown to hold after
the update. Then, in Sections 6.2 to 6.5 we show how to realise the three functions for four modules commonly used in practice:
transitive closure, symmetric–transitive closure, chain rules, and sequencing elements of a total order. In each case, we prove
that our functions satisfy the properties required by our framework.

Finally, in Section 7 we validate our approach empirically. After implementing all four modules in a prototype Datalog rea-
soner, we have evaluated the performance of modular materialisation and incremental reasoning in several real-life and synthetic
datasets. Our results show that custom algorithms can often improve the performance of Datalog systems by several orders of
magnitude. We identified several cases where both materialisation and incremental updates times drop from several hours to only
a few seconds when our optimisations are enabled. Thus, our techniques seem to make an important contribution to pushing the
boundary of scalability of practical Datalog systems.

This is a substantial extension of our earlier work published at the AAAI 2019 conference [44]. New material includes
a completely new formalisation of the modular reasoning framework that allows us to decouple the framework correctness
argument from module function correctness proofs, algorithms for two additional modules along with their correctness proofs,
evaluation results on three additional benchmarks, and an empirical comparison of our approach with the B/Fc algorithm.

2. Related Work

In this section, we present an overview of existing approaches to materialisation and incremental update, and we also survey
related approaches that handle specific types of rules using custom algorithms. The incremental update problem has been studied
extensively in relational databases as the problem of view maintenance, where views over base relations are defined using queries
and materialised for query evaluation; thus, views need to be updated when base relations change.

2.1. Datalog Materialisation

Bancilhon [10] originally introduced the seminaïve evaluation strategy for materialising recursively defined relations. Ra-
makrishnan et al. [73] studied the impact of rule orderings on the performance of seminaïve evaluation, and proposed variants
of seminaïve evaluation capable of handling user-defined rule orderings (but without clarifying how to automatically identify
‘good’ orderings). Ramakrishnan et al. [74] have implemented the seminaïve evaluation strategy in the CORAL Datalog system.
Ganguly et al. [29] and Zhang et al. [90] considered parallelising seminaïve evaluation of Datalog programs by statically assign-
ing rule instantiations to different processors. In contrast, Motik et al. [61] proposed a parallel variant of the seminaïve evaluation
that dynamically partitions rule instantiations and is thus less susceptible to workload skew. Urbani et al. [83] and Hu et al. [45]
presented variants of seminaïve evaluation that exploit column-oriented data formats.

2.2. Maintenance of Nonrecursive Views

Blakeley et al. [14] presented an approach for maintaining views defined by Select-Project-Join (SPJ) queries based on
derivation counting. The idea is to associate with each tuple in the materialised view a counter that tracks the number of the
tuple’s derivations. The counter gets incremented when a new derivation becomes available, and it gets decremented when an
existing derivation no longer holds. Thus, a tuple can be safely deleted when its counter drops to zero. Hanson [40] refined this
approach further, and compared the cost of counting with the cost of view rematerialisation. Nicolas and Yazdanian [67] and
Gupta et al. [39] presented similar approaches for maintaining views defined by nonrecursive Datalog programs.

Ceri and Widom [17] presented an approach that incrementally maintains duplicate-free views by using production rules
automatically generated from view definitions. Qian and Wiederhold [72] presented an approach that handles views defined
by relational algebra. This approach does not use any additional bookkeeping; rather, it computes the necessary updates by
evaluating maintenance queries derived from view definitions. Griffin et al. [36] showed that this method does not always
compute minimal maintenance queries, and they presented an improved variant that preserves minimality. Griffin and Libkin
[35] also extended this idea to relational algebra with bag semantics, which also allows for view definitions with aggregate
functions. A key advantage of algebraic approaches over algorithmic solutions is that view updates are computed using queries,
and the evaluation of the latter can be optimised using standard techniques. Vista [85, 86] implemented a query optimiser that
extended standard query optimisation techniques to support maintenance queries.

2.3. Maintenance of Recursive Views

Gupta et al. [38] extended the counting approaches by Nicolas and Yazdanian [67] and Gupta et al. [39] to recursive Datalog
rules, but this approach is incorrect when a fact recursively derives itself. Wolfson et al. [88] proposed a counting-based algorithm
that overcomes the above problem and is capable of handling recursion correctly for arbitrary datasets, and Dewan et al. [23]
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reformulated this algorithm and proved its correctness. The main idea is to maintain, for each fact, several derivation counters,
where the i-th counter reflects the number of derivations of the fact in the i-th round of rule application during materialisation. A
major drawback of this algorithm is that it is based on the naïve evaluation strategy for Datalog, which is inherently inefficient.
Motik et al. [65] described an optimised variant of this algorithm based on the more efficient seminaïve evaluation strategy.

Gupta et al. [39] proposed the Delete/Rederive (DRed) algorithm that can update views defined by general (i.e., recursive)
Datalog programs without any bookkeeping. To handle fact deletion (which is usually more difficult than fact addition), the
algorithm first deletes all consequences of the deleted facts, and then rederives facts that still hold (i.e., that have alternative
derivations) after the update. Staudt and Jarke [78] presented a closely related algorithm, but formalised it declaratively: instead
of presenting a procedure, updates are computed by evaluating maintenance Datalog rules. Motik et al. [65] identified several
inefficiencies of these algorithms and presented a significantly optimised variant of DRed.

Recently, Motik et al. [64] proposed the Backward/Forward (B/F) incremental update algorithm, which eagerly identifies
alternative derivations of facts during deletion so that deletion becomes exact. Motik et al. [65] further presented the For-
ward/Backward/Forward (FBF) algorithm, which generalises both DRed and B/F.

DRed, B/F, and FBF all use ‘backward’ rule evaluation to find alternative derivations of a fact, which involves matching a
fact with the rule head, instantiating the matched variables in the body, and evaluating the resulting body as a query. This query,
however, can be difficult to evaluate in some cases [43], which can prevent efficient incremental updates. To overcome this, Hu
et al. [43] recently proposed the DRedc and B/Fc algorithms, which combine counting with DRed and B/F. In particular, the
B/Fc algorithm associates with each fact a counter of nonrecursive derivations, which is used to prevent overdeletion of facts that
clearly hold; this, in turn, avoids unnecessary ‘backward’ rule evaluation. Moreover, the DRedc algorithm additionally keeps
track of recursive derivations for each fact; then, after overdeletion, precisely the facts with nonzero recursive derivations need
to be rederived, and this can be done without any ‘backward’ rule evaluation.

2.4. Using Custom Solutions for Specific Types of Rules

Dong et al. [24] presented an algorithm that can incrementally update query answers of a regular chain Datalog program
by constructing and evaluating a nonrecursive Datalog program. Subercaze et al. [80] applied Nuutila’s algorithm for transitive
closure [68] to handle transitive and symmetric properties in RDFS-Plus. While these approaches provide custom algorithms for
specific rule sets, it is unclear whether and how they can be combined with arbitrary rules. In contrast, the main objective of
our work is to devise a general framework that can integrate custom solutions with standard seminaïve evaluation; thus, custom
solutions can be used to improve the performance of reasoning without sacrificing the expressivity and generality of Datalog.

To optimise reasoning with Datalog programs containing the equality predicate, Motik et al. [63] devised a rewriting based
approach that involves choosing a representative resource for each clique of elements that are equal and replacing all resources
with their representatives; this approach has also been extended to support incremental materialisation maintenance [62].

In their GLog engine (which is an extension of VLog), Tsamoura et al. [81] used an earlier version of our work [62] to
optimise materialisation (but not incremental update) of transitive and symmetric–transitive rules. Their experimental results
agree with ours and show that using custom algorithms can indeed speed up materialisation by orders of magnitude.

3. Preliminaries

We now recapitulate the definitions of the syntax and the semantics of Datalog. We consider the variant of Datalog with
stratified negation, which we further extend slightly by allowing negation over existentially quantified conjunctions of atoms.
This extension allows us to capture rules for sequencing elements of a total order that we consider in Section 6.5.

A Datalog signature consists of infinite and disjoint sets of constants and predicates, where each predicate is associated with
a nonnegative integer arity. In addition, the set of variables is infinite and disjoint from the signature. Unless otherwise stated,
in this paper we denote constants using (possibly indexed) lowercase letters from the beginning of the alphabet (a, b, c, . . .),
variables using lowercase letters from the end of the alphabet (x, y, z, . . .), and predicates using uppercase letters usually taken
from the middle of the alphabet (P,R, S , . . .). A term is a constant or a variable, and an atom is an expression of the form
P(t1, . . . , tk), where P is predicate of arity k, and t1, . . . , tk are terms. A fact is a variable-free atom, and a dataset is a finite set of
facts. Occasionally, we call a fact/atom a P-fact or P-atom to stress that the predicate of the fact/atom is P. A negative literal is
an expression the form

not∃x1, . . . , xk.[C1 ∧ · · · ∧Cℓ],

where x1, . . . , xk are variables, and each Ci with 1 ≤ i ≤ ℓ is an atom; when k = 0, we simply write not [C1 ∧ · · · ∧Cℓ]. A variable
occurring in some Ci but not in x1, . . . , xk is said to be free in the literal. Analogously, each variable occurring in an atom is said
to be free in that atom. A rule is an expression of the form

B1 ∧ · · · ∧ Bm ∧ Lm+1 ∧ · · · ∧ Ln → H,
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where 0 ≤ m ≤ n, each Bi with 1 ≤ i ≤ m is an atom, each Li with m + 1 ≤ i ≤ n is a negative literal, and H is an atom. Each
rule must be safe—that is, each variable free in H or some Li must also be free in some B j. For r a rule, h(r) = H is the
head, b+(r) = {B1, . . . , Bm} is the set of positive body atoms, b−(r) = {Lm+1, . . . , Ln} is the set of negative body literals, and
b(r) = b+(r) ∪ b−(r). A (Datalog) program is a finite set of rules.

Variants of Datalog typically considered in the literature do not allow negative literals to contain existentially quantified
conjunctions—that is, negative literals are usually of the form not C where C is an atom. Example 1 illustrates why we consider
this extension and shows that doing so does not affect the properties of Datalog in any substantial way.

Example 1. In Section 6.5 we discuss a common practical use case that involves evaluating rules of the following form:

P(x) ∧ P(y) ∧ R(x, y) ∧ not∃z.[P(z) ∧ R(x, z) ∧ R(z, y)]→ S (x, y). (1)

To reduce rule (1) to ‘standard’ Datalog, we can replace the conjunction with an atom containing a fresh binary predicate Q that
is defined to contain the same tuples as the conjunction. In other words, we can replace rule (1) with the following rules:

P(x) ∧ P(y) ∧ R(x, y) ∧ not Q(x, y)→ S (x, y) (2)
P(z) ∧ R(x, z) ∧ R(z, y)→ Q(x, y). (3)

It is straightforward to see that, on any set of explicitly given facts, rule (1) produces the same facts as rules (2)–(3) for all
predicates apart from Q. The main drawback of such a rewriting is practical: the arity of the replacement predicate must be
equal to the number of free variables of the conjunction and materialising predicates can incur a considerable overhead. In
the setting we consider in Section 6.5, we can evaluate rule (1) easily, whereas materialising predicate Q would be prohibitive.
Thus, our extension of negation to existentially quantified conjunctions allows us to discuss an interesting use case from both the
theoretical and practical perspective.

Some definitions of Datalog, particularly those in the database literature, distinguish extensional and intensional predicates:
the former are allowed to occur in the explicitly given facts and rule bodies, and the latter are allowed to occur in rule bodies and
heads. In this paper we use the knowledge representation perspective on Datalog where this distinction is typically not made.

We next recapitulate conditions on the structure of Datalog programs that allow negation to be interpreted in an intuitive way.
A stratification λ of a program Π is a surjection from the predicates in the signature to the set {1, 2, . . . , S } for some integer S
such that, for each rule r ∈ Π with predicate P occurring in h(r) and each predicate R occurring in b+(r) (resp. b−(r)), we have
λ(P) ≥ λ(R) (resp. λ(P) > λ(R)). Program Π is stratifiable if a stratification λ of Π exists; note that more than one such λ may
exist. In this paper, we shall consider only stratifiable programs. A rule r with predicate P occurring in h(r) is recursive w.r.t.
λ if λ(P) = λ(R) holds for some predicate R occurring in b+(r); otherwise, r is nonrecursive w.r.t. λ. For s in the range of λ, we
define Πs as the subset of the program Π that contains each rule r ∈ Π such that λ(P) = s where P is the predicate of h(r). We
call program Πs a stratum, and we call s a stratum index. We define Πs

r and Πs
nr as the recursive and the nonrecursive subsets,

respectively, of Πs. For each s with 1 ≤ s ≤ S , let

Os = {P(c1, . . . , cn) | P is a predicate of arity n with λ(P) = s, and ci are constants in the signature}.

Thus, Os contain all facts that can be constructed from constants in the signature and predicates with stratum index s; thus, each
fact in Os can be defined only using the rules in Πs. Moreover, to simplify the presentation of certain technical results, we extend
this definition to s = 0— that is, we define O0 = ∅. Finally, we define O≤s =

⋃
0≤s′≤s Os′ and O<s =

⋃
0≤s′<s Os′ .

A substitution σ is a function from variables to terms that is not an identity on finitely many variables. For α a term, an atom,
a negative literal, a rule, or a set thereof, ασ is the result of replacing each free occurrence of a variable x in α with σ(x). For r
a rule and σ a substitution mapping all free variables of r to constants, rule rσ is an instance of r. A unifier of atoms α and β is
a substitution σ such that ασ = βσ; such σ is a most general unifier if, for each unifier ρ of α and β, there exists a substitution η
such that ρ(x) = η(σ(x)) for each variable x. The most general unifier of α and β is unique up to variable renaming.

Now let I be a dataset. For F a fact, we write I |= F if F ∈ I holds. For L = not∃x1, . . . , xk.(C1 ∧ · · · ∧Cℓ) a negative literal
with no free variables, we write I |= L if no substitution σ of x1, . . . , xk exists such that I |= Ciσ holds for each 1 ≤ i ≤ ℓ. For S a
set consisting of facts and negative literals with no free variables, we write I |= S if I |= α for each α ∈ S . For Π a program, the
set Π

[
I
]

of all facts obtained by applying the rules of Π to I is defined as

Π
[
I
]
=
⋃
r∈Π

{h(rσ) | rσ is an instance of r such that I |= b(rσ)}. (4)

Let E be a dataset of explicitly given facts and let λ be a stratification of Π with maximum stratum index S . Then, let I0
∞ = ∅; for

each s with 1 ≤ s ≤ S , let

I s
0 = I s−1

∞ ∪ (E ∩ Os), I s
i = I s

i−1 ∪ Π
s[I s

i−1
]

for i > 0, and I s
∞ =
⋃
i≥0

I s
i . (5)
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Algorithm 1 Mat(Π, λ, E)
1: I ··= ∅
2: for each stratum index s with 1 ≤ s ≤ S do
3: ∆ ··= (E ∩ Os) ∪ Πs

nr
[
I
]

4: while ∆ , ∅ do
5: N ··= {h(rσ) | r ∈ Πs

r and rσ is an instance of rule r such that I ∪ ∆ |= b(rσ) and I ̸|= b+(rσ)}
6: I ··= I ∪ ∆
7: ∆ ··= N \ I

Set IS
∞ is the materialisation of Π w.r.t. E and λ. It is known that IS

∞ does not depend on λ, so we write it as Π∞[E]. For s with
0 ≤ s ≤ S , we often use the following abbreviations for various subsets of the materialisation:

Π∞[E]s = Π∞[E] ∩ Os Π∞[E]<s = Π∞[E] ∩ O<s Π∞[E]≤s = Π∞[E] ∩ O≤s. (6)

The inferences of a negation-free Datalog program for each predicate can be characterised by a possibly infinite set of rules
obtained by the process of rule unfolding. Specifically, let r and r′ be negation-free rules of the forms B1 ∧ · · · ∧ Bm → H and
B′1 ∧ · · · ∧ B′n → H′, respectively, that do not share a variable. Then, the unfolding of r at position i with r′ is the rule

B1σ ∧ . . . Bi−1σ ∧ B′1σ ∧ · · · ∧ B′nσ ∧ Bi+1σ ∧ · · · ∧ Bmσ→ Hσ (7)

where σ is the most general unifier of H′ and Bi. If r and r′ share variables, we simply rename variables in r and apply the
unfolding. Now let Π be a negation-free Datalog program, let P be an n-ary predicate, and let UP be the smallest set of rules
that contains P(x1, . . . , xn)→ P(x1, . . . , xn), as well as each unfolding of each rule r ∈ UP at each position with each rule r′ ∈ Π.
Then, for each dataset E and constants a1, . . . , an, we have P(a1, . . . , an) ∈ Π∞[E] if and only if P(a1, . . . , an) ∈ UP[E].
4. Motivation

In this section, we discuss the motivation for our work. To this end, in Section 4.1 we present a brief summary of the
seminaïve evaluation and its properties. Then, in Section 4.2 we show how seminaïve evaluation can be inefficient on several
types of rules commonly used in practice. Finally, in Section 4.3 we show how these inefficiencies can be overcome by deriving
the relevant consequences using custom algorithms, and we outline the main challenges to doing so.

4.1. Seminaïve Evaluation
The materialisation of a program Π on a set E of explicitly given facts can be computed by applying the rules of Π to E

iteratively as suggested in Section 3. Now consider the dataset I1 = E ∪ Π
[
E
]

obtained after the first application of Π to E: since
E ⊆ I1, each rule that is applicable to E is also applicable to I1; thus, a straightforward computation of I2 = I1 ∪ Π

[
I1
]

would
repeat all the work done to compute I1. Because of this, such a naïve evaluation algorithm is not suitable for practical use.

The objective of the seminaïve evaluation [1] is to make materialisation-based reasoning practically feasible by eliminating
this source of inefficiency. Its pseudocode is shown in Algorithm 1. The algorithm takes as input a set of explicitly given facts
E, a program Π, and a stratification λ of Π, and it computes the materialisation Π∞[E].

The seminaïve algorithm considers each stratum index s with 1 ≤ s ≤ S (lines 2–7), and for each it applies the rules of
stratum Πs in rounds as long as new facts are derived (lines 4–7). During this process, the auxiliary set ∆ contains the facts
freshly derived in the most recent round of rule application. Before the first round, set ∆ is initialised (line 3) as the union of
E ∩ Os (i.e., the explicitly given facts that belong to the stratum with index s and should thus be added to the materialisation)
and the consequences of the nonrecursive rules Πs

nr on the facts derived thus far. Since the nonrecursive rules are applied just
once, we can use Πs

nr
[
I
]

from equation (4) without the danger of repeating derivations. Only the recursive rules Πs
r need to

be applied iteratively, and the freshly derived consequences of such rules are added to ∆ as input to the next round (line 5).
Conditions I ∪ ∆ |= b(rσ) and I ̸|= b+(rσ) express the so-called nonrepetition property: in each round, only instances rσ of a
rule r that become applicable as a result of deriving ∆ in the immediately preceding round need to be considered. Motik et al.
[65, Section 9.2] discuss several ways to implement this condition efficiently in practice, but the more abstract formulation in
line 5 is sufficient for this paper. It is straightforward to see that I = Π∞[E] holds when the algorithm terminates.

4.2. Shortcomings of Seminaïve Evaluation
Although seminaïve evaluation does not repeat derivations, it always considers all applicable rule instances. However, in

many programs commonly used in practice, the same fact is often derived via multiple, distinct rule instances; this is particularly
common with recursive rules, examples of which we present next. Such redundancy, however, is not restricted to just recursive
rules: in Section 6.4 we consider a class of rules that can be susceptible to redundant derivations even when they are nonrecursive.
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Example 2. Let Π1 be the program containing rule (8) that axiomatises a binary predicate R as being transitive. Moreover,
consider the set of explicitly given facts E1 = {R(ai, ai+1) | 0 ≤ i ≤ n}.

R(x, y) ∧ R(y, z)→ R(x, z) (8)

Clearly, I = Π1
∞[E1] = {R(ai, a j) | 0 ≤ i < j ≤ n}, so each rule instance of the form

R(ai, ak) ∧ R(ak, a j)→ R(ai, a j) (9)

with 1 ≤ i < k < j ≤ n is applicable to I. Thus, each fact R(ai, a j) is derived j − i times using different instances of rule (8).

Example 3. Let Π2 be the program containing rules (8) and (10), and let E2 = {R(ai, ai+1) | 1 ≤ i < n} ∪ {R(an, a1)}.

R(x, y)→ R(y, x) (10)

Clearly, I = Π2
∞[E2] = {R(ai, a j) | 1 ≤ i, j ≤ n}, so each rule instance of the form (9) with 1 ≤ i, j, k ≤ n is applicable to I. Thus,

each fact R(ai, a j) is derived n times using different instances of rule (8).

Seminaïve evaluation considers each applicable rule instance exactly once, so it runs in time O(n3) in both cases. In our
practical experience, this can be unfeasible when n is in the order of tens of thousands. Thus, Datalog reasoners based on
seminaïve evaluation face significant scalability challenges in practice.

4.3. Avoiding Redundant Derivations
While the programs in Examples 2 and 3 both incur a cubic number of derivations, they derive only quadratically many

facts. Thus, it is natural to ask whether the materialisation can be computed without necessarily enumerating all applicable
inferences. Transitive closure of a graph with n vertices and m edges can be computed using the Floyd-Warshall algorithm in
O(n3) time, using breath- or depth-first search to identify vertices reachable from every vertex in the graph in O(n2 + n ·m) time,
or using log n matrix multiplications. The current best asymptotic complexity of matrix multiplication is O(n2.3728596) [3], but the
constant factors make this algorithm unsuitable for practice; moreover, m can be quadratic in n, which suggests that finding an
algorithm with worst-case running time better than O(n3) might be hard. However, we show in Example 4 that, for the dataset
from Example 2 (which is arguably relatively common in practice), transitive closure can be computed in O(n2) time. Moreover,
we show in Example 5 that the symmetric–transitive closure of a graph can always be computed in at most O(n2) steps.

Example 4. The key to evaluating Π1 more efficiently on E1 is to distinguish the set of ‘external’ facts that are given to Π1 as
input from the ‘internal’ facts derived by Π. If we denote the set of ‘external’ facts by X, we can transitively close R by iteratively
considering pairs of facts R(u, v) ∈ X and R(v,w)—that is, we require the first fact to be in X, but place no restriction on the
second fact. (We could have equivalently required the second fact to be in X.) In our example, we have X = E1, so the algorithm
considers only rule instances of the form

R(ai, ai+1) ∧ R(ai+1, ak)→ R(ai, ak) (11)

for 0 ≤ i < k ≤ n, of which there are O(n2) many. Intuitively, this is analogous to replacing the predicate R in all explicit facts
with X, and using a linear rule (12) instead of rule (8).

X(x, y) ∧ R(y, z)→ R(x, z) (12)

Example 5. To evaluate Π2 more efficiently, we can view predicate R as an undirected graph with n vertices and m edges.
Then, we simply compute the connected components of the graph using breadth- or depth-first search, and, for each connected
component C, we enumerate all u, v ∈ C and derive R(u, v). The first step takes O(n + m) time and second step requires O(n2)
time in the worst case; since m ≤ n2, the algorithm runs in O(n2) time on any input.

To summarise, the performance of Datalog materialisation can be significantly improved in many cases by using custom
algorithms that do not consider all applicable rule instances. In this paper we address the challenge of integrating such procedures
with standard Datalog reasoning. Specifically, our techniques will be applicable when programs such as Π1 and Π2 are used
together with other rules. Thus, the facts derived by our custom procedures need to be processed by other rules in the program
and vice versa. Because of this, we cannot optimise each set of rules in isolation; for example, we cannot simply replace rule (8)
with rule (12) as the consequences involving the R predicate derived by other rules would then not match to the first body atom of
(8). Moreover, such exchange of facts may need to be repeated iteratively until a fixpoint is reached, so it is important to exchange
information in a way that can prevent repeated derivations. Thus, a key challenge in our work is to organise communication of
facts between various program subsets in a way that on the one hand is generic and allows for a wide spectrum of custom
procedures, and on the other hand guarantees correctness and termination in all cases.
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Such inefficiencies can also affect incremental update algorithms, which are critical to practical success of materialisation-
based Datalog. Correct handling of fact deletion is a key challenge for incremental updates. For example, consider applying
rules R(x, y)→ T (x) and S (x, y)→ T (x) to a set of explicitly given facts R(a, b) and S (a, c). When R(a, b) is deleted, fact T (a)
may need to be deleted as well because it is a consequence of R(a, b) via the first rule. However, deletion should be performed
only if there are no alternative derivations from the remaining explicitly given facts. In this example, T (a) is derivable from
S (x, y)→ T (x) and S (a, c), and hence T (a) does not need to be deleted. Various algorithms differ in how they verify the existence
of alternative derivations. The DRed algorithm solves this problem by first overdeleting all consequences of the deleted facts,
and then rederiving the facts that still hold after deletion. In our example, T (a) would first be deleted; however, since T (a) can
be derived using rules R(a, y)→ T (a) and S (a, y)→ T (a), the algorithm would evaluate the bodies of these rules as queries, and
the evaluation of the second rule would reveal that the fact should be rederived. The rederived facts are then added back to the
materialisation alongside any explicitly added facts, and the rules are applied iteratively until a fixpoint is reached. The other
incremental update algorithms, such as B/F, FBF, DRedc, and B/Fc (see Section 2), refine this process to various degrees with the
objective of making the overdeletion phase more precise and thus reducing the overall work.

All incremental update algorithms known to us realise overdeletion and rederivation using variants of seminaïve evaluation,
and so they are also susceptible to redundant derivations. We evaluated DRed and B/F experimentally in our earlier work [65],
and our results show that, despite all optimisations, certain rule combinations can be very hard: the time to delete even a fraction
of a dataset can be of the same order of magnitude as the time for the initial materialisation. Intuitively, when rules are complex,
deleting even just a few facts can lead to overdeletion of a large number of derived facts, most of which need to be rederived.
Each of these phases can thus suffer from the drawbacks outlined Section 4.2. As we show in this paper, these drawbacks can be
overcome by using custom rules; however, supporting incremental updates is also the main source of complexity in our work.

5. A Framework for Modular Reasoning

We now present a framework for materialisation and incremental updates that can avoid the deficiencies outlined in Section 4.
In Section 5.1 we discuss the principles and intuitions, and in Sections 5.2–5.5 we present and discuss various technical details.

5.1. Roadmap
To handle certain rule combinations using custom algorithms, we require the input Datalog program to be partitioned into

disjoint sets of rules that we call modules. In this paper, we assume that a partition of a program into modules is given explicitly
in the input: developing algorithms for automatic extraction of modules from a given Datalog program is an interesting problem
that can be considered independently in future. Our materialisation and incremental update algorithms do not apply the modules’
rules directly (e.g., using seminaïve evaluation). Instead, the computation of certain consequences of the rules is delegated to
three module functions, which handle addition, overdeletion, and rederivation of facts. For example, the module function for
addition is given all facts derived thus far and the facts derived in the most recent round of rule application, and the function
must produce the consequences of the module rules for the next round. The main task of our modular reasoning framework is to
orchestrate the exchange of facts among functions of different modules in a way that guarantees correctness and efficiency.

To ensure that we can combine different modules in an arbitrary way, we will formalise properties that module functions
must satisfy to guarantee correctness of our algorithms. Note that the optimisations described in Examples 2 and 3 do not
compute just the immediate consequences of the module’s rules; for example, our optimisation for symmetric–transitive closure
is effective because the entire closure can be computed at once. Thus, module functions must be allowed to compute more than
just the immediate consequences of the module’s rules. At the same time, we do not wish to impose too stringent requirements
on what needs to be computed. This is particularly important for overdeletion: a fact can be deleted only if no alternative
derivations remain after the update, and there are many ways to balance the tradeoffs of identifying such derivations eagerly
versus overdeleting and then rederiving the fact. To capture the many variants that can be used, we formalise our conditions on
the output of module functions in terms of the lower and upper bounds, Jl and Ju, respectively. Roughly speaking, the lower
bound Jl will correspond to the facts obtained by applying the rules only once, and the upper bound Ju will correspond to the
maximum set of facts that can be returned while maintaining correctness. We prove that, as long as the output of each module
function satisfies the respective lower and upper bounds, our modular algorithms are correct and terminating.

To simplify the presentation of our framework, we assume that the input program is partitioned completely into modules—that
is, our framework never applies the rules directly. However, we can always collect all rules for which no specialised algorithms
are available in one module per stratum, and we can realise the appropriate module functions using seminaïve evaluation. In fact,
the module functions can also incorporate optimisations of overdeletion and rederivation from algorithms such as DRedc, B/F,
B/Fc, and FBF, all of which are captured by our lower and upper bounds. Thus, using customised procedures for certain rules
does not need to come at the expense of suboptimal handling of general Datalog rules.

The lower and upper bound requirements provide us with a basis for proving correctness of module functions. Contrary to
what one might intuitively expect, correctness of a module function can usually not be proved by considering each function call
in isolation. First, to capture the many variants of incremental reasoning considered in the literature, the bounds for overdeletion
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and rederivation do not depend on just the arguments passed in each call of the module function, but also on the target state of
the materialisation. Since realistic module functions have no access to the target materialisation state, it may be hard to show
that the output of a function call satisfies the required conditions based solely on the function call arguments. Second, to support
efficient updates, most module functions will often need to maintain auxiliary information of arbitrary structure, and the output
of a module function will generally depend on the state of this auxiliary information before each function call.

We will therefore need a more sophisticated approach to proving correctness of module functions, where we consider how
successive calls to module functions interact. In particular, we shall introduce the notion of a compatible call history, which is
effectively a sequence of possible calls to the module functions over a module’s lifetime. This notion will allow us to prove the
correctness of module functions more easily: we consider an arbitrary compatible call history, and we show by induction on the
call history length that each call in the history satisfies the lower and upper bounds identified earlier.

The rest of this section is organised as follows. In Section 5.2 we define the notions of modules and module functions, and
we also formalise the lower and upper bound requirements. Next, in Sections 5.3 and 5.4 we present our materialisation and
incremental update algorithms, respectively. Finally, in Section 5.5 we formulate conditions that calls to module functions must
satisfy, and we show that these conditions guarantee correctness of our algorithms.

5.2. Modules and Module Functions

We now define a key notion of a module. This notion should not be confused with ontology modules, which are subsets of
an ontology that are semantically independent from each other in a well-defined way.

Definition 6. A module is a Datalog program such that no predicate occurring in a negative literal also occurs in a rule head.

Definition 7 introduces a notion of a module partition, which captures how modules are used in our framework: a Datalog
program must be partitioned into disjoint modules so that each module is fully contained in a single stratum.

Definition 7. Let Π be a program, let λ be a stratification of Π, and let S the maximum stratum index of λ. A module partition
of Π w.r.t. λ consists of modules Ms,k with 1 ≤ s ≤ S and 1 ≤ k ≤ ns such that Ms,1 ∪ · · · ∪ Ms,ns = Πs and Ms,k ∩ Ms,k′ = ∅ for
each 1 ≤ s ≤ S and all 1 ≤ k < k′ ≤ ns, where ns is the number of modules used for the stratum with index s.

In other words, each stratum Πs is partitioned into modules Ms,1, . . . ,Ms,ns . Our framework supports reasoning with Π using
custom functions that compute the relevant consequences of modules Ms,k. As we explained in Section 4.3, most incremental
update algorithms consist of an overdeletion, rederivation, and addition phase. Our framework follows these principles and
requires each module Ms,k to supply three module functions, AddMs,k

, DelM
s,k

, and RedMs,k
, that will be used in the respective

phases. Before presenting a definition of these functions, we first introduce three auxiliary operators that we will use to formalise
the conditions on the correctness of module functions.

Definition 8. For M a module and I, ∆−, and ∆+ datasets such that ∆− ⊆ I and ∆+ ∩ I = ∅, operator MA[I ···∆−,∆+] is defined as

MA[I ···∆−,∆+] =
⋃
r∈M

{
h(rσ) | rσ is an instance of r such that I ̸|= b(rσ),

(I \ ∆−) ∪ ∆+ |= b(rσ), and h(rσ) < (I \ ∆−) ∪ ∆+

}
. (13)

Intuitively, operator MA[I ···∆−,∆+] computes the newly derived facts in one round of rule application of the seminaïve algo-
rithm. It takes as input a materialisation I as computed thus far, and sets of facts ∆− and ∆+ that were scheduled in the last round
of rule application to be removed from and added to I, respectively; thus, (I \ ∆−) ∪ ∆+ is the materialisation after applying the
changes from last round of rule application. The operator identifies the facts that should be added to (I \ ∆−) ∪ ∆+ as a result of
this change; intuitively, these are obtained by instances of the rules of M whose bodies hold after, but not before the change.

Definition 9. For M a module and Io, In, ∆−, and ∆+ datasets such that ∆− ⊆ In and ∆+ ∩ In = ∅, operator MD[Io, In ···∆−,∆+] is
defined as

MD[Io, In ···∆−,∆+] =
⋃
r∈M

{
h(rσ) | rσ is an instance of r such that Io |= b(rσ), In |= b(rσ),

(In \ ∆−) ∪ ∆+ ̸|= b(rσ), and h(rσ) ∈ (In \ ∆−) ∪ ∆+

}
. (14)

Intuitively, operator MD[Io, In ···∆−,∆+] captures one-step overdeletion from the original DRed algorithm. It takes as input the
‘old’ materialisation Io (i.e., the materialisation before any updates were applied), the ‘new’ materialisation In as computed thus
far, and sets of facts ∆− and ∆+ that were scheduled in the last round of rule application to be removed from and added to In,
respectively; thus, (In \ ∆−) ∪ ∆+ is the ‘new’ materialisation after applying the changes from last round of rule application. The
operator identifies the facts that should be removed from (In \ ∆−) ∪ ∆+ as a result of this change; intuitively, these are obtained
by instances of the rules of M whose bodies hold in Io (thus ensuring that overdeletion is restricted to the consequences of M
before any incremental updates are applied), as well as in In before, but not after the change.
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Table 1: Module function calls
Call Conditions on arguments Lower bound Jl Upper bound Ju

J ··= AddM[I ···∆−,∆+ ···∆m] ∆− ⊆ I, ∆+ ∩ I = ∅, ∆m ⊆ ∆+ MA[I ···∆−,∆+] Π∞[E]s \ ((I \ ∆−) ∪ ∆+)

J ··= DelM[Io, In ···∆−,∆+ ···∆m] ∆− ⊆ In, ∆+ ∩ In = ∅, ∆m ⊆ ∆− MD[Io, In ···∆−,∆+] \ Π∞[E] Io ∩ Os ∩ ((In \ ∆−) ∪ ∆+)

J ··= RedM[Io, In ···∆] ∆ ⊆ (Io \ In) ∩ Os MR[Io, In ···∆] Π∞[E]s \ In

Definition 10. For M a module and Io, In, and ∆ datasets such that ∆ ⊆ Io \ In, operator MR[Io, In ···∆] is defined as

MR[Io, In ···∆] =
⋃
r∈M

{
h(rσ) | rσ is an instance of r such that Io |= b(rσ), In |= b(rσ), and h(rσ) ∈ ∆

}
. (15)

Intuitively, operator MR[Io, In ···∆] handles rederivation. It takes as input the ‘old’ materialisation Io, the ‘new’ materialisation
In after overdeletion, and a set of overdeleted facts ∆. It returns the facts of ∆ that should be rederived; intuitively, these are
obtained by instances of the rules in M that hold in both Io and In.

We are now ready to formalise our notion of module functions. Definition 11 formalises the conditions on the arguments and
the result of each module function call.

Definition 11. The implementation of a module M consists of module functions AddM , DelM , and RedM . These functions can
be called as shown in the first column of Table 1, where datasets I, Io, In, ∆−, ∆+, ∆m, and ∆ are the arguments and J is the result
of a call. Given a dataset E, a program Π, a stratification λ, and a stratum index s of λ such that M ⊆ Πs, a call is correct in the
context of E, Π, λ, and s if the arguments to the call satisfy the conditions from the second column of Table 1, and the output J
satisfies Jl ⊆ J ⊆ Ju for Jl the lower bound and Ju the upper bound from the third and fourth column of Table 1, respectively.1

An important objective of our work is to devise a general framework that can capture and be combined with most known
reasoning algorithms. To attain this goal, we cannot define the lower and upper bounds on module function results purely in terms
of function arguments; rather, the correctness of a call to a module function can only be judged in context of the entire program
Π and the ‘current’ set of explicit facts E whose materialisation is being computed. This is the main difficulty in the technical
development of our framework, and we discuss it in depth in Section 5.5. First, however, we discuss the intuition behind our
functions and present our materialisation and incremental reasoning algorithms.

Function AddM handles fact addition and is used by both the materialisation and incremental update algorithms. Intuitively,
it computes facts that should be added to the materialisation as a result of deleting facts in ∆− and adding facts in ∆+. Set ∆m will
contain the facts derived by module M in the last round of rule application, which will allow the function to avoid recomputing
its own consequences and thus realise a form of nonrepetition property. The function must return at least MA[I ···∆−,∆+]—that
is, the facts that would be added by applying seminaïve evaluation to M. However, the function can return more: correctness
is guaranteed as long as the result is contained in Π∞[E]s, and in fact AddM can even return facts derivable by rules outside M
(although this is unlikely in practice). Finally, AddM is not allowed to return facts contained in (I \ ∆−) ∪ ∆+, which ensures
termination by preventing the function from returning the same fact twice during materialisation or incremental reasoning.

Function DelM handles fact overdeletion and is used only by our incremental update algorithm. Intuitively, it computes facts
that should be deleted from the materialisation as a result of changing the current ‘new’ materialisation In by deleting ∆− and
adding ∆+. The function also accepts the ‘old’ materialisation Io, and set ∆m plays the same role as in the case of AddM . The
function must return any fact that (i) would be overdeleted in the original DRed algorithm and (ii) does not hold in the new
materialisation Π∞[E]. The latter condition is essential for generality as it allows DelM to incorporate various optimisations of
overdeletion. Again, the function is allowed to overdelete more: any fact from the ‘old’ materialisation can be returned. Finally,
to ensure termination, the function is not allowed to overdelete facts that have already been overdeleted.

Function RedM handles rederivation and is also used only by our incremental update algorithm. Intuitively, it computes
the facts that hold in the ‘old’ materialisation Io and the ‘new’ materialisation In as computed thus far. Operator MR[Io, In ···∆]
provides us with the lower bound, where set ∆ identifies the facts whose status must be determined. However, function RedM is
allowed to rederive other facts that hold after deletion, and the upper bound is analogous to that of AddM .

If no specialised procedures are available for a module M, functions AddM , DelM , and RedM can be implemented generically
as MA[I ···∆−,∆+], MD[Io, In ···∆−,∆+], and MR[Io, In ···∆], respectively; if no other modules are used, our algorithms reduce to
seminaïve evaluation and DRed. The B/F [64] and FBF [65] algorithms are obtained by modifying MD[Io, In ···∆−,∆+] so that it

1Please remember that abbreviations Π∞[E]s, Π∞[E]<s, and Π∞[E]≤s used in Table 2 were defined in equation (6) in Section 3.
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Algorithm 2 M-Mat(Π, λ, E)
8: I ··= ∅
9: for each stratum index s with 1 ≤ s ≤ S do

10: ∆ ··= E ∩ Os

11: for each k with 1 ≤ k ≤ ns do
12: ∆k ··= AddMs,k

[∅ ··· ∅, I ∪ ∆ ··· ∅]
13: loop
14: I ··= I ∪ ∆
15: ∆ ··= ∆

1 ∪ · · · ∪ ∆ns

16: if ∆ = ∅ then break
17: for each k with 1 ≤ k ≤ ns do
18: ∆k ··= AddMs,k

[I ··· ∅,∆ ···∆k]

Algorithm 3 M-Upd(Π, λ, E, I, E−, E+)
19: D ··= A ··= ∅, E− ··= (E− ∩ E) \ E+, E+ ··= E+ \ E
20: for each stratum index s with 1 ≤ s ≤ S do
21: Overdelete
22: Rederive
23: Add
24: E ··= (E \ E−) ∪ E+, I ··= (I \ D) ∪ A

25: procedure Overdelete
26: ∆ ··= E− ∩ Os

27: for each k with 1 ≤ k ≤ ns do
28: ∆k ··= DelM

s,k
[I, I ··· (D \ A) ∪ ∆, A \ D ··· ∅]

29: loop
30: D ··= D ∪ ∆
31: ∆ ··= ∆

1 ∪ · · · ∪ ∆ns

32: if ∆ = ∅ then break
33: for each k with 1 ≤ k ≤ ns do
34: ∆k ··= DelM

s,k
[I, (I \ D) ∪ A ···∆, ∅ ···∆k]

35: procedure Rederive
36: for each i with 1 ≤ k ≤ ns do
37: ∆k ··= RedMs,k

[I, (I \ D) ∪ A ··· (D ∩ Os) \ (E \ E−)]
38: ∆ ··= ((E \ E−) ∩ D ∩ Os) ∪ ∆1 ∪ · · · ∪ ∆ns

39: procedure Add
40: ∆ ··= ∆ ∪ (E+ ∩ Os) \ ((I \ D) ∪ A)
41: for each k with 1 ≤ k ≤ ns do
42: ∆k ··= AddMs,k

[I ···D \ A, (A \ D) ∪ ∆ ···∆k]
43: loop
44: A ··= A ∪ ∆
45: ∆ ··= ∆

1 ∪ · · · ∪ ∆ns

46: if ∆ = ∅ then break
47: for each k with 1 ≤ k ≤ ns do
48: ∆k ··= AddMs,k

[(I \ D) ∪ A ··· ∅,∆ ···∆k]

searches eagerly for alternative derivations, and the B/Fc and DRedc [43] algorithms can be obtained by associating facts with
derivation counters that are maintained by all functions. Such generic modules can be freely combined with optimised modules
that we discuss later in this paper, which makes our framework applicable to a wide range of scenarios.

5.3. Computing the Materialisation

Algorithm 2 takes as input a set of explicitly given facts E and a module partition of a Datalog programΠw.r.t. a stratification
λ, and it computes the materialisation I of Π and E. Correctness of the algorithm follows from Theorem 15 in Section 5.5. The
algorithm proceeds in a stratum-by-stratum manner similar to Algorithm 1. For each stratum, the algorithm first adds the explicit
facts in the current stratum (E ∩ Os) to the materialisation I (line 10). Function AddMs,k

is then called once for each module to
identify the consequences of both the nonrecursive and the recursive rules of Ms,k on I (line 12), followed by a loop (lines 13–18)
where the recursive rules are evaluated up to the least fixpoint. In each iteration, the algorithm first combines the consequences
of all modules (line 15) and adds them to the materialisation I (line 14). Then, function AddMs,k

is called for each module to
identify the consequences of Ms,k that should be added to I. In this step, ∆k contains the consequences of the module computed
in the most recent completed round; a module function can use this set to prevent redundant derivations, as well as to detect that
only recursive rules of Ms,k need to be considered. The loop terminates when no new facts are derived (line 16).

5.4. Incremental Updates

Algorithm 3 shows how to compute incremental updates in our framework. Correctness of the algorithm follows from
Theorem 15 in Section 5.5. The algorithm takes as input a module partition of a program Π w.r.t. a stratification λ, a set of
explicitly given facts E, the materialisation I = Π∞[E], and two sets of facts E− and E+ that are to be deleted from and added to

11



E, respectively. The algorithm updates I to the ‘new’ materialisation Π∞[(E \ E−) ∪ E+]. During the computation, the algorithm
frequently needs to refer to both the ‘old’ and the ‘new’ materialisation—that is, the materialisation before and after update. To
support this, the algorithm computes sets D and A of facts to be deleted from and added to I, respectively. Thus, during the
algorithm’s computation, I is the ‘old’ materialisation, and, after a stratum with index s has been processed, ((I ∩ O≤s) \ D) ∪ A
is the ‘new’ materialisation up to stratum index s—that is, ((I ∩ O≤s) \ D) ∪ A = Π∞[(E \ E−) ∪ E+]≤s holds at that point. Thus,
upon termination, (I \ D) ∪ A is the ‘new’ materialisation so the algorithm updates E and I accordingly in line 24. Our algorithm
processes the strata of Π and, in each one, it overdeletes facts, rederives facts that hold after overdeletion, and finally inserts the
explicitly added facts and computes their closure. We next discuss these three phases in more detail.

At the start of the overdeletion phase for a stratum with index s, sets D \ A and A \ D contain facts deleted from and added to
the previous strata, respectively; moreover, in line 26, ∆ is set to the set of facts deleted from the stratum with index s. Thus, the
initial calls to DelM

s,k
(lines 27–28) identify (at least) each fact that no longer holds because it is derived by an instance of a rule

in Ms,k that depends positively on (D \ A) ∪ ∆ or negatively on A \ D. The facts obtained from each module Ms,k are stored in
a separate set ∆k, which will be passed back to DelM

s,k
on the subsequent call (lines 33–34); this allows each module to identify

its own conclusions from the most recent round of rule application and thus possibly prevent redundant derivations. Next, the
algorithm computes iteratively further facts that might need to be removed (lines 29–34). In each iteration, the current set ∆ is
rolled into the set D of deleted facts (line 30), the consequences of all modules from the previous round of rule application are
combined into a new set ∆ (line 31), and function DelM

s,k
is called for each module to identify new consequences of module

Ms,k that should be overdeleted due to the deletion of ∆ (lines 33–34). These steps are repeated as long as at least one module
identifies further deletion candidates.

Next, the algorithm identifies the rederivable facts by calling RedMs,k
for each module (lines 36–37). All facts that are

explicitly given after the update are rederived as well by adding them to ∆ (line 38).
Finally, the algorithm proceeds with the addition phase. First, ∆ is extended with all explicitly inserted facts (line 40). Then,

function AddMs,k
is called once for each module (lines 41–42) to identify consequences of Ms,k that should be added either

because facts in D \ A from a previous stratum were deleted, or facts in (A \ D) ∪ ∆ were added. The current set ∆ is added to A
(line 44), the consequences of all modules from the previous round of rule application are combined into a new set ∆ (line 45),
and function AddMs,k

is called for each module to identify new consequences of module Ms,k that should be added due to the
addition of ∆ (lines 47–48). These steps are repeated as long as at least one module identifies facts that need to be inserted.

5.5. Correctness of the Modular Reasoning Framework

To ensure correctness of our algorithms, each call to a module function made during an execution of Algorithm 2 or Algo-
rithm 3 must satisfy the lower and upper bounds from Table 1. However, proving this is usually not straightforward.

First, the definitions of the lower bound for DelM and the upper bounds for AddM and RedM refer to the context in which
module M is used. This context involves the Datalog program Π being materialised, the stratum s of Π to which module M
belongs, and the target set of explicitly given facts E (i.e., the set of explicitly given facts after the update); this information is
used to determine the ‘new’ materialisation Π∞[E]. Note, however, that the context information is not passed to the module
functions: a module function should concern itself solely with the rules of its module, rather than how a module is used. For
example, if we implement AddM using rule application as in Definition 8, the implementation just needs to apply the rules of M,
and not concern itself with the rules inΠ \ M. Moreover, module functions are unlikely to have access to the ‘new’ materialisation
Π∞[E]. These observations, however, prevent us from proving correctness of a module function by considering each function
call in isolation. Instead, for each context in which a module function might be called, we need to show that each call made in
such a context satisfies the lower and upper bounds. For example, assume we wish to prove that the generic implementation of
AddM satisfies the upper bound—that is, MA[I ···∆−,∆+] ⊆ Π∞[E]s \ ((I \ ∆−) ∪ ∆+). First, we need to consider any program Π
such that M ⊆ Π, any stratification λ that places M in stratum s of Π, and any set of ‘target’ explicitly given facts E. Moreover,
we need to consider only arguments that can actually be encountered during a run of Algorithm 2 or 3: the required property does
not hold if, for example, I contains facts outside Π∞[E]. This, however, raises the question of what I, ∆−, and ∆+ can function
AddM legitimately encounter when it is called.

Second, all module functions we present in Sections 6.2–6.5 maintain various internal data structures. Thus, the correctness
of a module function call will generally depend on the state of these data structures at the time of a call, and this state will further
depend on all previous calls to functions of this and other modules. For example, as we discussed in Example 5, computing
the symmetric–transitive closure of a binary predicate can be optimised by computing the set of connected components of the
predicate and then deriving connections among the elements of each component. Recomputing the set of connected components
each time a module function is called would be very inefficient. To overcome this drawback, our module functions in Section 6.3
maintain the list of connected components in private data structures. Hence, the correctness of each function call critically
depends on this list correctly reflecting the state of the materialisation computed thus far. Moreover, to ensure that the list is
correctly maintained, the rederivation must be called exactly once after overdeletion and before addition. Note however, that we
cannot make any general assumptions about the nature of such information.
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The above discussion suggests that proving correctness of each function call in isolation might be difficult or even impossible.
Instead, we need to consider all possible contexts in which a module can be used, and we also need to consider all possible
sequences of module function calls that can be produced by our algorithm; then, for each call in such a sequence, we need to
prove that the call satisfies the lower and upper bound from Table 1. At the same time, we should be able to prove correctness of
each module in isolation—that is, without considering other modules that might be used alongside the module of interest.

To achieve these objectives, we next analyse the behaviour of Algorithms 2 and 3 in order to capture the structure of allowed
sequences of calls to the functions of one module. This will involve specifying the allowed order of calls to the functions of
one module, as well as identifying conditions that relate the arguments of adjacent function calls. Towards this goal, we first
introduce the notion of a call history for a module.

Definition 12. A call history H of length m for a module M is a finite, nonempty sequence of the form (16), where each Qi with
0 ≤ i ≤ m is a finite, nonempty sequence of the form (17), and each Ci, j with 1 ≤ j ≤ hi is a call to a module function for M.

H = Q0, . . . ,Qm (16)
Qi = Ci,1, . . . ,Ci,hi (17)

Intuitively, a call history H consists of a series of runs Qi with 0 ≤ i ≤ m. Run Q0 captures the calls to the functions of module
M made during the initial materialisation, whereas each Qi with i ≥ 1 captures the calls made during subsequent incremental
updates. Each run Qi is simply a sequence of calls Ci, j of the form shown in Table 1. The number of calls made in different runs
can clearly vary, so hi provides us with the number of calls in run Qi.

As we have already suggested, our algorithms will not produce arbitrary call histories: only histories satisfying the conditions
from the following definition need to be considered.

Definition 13. A call history H for a module M is compatible with a program Π, a stratification λ of Π, a stratum index s of λ,
and a sequence of datasets E0, . . . , Em if

• M ⊆ Πs,

• the length of H is m,

• each call Ci, j in H for 0 ≤ i ≤ m and 1 ≤ j ≤ hi satisfies the conditions from one row of Table 2.

Definition 13 can intuitively be understood as follows. First, program Π, stratification λ, stratum index s, and datasets
E0, . . . , Em all provide the context for the function calls. Note that we need a sequence of explicitly given datasets: each Ei

provides the context for the calls in run Qi of H, so the number of runs in H must agree with the number of datasets. Moreover,
stratification λ must assign all rules of M into a stratum with index s. Finally, Table 2 identifies the six types of calls that our
algorithms can make. As we shall see, a call of type A3 follows a call of type R, so we place it at the end of Table 2 rather than
with other calls of AddM . We next discuss the possible types of calls.

• A call of type A1 is the first call of run Q0, so it corresponds to the call made in line 12 of Algorithm 2 during initial
materialisation. Condition (A1.a) captures the property established in line 10.

• By condition (A2.a), a call of type A2 follows another AddM call in a run, so a call of type A2 is made in either line 18 of
Algorithm 2, or line 48 of Algorithm 3. Condition (A2.b) describes how the ‘new’ partial materialisation is updated during
addition. Finally, condition (A2.c) says that the output from the previous call is included into ∆+i, j for the current call, and
the latter is contained in stratum s of the target materialisation Π∞[Ei].

• A call of type D1 is the first call of a run of our incremental update algorithm, and it is made in line 28 of Algorithm 3. By
condition (D1.a), this call follows the final AddM call from the previous run; condition (D1.b) ensures that this previous
call indicated completion of addition; and condition (D1.c) ensures all facts in strata with indices less than or equal to s
were updated correctly in the previous run. Condition (D1.d) ensure that arguments Io

i,1 and In
i,1 of the first DelM call in

overdeletion reflect the ‘old’ materialisation. Finally, conditions (D1.e) and (D1.f) capture the fact that updates to the facts
from strata with indices less than s are contained in ∆−i,1 and ∆+i,1, and line 26 overdeletes the facts in E− ∩ Os.

• By condition (D2.a), a call of type D2 follows another DelM call in a run, so a call of type D2 can be made only in line 48
of Algorithm 3. Condition (D2.b) says that Io

i, j is the ‘old’ materialisation, and condition (D2.c) describes how the ‘new’
partial materialisation is updated during overdeletion. Finally, condition (D2.d) says that the output from the previous call
is included into ∆−i, j of the current call, and the latter is contained in stratum s of the ‘old’ materialisation Π∞[Ei−1].
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Table 2: Conditions on the structure of a call sequence
Call Ci, j can be of the form... ...in which case its arguments must satisfy conditions from Table 1 and...

A1 J0,1 ··= AddM[∅ ··· ∅,∆+0,1
··· ∅] • ∆+0,1 = Π∞[E0]<s ∪ (E0 ∩ Os) (A1.a)

for i = 0 and j = 1

A2 Ji, j ··= AddM[Ii, j
··· ∅,∆+i, j

···∆m
i, j] • Ci, j−1 is of the form Ji, j−1 ··= AddM[Ii, j−1

···∆−i, j−1,∆
+
i, j−1

···∆m
i, j−1] (A2.a)

for i ≥ 0 and j > 1 • Ii, j = (Ii, j−1 \ ∆
−
i, j−1) ∪ ∆+i, j−1 (A2.b)

• ∆m
i, j = Ji, j−1 ⊆ ∆

+
i, j ⊆ Π∞[Ei]s (A2.c)

D1 Ji,1 ··= DelM[Io
i,1, I

n
i,1
···∆−i,1,∆

+
i,1
··· ∅] • Ci−1,hi−1 is of the form Ji−1,hi−1

··= AddM[Ii−1,hi−1
···∆−i−1,hi−1

,∆+i−1,hi−1

···∆m
i−1,hi−1

] (D1.a)
for i ≥ 1 and j = 1 • Ji−1,hi−1 = ∅ (D1.b)

• Io
i,1 ∩ O≤s = ((Ii−1,hi−1 \ ∆

−
i−1,hi−1

) ∪ ∆+i−1,hi−1
) ∩ O≤s (D1.c)

• Io
i,1 = In

i,1 = Π∞[Ei−1] (D1.d)
• ∆−i,1 = (Π∞[Ei−1]<s \ Π∞[Ei]<s) ∪ ((Ei \ Ei−1) ∩ Os) (D1.e)
• ∆+i,1 = Π∞[Ei]<s \ Π∞[Ei−1]<s (D1.f)

D2 Ji, j ··= DelM[Io
i, j, I

n
i, j
···∆−i, j, ∅

···∆m
i, j] • Ci, j−1 is of the form Ji, j−1 ··= DelM[Io

i, j−1, I
n
i, j−1

···∆−i, j−1,∆
+
i, j−1

···∆m
i, j−1] (D2.a)

for i ≥ 1 and j > 1 • Io
i, j = Π∞[Ei−1] (D2.b)

• In
i, j = (In

i, j−1 \ ∆
−
i, j−1) ∪ ∆+i, j−1 (D2.c)

• ∆m
i, j = Ji, j−1 ⊆ ∆

−
i, j ⊆ Π∞[Ei−1]s (D2.d)

R Ji, j ··= RedM[Io
i, j, I

n
i, j
···∆i, j] • Ci, j−1 is of the form Ji, j−1 ··= DelM[Io

i, j−1, I
n
i, j−1

···∆−i, j−1,∆
+
i, j−1

···∆m
i, j−1] (R.a)

for i ≥ 1 and j > 1 • Ji, j−1 = ∅ (R.b)
• Io

i, j = Π∞[Ei−1] (R.c)
• In

i, j = (In
i, j−1 \ ∆

−
i, j−1) ∪ ∆+i, j−1 (R.d)

• In
i, j ∩ O<s = Π∞[Ei]<s ⊆ In

i, j ∩ O≤s ⊆ Π∞[Ei]≤s (R.e)
• ∆i, j = Π∞[Ei−1]s \ (In

i, j ∪ (Ei−1 ∩ Ei)) (R.f)

A3 Ji, j ··= AddM[Ii, j
···∆−i, j,∆

+
i, j
···∆m

i, j] • Ci, j−1 is of the form Ji, j−1 ··= RedM[Io
i, j−1, I

n
i, j−1

···∆i, j−1] (A3.a)
for i ≥ 1 and j > 1 • Ii, j = Io

i, j−1 = Π∞[Ei−1] (A3.b)
• ∆−i, j ∩ O<s = Π∞[Ei−1]<s \ Π∞[Ei]<s (A3.c)
• ∆−i, j = Π∞[Ei−1]≤s \ In

i, j−1 (A3.d)
• ∆+i, j ∩ O<s = Π∞[Ei]<s \ Π∞[Ei−1]<s (A3.e)
• ∆m

i, j = Ji, j−1 ⊆ Ji, j−1 ∪ ((Ei ∩ Os) \ In
i, j−1) ⊆ ∆+i, j ⊆ Π∞[Ei]≤s (A3.f)

• Each run contains just one call of type R made in line 37 of Algorithm 3. Condition (R.a) ensures that such a call follows
a DelM call, which, by condition (R.b), must have indicated completion of overdeletion. Condition (R.c) ensures that Io

i, j is
the ‘old’ materialisation, and condition (R.d) describes how the ‘new’ partial materialisation is updated during overdeletion.
Condition (R.e) ensures that the facts in strata with indices less than s have been updated, and all facts in the stratum with
index s that no longer hold have been overdeleted. Finally, condition (R.f) describes the argument to RedM in line 37.

• By condition (A3.a), a call of type A3 may appear in a run only after a call to RedM; hence, a call of type A3 can be made
only in line 42 of Algorithm 3. Condition (A3.b) captures the fact that this call is passed the ‘old’ materialisation, and
conditions (A3.c) and (A3.e) say that ∆−i, j and ∆+i, j contain all necessary updates to facts in strata with indices less than s.
Finally, conditions (A3.d) and (A3.f) ensure that the facts in the stratum with index s belong to the ‘new’ materialisation.

We are now ready to formalise a key notion of correctness of module functions, which provides the foundation for arguing
about the correctness of our algorithms.

Definition 14. Functions AddM , DelM , and RedM for a module M are correct if, for each program Π, each stratification λ of
Π, each stratum index s of λ, each sequence of datasets E0, . . . , Em, and each call history H for M compatible with Π, λ, s, and
E0, . . . , Em, each call Ci, j with 0 ≤ i ≤ m and 1 ≤ j ≤ hi in H is correct in the context of Ei, Π, λ, and s.

Thus, to prove correctness of functions of module M, we must consider each program Π, stratification λ of Π, stratum index
s of λ, sequence of datasets E0, . . . , Em, and call history H that is compatible with Π, λ, s, and E0, . . . , Em. Then, we must show
that each call Ci, j in H satisfies the lower and upper bounds from Table 1. This will usually be done by double induction on the
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structure of H, where the ‘outer’ induction ranges over the runs of H, and the ‘inner’ induction ranges over the calls of one run.
All correctness proofs for the module functions we present in Sections 6.2–6.5 follow this pattern. Crucially, such proofs need
to consider only calls to functions of module M, and not functions of any other module from a partition of Π.

Theorem 15 shows that, if a program Π is partitioned into modules with correct module functions, then Algorithm 2 correctly
computes the initial materialisation, and Algorithm 3 correctly realises incremental updates. The proof is given in Appendix A.
This result shows that our framework is indeed modular: we can independently argue about the correctness of each module by
considering only the functions of that module, and we can freely combine correct modules without any restrictions.

Theorem 15. Let Π be a program, let λ be a stratification of Π with maximum stratum index S , let Ms,k with 1 ≤ s ≤ S and
1 ≤ k ≤ ns be the module partition of Π w.r.t. λ such that module functions for each Ms,k are correct, let E0, . . . , Em be datasets,
let I0 be result of applying Algorithm 2 toΠ, λ, and E0, and, for 1 ≤ i ≤ m, let Ii be the result of successively applying Algorithm 3
to Π, λ, E−i = Ei−1 \ Ei, and E+i = Ei \ Ei−1. Then, Ii = Π∞[Ei] for each 0 ≤ i ≤ m.

6. Implementing Common Modules

In this section, we show how different types of modules can be incorporated into our framework. Towards this goal, in
Section 6.1 we first introduce an optimisation of overdeletion used by three of our modules. Then, in Sections 6.2–6.5 we
consider modules for transitive closure, symmetric–transitive closure, chain rules, and sequencing totally ordered elements.

6.1. Optimising Overdeletion Using Oracles

Consider a Datalog program is partitioned into modules M1 and M2, where module M1 implements the DRedc algorithm, and
module M2 realises the symmetric–transitive closure algorithm as outlined in Example 5. To implement DRedc, module M1 must
track for each fact the number of nonrecursive derivations; but then, module M2 can safely avoid overdeleting any fact that has at
least one nonrecursive derivation via a rule in module M1. In other words, an optimisation of overdeletion in M2 may depend on
the information maintained and provided by M1. We capture such exchange of information among modules using the following
abstract notion of an oracle.

Definition 16. An oracle is a Boolean function on all facts. Oracle isTrue is correct in the context of a dataset E and program Π
if isTrue(F) = t implies F ∈ Π∞[E] for each fact F.

Intuitively, an oracle isTrue encapsulates an abstract mechanism that a module function can use to check whether a fact holds
after an update. An oracle must be sound: isTrue(F) = t informs the caller that F is known to hold in the ‘new’ materialisation.
However, an oracle is unlikely to be complete: if isTrue(F) = f, one should not infer F < Π∞[E]; thus, an oracle that returns f
on all facts is correct in all contexts. Module functions that we present in Sections 6.2–6.4 all use such an oracle; moreover,
whenever a call to an oracle is made, we implicitly assume that the oracle is correct in the relevant context.

Thus, if the partition of a Datalog program includes a module such as DRedc or B/Fc that counts nonrecursive derivations, one
can provide an oracle that returns t precisely for the facts with at least one nonrecursive derivation. The system we implemented
to evaluate our algorithms (see Section 7) follows this approach, and we found this technique to be indispensable in practice.
Other ways to construct an oracle are certainly possible, and we shall consider them in future.

6.2. Computing the Transitive Closure

The ability to axiomatise a binary predicate as transitive is one of the most widely used features of Datalog. For example,
it is often used to determine connectivity in a network of objects, represent transitive part-of relations, or represent concept
hierarchies. As we argue in Example 2 (see Section 4.2), evaluation of a transitivity rule can be worst-case cubic in the number
of objects connected by the predicate. Therefore, optimising the evaluation of the transitivity rule has the potential to significantly
improve the performance of reasoning in a range of practical applications. Definition 17 introduces notation for the module that
we use in the rest of this paper.

Definition 17. For R a binary predicate, tc(R) is the module containing just the following rule:

R(x, y) ∧ R(y, z)→ R(x, z). (18)

Our solution follows the general idea outlined in Example 4 of distinguishing the ‘internal’ facts produced by rule (8) from
the ‘external’ facts produced by other rules. A tc(r) module keeps track of the latter in a global set XR that is initially empty.
The way this set is maintained ensures that the transitive closure of XR coincides with the transitive closure of predicate R in
the materialisation. Thus, set XR can be understood as a ‘backbone’ from which the transitive closure of R can be recovered.
This property is used in our module functions in a way that allows them to consider only instances of rule (18) where the first
atom is matched to a fact in the ‘backbone’ XR. This can reduce the number of rule instances considered in the same way as
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in Example 4. Please note, however, that our solution cannot be captured by simple predicate renaming as in Example 4. First,
when reasoning incrementally, our technique can use an oracle to avoid overdeleting facts that obviously hold. As we show
shortly, this requires managing the set XR carefully in order to ensure completeness of the approach. Second, the correctness of
our approach is not affected if set XR is at any point replaced by another set X′ provided that the transitive closures of XR and X′

coincide. In other words, set XR can be periodically minimised, which can be needed to maintain the good performance of our
technique after successive updates.

Based on these ideas, function Addtc(R), shown in Algorithm 4, essentially implements seminaïve evaluation for rule (18)
where the first atom is evaluated in XR: the loops in lines 52–53 and 54–57 handle the delta rules for the first and second atom of
rule (18), respectively. Function Deltc(R), shown in Algorithm 5, is analogous to Addtc(R). The main difference between Addtc(R)

and Deltc(R) is that the latter function uses an oracle to avoid deleting facts that obviously hold. This, however, introduces a
complication: as Example 22 shows, facts that are not overdeleted due to the oracle must be added to the ‘backbone’ XR after
overdeletion. To achieve this, all such facts are added to an auxiliary set YR (line 73), which is added to XR during rederivation
(line 76) and then cleared. Finally, function Redtc(R), shown in Algorithm 6, identifies for each source vertex u all vertices
reachable by the external facts in XR.

Theorem 18 shows that our solution satisfies the correctness criterion from Definition 14. Moreover, Proposition 19 shows
that set XR can be replaced by another one as suggested earlier without affecting the correctness of the module functions. Both
results are proved in Appendix B.

Theorem 18. Functions Addtc(R), Deltc(R), and Redtc(R) are correct.

Proposition 19. The correctness of the Addtc(R) remains unaffected even if set XR is replaced after a call with another set X′ of
R-facts such that tc(R)∞[XR] = tc(R)∞[X′].

We next present several examples showing a run of our algorithms that demonstrate several important points. Example 20
introduces the setting and shows how the addition function sets up a ‘backbone’ XR.

Example 20. Let Π be the program containing rules (19) and (20), and let λ be the stratification that assigns all rules in Π to
just one stratum. Furthermore, let M1 and M2 be the module partition of Π such that M1 and M2 contain rule (19) and rule (20),
respectively. We assume that the module functions for M1 simply return M1

A, M1
D, and M1

R. Moreover, the only rule in M1 is
nonrecursive, so we also assume that the module maintains derivation counts for the rule and thus provides an oracle isTrue;
that is, isTrue(α) = t for a fact α if and only if the number of derivations of α using rule (19) is not zero. Finally, we assume that
the module functions for M2 are implemented using Algorithms 4–6 and they use the oracle isTrue provided by M1.

S (x, y)→ R(x, y) (19)
R(x, y) ∧ R(y, z)→ R(x, z) (20)

Let E be as specified in equation (21), and consider applying Algorithm 2 to Π, λ, and E. This process derives facts shown
in equation (22), where I1 = Π∞[E]; moreover, the global set XR

1 of module M2 contains facts shown in equation (23) after
materialisation. We now discuss several important aspects of our algorithms.

E = {S (b, c),R(c, d),R(d, e)} (21)
I1 = {R(b, c),R(b, d),R(b, e),R(c, e)} ∪ E (22)

XR
1 = {R(b, c),R(c, d),R(d, e)} (23)

First, note that the transitive closure of XR
1 is equal to I1, but XR

1 is smaller than I1. In other words, XR
1 is the ‘backbone’ of

the transitive closure contained in I1, and it consists of the ‘external’ facts (i.e., facts that are either explicitly given in the input
or produced by other modules). Argument ∆m is critical to our ability to distinguish the ‘external’ facts from the facts produced
by the module itself. For example, module M2 derives R(c, e) in the first round of rule application so, in the second round, this
fact is passed back to M2 as part of ∆+. Without any additional information, module M2 would need to consider fact R(c, e) as
being ‘external’ and add it to XR

1 . To remedy this, our framework informs each module about the facts that the module derived
in the preceding round using the ∆m argument. Thus, R(c, e) ∈ ∆m holds on the second call to the addition function, so lines 49
and 50 ensure that fact R(c, e) is not added to XR. Analogous reasoning applies to the rest of I1 \ XR

1 .
Second, by matching the first atom of rule (20) to XR

1 , Algorithm 4 skips certain instances of the rule; for example, the
algorithm never considers instance R(b, d) ∧ R(d, e)→ R(b, e). This, however, does not affect the correctness of materialisation
because the transitive closure of XR

1 provides the required materialisation. This can boost performance as discussed in Example 4.

The following example shows how the ‘backbone’ is maintained in the presence of fact addition.
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Algorithm 4 Addtc(R)[I ···∆−,∆+ ···∆m]
Global variables: XR

49: ∆′ ··= Q ··= {R(u, v) ∈ ∆+ | R(u, v) < ∆m}

50: XR ··= XR ∪ ∆′

51: J ··= ∅
52: for each R(u, v) ∈ ∆′ and each R(v,w) ∈ (I \ ∆−) ∪ ∆m do
53: if R(u,w) < (I \ ∆−) ∪ ∆+ ∪ J then add R(u,w) to Q and J
54: while Q , ∅ do
55: remove an arbitrarily chosen fact R(v,w) from Q
56: for each R(u, v) ∈ XR do
57: if R(u,w) < (I \ ∆−) ∪ ∆+ ∪ J then add R(u,w) to Q and J
58: return J

Algorithm 5 Deltc(R)[Io, In ···∆−,∆+ ···∆m]
Global variables: XR, YR

59: ∆′ ··= Q ··= {R(u, v) ∈ ∆− | R(u, v) < ∆m ∪ YR}

60: I′ ··= In \ (∆− ∪ YR)
61: J ··= ∅
62: for each R(u, v) ∈ ∆′ and each R(v,w) ∈ I′ do
63: if R(u,w) ∈ In \ (∆− ∪ J ∪ YR) then
64: add R(u,w) to Q
65: if isTrue(R(u,w)) = f then add R(u,w) to J
66: else add R(u,w) to YR

67: while Q , ∅ do
68: remove an arbitrarily chosen fact R(v,w) from Q
69: for each R(u, v) ∈ XR do
70: if R(u,w) ∈ In \ (∆− ∪ J ∪ YR) then
71: add R(u,w) to Q
72: if isTrue(R(u,w)) = f then add R(u,w) to J
73: else add R(u,w) to YR

74: XR ··= XR \ ∆−

75: return J

Algorithm 6 Redtc(R)[Io, In ···∆]
Global variables: XR, YR

76: XR ··= XR ∪ YR

77: J ··= YR ··= ∅

78: for each u such that there exist v with R(u, v) ∈ ∆ do
79: for each w reachable from u via R-facts in XR do
80: if R(u,w) ∈ ∆ then add R(u,w) to J
81: return J
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Example 21. Continuing Example 20, let E+ be as specified in equation (24), and consider applying Algorithm 3 to Π, λ, ∅, and
E+. This process derives facts shown in equation (25), were I2 = Π∞[E ∪ E+], and it updates the global set of module M1 to XR

2
as shown in equation (26). In particular, module M1 uses E+ to derive R(a, c); fact R(c, e) is not derived by M1 because it is
already contained in I1. Fact R(a, c) is then passed to module M2, which incorporates it into the new ‘backbone’ XR

2 —that is, M2

maintains the ‘backbone’ using the facts derived by other modules. Note that facts such as R(a, d) and R(a, e) are not included
into XR

2 because they can be recovered by transitively closing XR
2 . Finally, note that facts R(a, c), R(b, c), and R(c, e) all have one

recursive derivation after the update, so the oracle isTrue returns t on all those facts.

E+ = {S (a, c), S (c, e)} (24)
I2 = {R(a, c),R(a, d),R(a, e)} ∪ I1 ∪ E+ (25)

XR
2 = {R(a, c),R(b, c),R(c, d),R(d, e)} (26)

Finally, the following example demonstrates several difficulties that need to be handled in overdeletion. These arise largely
due to an interaction between the oracle and the ‘backbone’.

Example 22. Continuing Example 21, let E− be as specified in equation (27), and consider applying Algorithm 3 to Π, λ, E−,
and ∅. Facts S (b, c) and S (c, e) are not affected by the update, so isTrue(R(b, c)) = isTrue(R(c, e)) = t holds both before and after
the update. In contrast, the first call to DelM

1
reduces the number of nonrecursive derivations of R(a, c) to zero, which results

in isTrue(R(a, c)) = f. Since M1 is the first module considered in stratum with index 1, the oracle is updated before it is used by
module M2, which ensures correctness. Deletion exhibits several intricacies, so we next discuss the process in detail.

E− = {R(d, e), S (a, c)} (27)

Consider now the first call of Algorithm 5 during overdeletion. This call is made with argument ∆− = {R(d, e), S (a, c)}: even
though module M1 identifies that fact R(a, c) needs to be overdeleted, this fact will be passed to module M2 only in the second
call. Moreover, (M2)D[Io, In ···∆−, ∅] contains fact R(a, e): this fact is derived by the instance R(a, d) ∧ R(d, e)→ R(a, e) of rule
(20) where R(d, e) ∈ ∆−. Finally, fact R(a, e) does not hold in the ‘new’ materialisation because R(a, c) will be deleted eventually.
Therefore, Algorithm 5 must return R(a, e) to satisfy the lower bound.

Now consider the execution of Algorithm 5. Fact R(d, e) is added to the set Q in line 59; as a result, fact R(c, e) is considered in
line 70 and subsequently in line 72. Since isTrue(R(c, e)) = t holds, the fact is known to hold after the update, so Algorithm 5 does
not overdelete R(c, e). One might expect that we do not need to consider further consequences of R(c, e); but then, the algorithm
would never examine and overdelete R(a, e) (as is needed for the lower bound). Intuitively, this problem arises because our
algorithm never considers the rule instance from the previous paragraph. Instead, the algorithm matches the first body atom in
XR and only considers instance R(a, c) ∧ R(c, e)→ R(a, e); now the second atom of this rule instance is true after the update,
and the first atom will be deleted eventually, but the algorithm is not yet informed of this.

To remedy this, our algorithm considers the consequences of R(c, e) even though the fact is not overdeleted. This eventually
ensures that the algorithm considers and overdeletes R(a, e). In a similar vein, fact R(b, e) depends on R(d, e), and there is no
evidence that the fact holds after the update; hence, fact R(b, e) is overdeleted too. In the second iteration of overdeletion, fact
S (a, c) is passed to function DelM

1
, which overdeletes R(a, c). After overdeletion, sets XR and YR are as follows.

XR
3 = {R(b, c),R(c, d)} (28)

YR = {R(c, e)} (29)

In the rederivation phase, fact R(b, e) must be rederived. However, overdeletion changed the ‘backbone’ so that R(b, e) does
not follow from the transitive closure of XR

3 , so Algorithm 6 must repair the ‘backbone’ in a way that restores this property. This
is the role of set YR: this set records the facts encountered during overdeletion that are known to hold after the update, so that
they can be added back to XR in line 76. In our example, this allows Algorithm 6 to correctly rederive R(b, e).

6.3. Computing the Symmetric–Transitive Closure

While Section 6.2 deals with reachability in directed relations, applications often need to deal with undirected relations as
well. Reachability in undirected relations can be axiomatised as follows.

Definition 23. For R a binary predicate, stc(R) is the module containing the following two rules:

R(x, y)→ R(y, x) (30)
R(x, y) ∧ R(y, z)→ R(x, z). (31)
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Rules of the form (30)–(31) abound in practice. For example, many ontologies we discuss in Section 7 contain symmetric and
transitive predicates: the FHKB ontology of genealogical relations contains predicates such as ‘is sibling of’, and the Relations
life sciences ontology contains predicates such as ‘shares ancestor with’ and ‘is homologous to’. Thus, optimising reasoning
with stc(R) has the potential to improve reasoning performance in many practical scenarios.

Our approach to dealing with module stc(R) has already been suggested in Example 5. In particular, the rules of stc(R) ensure
that constants occurring in facts with predicate R are partitioned into connected components—that is, sets of mutually reachable
constants. Once we have identified connected components, we can simply connect all pairs of constants in each component. Our
main challenge is to maintain the list of connected components incrementally, rather than recompute it after each update.

Module functions for stc(R), shown in Algorithms 7–9, show how to put these ideas into practice. They depend on two global
variables. Variable XR contains all connected components—that is, each member of XR is a set of constants that are mutually con-
nected in the current materialisation. This set is maintained incrementally during additions, deletions, and rederivation. Global
variable YR is used during deletion and rederivation only, and it keeps track of facts of the form R(u′, v′) whose overdeletion was
attempted, but which were identified by the oracle as holding after the update. Both sets are initially empty.

Addition and rederivation both use an auxiliary function CloseEdges(∆), which computes the effects of adding the facts
in ∆ to the connected components represented by the current value of XR. The function updates XR to reflect the connected
components after ∆ has been added, and it returns the facts that should be added to the materialisation due to adding ∆. To this
end, the function considers in lines 85–90 each fact R(u, v) ∈ ∆. If constant u does not occur in a connected component in XR,
then XR is updated by creating a new component containing just u, and R(u, u) is added to the function’s result (line 86). Constant
v is processed analogously (line 87). Finally, if u and v occur in distinct connected components in XR, then the components are
merged (line 89), and facts connecting pairs of constants from the two components are added to the function’s result (line 90).

Function Addstc(R), shown in Algorithm 7, simply calls this function on ∆+ \ ∆m (i.e., the facts produced by other modules in
the last round of rule application), and it returns the facts that are not already contained in the materialisation. Function Delstc(R),
shown in Algorithm 8, processes each fact R(u, v) in ∆− \ ∆m (i.e., each fact overdeleted by other modules in the last round of
rule application) such that u and v belong to the same connected component U (lines 93–97), it overdeletes each fact R(u′, v′)
with {u′, v′} ⊆ U that is not known to hold after the update (line 95), and it removes U from XR (line 97). Each fact R(u′, v′) that
is known to hold after the update is added to YR in order to facilitate rederivation (line 96). Finally, function Redstc(R), shown in
Algorithm 9, simply closes the set YR as during addition (line 99) and empties it (line 100).

It is straightforward to see that the worst-case running times of our functions are determined by the loops in line 90 and 94–
96, which require O(n2) time where n is the maximum size of a connected component. In contrast, evaluating rules (30) and (31)
using seminaïve evaluation requires O(n3) time in the worst case. This improvement in worst-case complexity is directly due
to the fact that our optimised algorithms do not need to consider all instances of rule (31). Theorem 24 shows that our solution
satisfies the correctness criterion from Definition 14, and it is proved in Appendix C.

Theorem 24. Functions Addstc(R), Delstc(R), and Redstc(R) are correct.

6.4. Reasoning with Regular Chain Rules
In this section, we generalise our technique from Section 6.2 to a class of programs that can express very general connectivity

properties. In particular, we shall consider a specific subclass of chain programs [2], whose structure is captured by the following
definition.

Definition 25. A chain program is a Datalog program that contains only rules of the form

S 1(x0, x1) ∧ · · · ∧ S n(xn−1, xn)→ R(x0, xn). (32)

We consider a restriction of chain programs where the consequences of the program with a specific predicate can be described
using a regular language. Such programs are commonly called regular chain programs, and they have been studied extensively in
numerous contexts. For example, Horrocks and Sattler [41] showed that regular chain programs can be combined with description
logics in a way that preserves decidability of reasoning. This work provided the foundation for complex property inclusions in the
Web Ontology Language (OWL) [60], which are extensively used in practical applications. Consequently, numerous applications
can be expected to benefit from optimisations of reasoning with regular chain programs.

To define regular chain programs formally, we first simplify the notions of rule unfolding presented in Section 3 to chain
programs. Let Σb be the set of all binary predicates in the signature. Note that the body of each rule of the form (32) naturally
corresponds to the finite word S 1, . . . , S n ∈ Σ

∗
b of predicates from the rule body: for each word, we just need to ‘plug in’ the

relevant variables. Moreover, unfolding of rules of the form (32) produces rules of the same form. This motivates the following
definition, which allows us to represent an unfolding of a binary predicate by a possibly infinite set of finite words over Σb.

Definition 26. Given a chain program Π, relation ⇝Π ⊆ Σb × Σb is the smallest relation on finite words over Σb such that
P1, . . . , Pm ⇝Π P1, . . . , Pi−1, S 1, . . . , S n, Pi+1, . . . , Pm holds for all binary predicates P1, . . . , Pn and each rule in Π of the form
(32) where R = Pi. Let ⇝∗

Π
be the reflexive–transitive closure of ⇝Π. Then, a word P1, . . . , Pn is an unfolding of a binary

predicate R w.r.t. Π if R⇝∗
Π

P1, . . . , Pn.
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Algorithm 7 Addstc(R)[I ···∆−,∆+ ···∆m]
Global variables: XR

82: return CloseEdges(∆+ \ ∆m) \ ((I \ ∆−) ∪ ∆+)

83: function CloseEdges(∆)
84: J ··= ∅
85: for each R(u, v) ∈ ∆ do
86: if no U ∈ XR exists such that u ∈ U then add {u} to XR, and R(u, u) to J
87: if no V ∈ XR exists such that v ∈ V then add {v} to XR, and R(v, v) to J
88: if u and v belong to distinct U ∈ XR and V ∈ XR, respectively then
89: remove U and V from XR, and add U ∪ V to XR

90: for each u′ ∈ U and each v′ ∈ V do add R(u′, v′) and R(v′, u′) to J
91: return J

Algorithm 8 Delstc(R)[Io, In ···∆−,∆+ ···∆m]
Global variables: XR, YR

92: J ··= ∅
93: for each U ∈ XR such that there exists R(u, v) ∈ ∆− \ ∆m with {u, v} ⊆ U do
94: for each u′ ∈ U and each v′ ∈ U do
95: if isTrue(R(u′, v′)) = f then add R(u′, v′) to J
96: else add R(u′, v′) to YR

97: remove U from XR

98: return J ∩ (In \ ∆−)

Algorithm 9 Redstc(R)[Io, In ···∆]
Global variables: YR

99: J ··= CloseEdges(YR) ∩ ∆
100: YR ··= ∅

101: return J

Since each rule of the form (32) contains at least one body atom, each unfolding of a predicate is nonempty. Proposition 27
reformulates the characterisation of predicate unfolding from Section 3: each derivation of a binary fact in a chain program
corresponds to a path in the set of explicitly given facts matching one unfolding of the fact’s predicate.

Proposition 27. For Π a chain program, R a binary predicate, E a set of explicitly given facts, and a and b constants,
R(a, b) ∈ Π∞[E] if and only if there exist an unfolding P1, . . . , Pn of R w.r.t. Π and constants c0, c1, . . . , cn such that c0 = a,
cn = b, and {P1(c0, c1), . . . , Pn(cn−1, cn)} ⊆ E.

The set of unfoldings of each binary predicate in a chain program can thus be viewed as a language over an alphabet Σb,
which motivates the following definition.

Definition 28. A chain program Π is regular if, for each binary predicate R, the language of all unfoldings of R w.r.t. Π is regular.

We write Πrch to stress that Π is a regular chain program. For each binary predicate R from the head of a rule in Πrch, we fix
a nondeterministic finite automaton (NFA) NR = ⟨QR,Σb, δ

R, qR
s , F

R⟩ that accepts precisely all unfoldings of R w.r.t. Π; here, QR

is the finite set of states, δR : QR × Σb → 2QR
is the transition function, qR

s is the start state, and FR ⊆ QR is the set of final states.
We assume that the states of each NFA are private to the NFA—that is, QR1 ∩ QR2 = ∅ for all distinct R1 and R2. We also assume
that each NFA is free of ε-transitions; this is without loss of generality as such transitions can always be eliminated. Finally,
since unfoldings are not empty, sR

s < FR holds—that is, the start state is never also a final state.
While chain programs can be easily recognised syntactically, determining whether a chain program is regular involves check-

ing a semantic property. Note that the rules of a chain program straightforwardly correspond to productions of a pure context-free
grammar (i.e., a context-free grammar that does not distinguish between terminal and nonterminal symbols). Maurer et al. [57]
conjectured that checking whether a pure context-free grammar generates a regular language is undecidable, and we are unaware
of a result that settles this question. Several sufficient and practically verifiable restrictions of chain programs have been devel-
oped [41, 48], and all of them provide ways to construct the relevant NFAs. Moreover, the restrictions by Horrocks and Sattler
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Figure 1: NFAs for predicates R (left) and S (right) from Example 29

[41] have been incorporated into the OWL 2 DL ontology language, and they are widely used in practice; thus, the results from
this section are applicable to the chain programs obtained by translating OWL 2 DL ontologies.

We next outline a well-known technique for reasoning with regular chain rules by NFA traversal, instead of seminaïve
evaluation. Variants of this technique have been considered in numerous different contexts, such as description logic reasoning
[41] and incremental Datalog evaluation [24]. Our approach manipulates q-facts—expressions of the form q(u, v) where u and v
are constants and q is an NFA state; a finite set of q-facts is called a q-dataset. Now let E be a set of explicitly given facts, and let
NP be an NFA that accepts precisely all unfoldings of a predicate P w.r.t. a regular chain program Π. We can compute all facts
with the P predicate in Π∞[E] using Proposition 27; the so-called product construction [9] describes this from a conceptual point
of view, but we next outline a procedure that is more amenable to practical implementation. First, we initialise a q-dataset with a
q-fact of the form qP

s (a, a) for each constant a in E, where qP
s is the start state of NP. Next, we exhaustively apply the following

step: for each q(a, b) that has already been derived, each R(b, c) ∈ E, and each R-transition from q to q′ in NP, we derive q′(a, c).
Once this process reaches the least fixpoint, for each q(a, b) that has been derived where q is a final state of NP, we derive P(a, b).
Example 29 shows that, in a way similar to Section 6.2, such a technique can reduce the complexity of rule matching.

Example 29. Let Π contain rules (33) and (34). For E as specified in equation (35), the materialisation I of Π w.r.t. E is shown
in equation (36).

R(x, y) ∧ R(y, z)→ R(x, z) (33)
S (x, y) ∧ R(y, z)→ S (x, z) (34)
E = {R(ci, ci+1) | 1 ≤ i < n} ∪ {S (dk, c1) | 1 ≤ k ≤ m} (35)
I = Π∞[E] = {R(ci, c j) | 1 ≤ i < j ≤ n} ∪ {S (dk, c j) | 1 ≤ k ≤ m, 1 ≤ j ≤ n} (36)

Note that O(n3) rule instances of the form (37) and O(mn2) rule instances of the form (38) are applicable to I; thus, seminaïve
evaluation requires O(n3 + mn2) steps.

R(ci, c j) ∧ R(c j, cℓ)→ R(ci, cℓ) with 1 ≤ i < j < ℓ ≤ n (37)
S (dk, ci) ∧ R(ci, c j)→ S (dk, c j) with 1 ≤ k ≤ m and 1 ≤ i < j ≤ n (38)

To apply the automata-based approach, first note that NFAs NR and NS from Figure 1 accept precisely the unfoldings of
R and S , respectively. To apply NR to E, we derive q0(dk, dk) for 1 ≤ k ≤ m and q0(ci, ci) for 1 ≤ i ≤ n; then, using q0(ci, ci)
and R(ci, ci+1) we derive q1(ci, ci+1) for 1 ≤ i < n; finally, using q1(ci, c j) and R(c j, c j+1) we derive q1(ci, c j+1) for 1 ≤ i < j ≤ n.
This process clearly takes O(n2) steps. To apply NS to E, we derive q2(dk, dk) for 1 ≤ k ≤ m and q2(ci, ci) for 1 ≤ i ≤ n; then,
using q2(dk, dk) and S (dk, c1) we derive q3(dk, c1) for 1 ≤ k ≤ m; finally, using q3(dk, ci) and R(ci, ci+1) we derive q3(dk, ci+1) for
1 ≤ i < n. This process clearly takes O(mn) steps. Hence, the complexity of reasoning with Π is quadratic, rather than cubic.
As in Section 6.2, this improvement arises because NFA traversal considers only the facts in E (i.e., the ‘backbone’), and not the
facts derived by the traversal itself. The algorithms presented in this section generalise the ones from Section 6.2; however, the
algorithms for transitivity are nevertheless useful in practice because they do not incur the overhead of maintaining q-facts.

Note that the complexity improvements disappear if we consider the two rules in isolation. For example, we can apply
rule (33) in O(n2) steps using either the NFA approach or as in Section 6.2. However, if we then apply rule (33) to all con-
sequences of rule (33), both the seminaïve evaluation and the automata-based approach require O(mn2) steps. Intuitively, an
NFA for a predicate encodes all consequences of all rules, so the rules in a regular chain program do not need to exchange
information; thus, each NFA can be matched against the same ‘backbone’ and thus benefit from performance improvements.

Another benefit of our approach is that NFAs can be converted into DFAs and then minimised. Although the first of these
steps is worst-case exponential, an exponential blowup rarely occurs in practice in our experience; moreover, NFAs are typically
quite small so, even if an exponential blowup occurs, the resulting DFAs are still of manageable sizes. Finally, DFA minimisation
can be seen as elimination of redundancy from a program, which is beneficial for performance.

Based on these ideas, Algorithms 10–12 implement functions AddΠrch , DelΠrch , and RedΠrch for a module Πrch consisting of
regular chain rules. The algorithms maintain several global variables, all of which are initially empty. In particular, sets X and Y
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play the same role as sets XR and YR in Section 6.2: the former contains the ‘backbone’ facts produced by other modules, and the
latter collects facts that are not overdeleted due to the oracle. Moreover, our algorithms use q-facts to represent partial matches
of NFAs, but these cannot be stored in the materialisation or passed in sets ∆+ and ∆−. Therefore, a global q-dataset Iq collects
the q-facts derived thus far and thus ‘shadows’ the materialisation, and another global q-dataset ∆q collects all q-facts considered
during deletion. Since NFAs do not share states, we need just one Iq and one ∆q. Finally, for each predicate Ri occurring in the
head of a rule in Πrch, our algorithms use a global set of constants ZRi whose role will be clarified shortly.

The addition and the rederivation functions use an auxiliary function AddEdges(∆,Q, B), whose task is to return the q-facts
that should be added to Iq as a result of extending the materialisation with ‘ordinary’ facts in ∆. Set B contains ‘blocked’ q-facts—
that is, facts that have already been derived and should not be returned. Finally, set Q contains additional q-facts that should be
considered. The function is similar to function Addtc(R) from Section 6.2, and the main difference is that it needs to maintain both
q-facts and ‘ordinary’ facts. The function keeps track of the q-facts to be processed in set Q, and it collects the resulting q-facts
in an auxiliary set Jq. Processing is split into two parts. In lines 107–112, each fact R(v,w) produced by other modules (and thus
to be added to the materialisation) is considered and added to the ‘backbone’ X (line 108). Next, each R-transition from state
q1 to state q2 in each NFA NS is considered (line 109). If q1 is the start state qS

s of NS , q2(v,w) is derived to record the move
from the start state (line 110). Thus, unlike the approach outlined in Example 29, qS

s (v, v) is not derived; however, this is not a
problem because qS

s cannot be a final state of NS and so it does not need to be considered in line 104 or 142. Moreover, each
q-state q1(u, v) in Iq shows that there is a word connecting u and v that moves the NFA into state q1, and fact R(v,w) allows this
word to be extended and move the NFA to q2, so q2(u,w) is derived (lines 111–112). After processing all facts in ∆, the set of
q-facts is closed to a fixpoint (lines 113–116) by joining each q-fact q1(u, v) from Q (line 113) with each fact R(v,w) from the
‘backbone’ that corresponds to a transition of some NFA NS from q1 (line 115).

Function AddΠrch then simply calls AddEdges on the set of facts ∆− \ ∆m—that is, facts produced by other modules in the
preceding round of rule applications. Argument Iq ensures that the function derives q-facts only for transitions not considered
previously. Once set Jq of newly derived q-facts is produced, it is added to Iq (line 103), and each q-fact corresponding to a
finishing state of an NFA is converted into an ordinary fact (line 104).

Function DelΠrch computes in lines 119–128 the q-facts that should be deleted from Iq as a result of deleting the facts in
∆−. This process is analogous to AddEdges: lines 119–123 compute the direct consequences of ∆−, and lines124–128 compute
the fixpoint. Set ∆q keeps track of all q-facts encountered during overdeletion so we can overdelete each q-fact just once. To
convert Jq to ordinary facts, each overdeleted q-fact q(u, v) ∈ Jq is considered (lines 129–134), and the NFA NR that q belongs
to is identified (line 130). Note that q(u, v) may need to be rederived, but neither u nor v will necessarily occur in the arguments
passed to the rederivation functions; thus, to keep track of constants that should be revisited during rederivation, constant u is
added to the global set ZR (line 131). Note that ZR is associated with NFA NR—that is, a separate set is maintained for each
NFA. Moreover, if q is a final state of NR, then q(u, v) corresponds to the ordinary fact R(u, v). As in Section 6.2, an oracle is
consulted to see whether overdeleting R(u, v) can be avoided; if so, R(u, v) is added to the global set Y for the same reasons as in
Section 6.2. Finally, Iq and ∆q are updated and ∆− is removed from the backbone (line 135).

Function RedΠrch deals with rederivation. As mentioned already, argument ∆ provides no information about which transitions
have been overdeleted. Therefore, each constant u ∈ ZS from the set associated with NFA NS is considered; if the NFA contains
a transition from u that can be matched to a fact R(u, v) ∈ X in the ‘backbone’, q(u, v) is added to the set Q (lines 138–139).
Function AddEdges(Y,Q, ∅) then computes the q-facts needed to close set Q and also adds Y into the ‘backbone’; the need for
the latter is the same as in Section 6.2. Finally, the q-facts are converted into ordinary facts (line 142) as in addition.

Theorem 30 shows that our solution satisfies the correctness criterion from Definition 14, and it is proved in Appendix D.

Theorem 30. Functions AddΠrch , DelΠrch , and RedΠrch are correct.

Algorithms 10–12 correspond closely to Algorithms 4–6 from Section 6.2, but there is a notable difference: Deltc(R) skips
facts in ∆m ∪ YR in line 59, whereas DelΠrch does not do the same in line 119. The following example illustrates the rationale for
this.

Example 31. Consider a program Π partitioned into two modules assigned to one stratum: M1 contains rules (39)–(41) and M2

contains rules (42)–(43). Moreover, we assume that the functions for M1 return M1
∞[I] \ ((I \ ∆−) ∪ ∆+), M1

D, and M1
R, and that

M2 is handled by Algorithms 10–12 that use NFAs NR and NT from Figure 2 and an oracle that always returns f.

U(x, y)→ S (x, y) (39)
S (x, y)→ T (x, y) (40)

U(x, y)→ W(x, y) (41)
W(x, y)→ T (x, y) (42)

T (x, y) ∧ V(y, z)→ R(x, z) (43)

We apply Algorithm 2 to Π and E from equation (44). Since AddM1 essentially returns the upper bound, S (a, b), T (a, b), and
W(a, b) are all derived in line 12. In the same line, AddM2

adds V(b, c) to X, but keeps Iq empty. Then, in line 18, AddM2
adds

22



Algorithm 10 AddΠrch [I ···∆−,∆+ ···∆m]
Global variables: Iq, X

102: Jq ··= AddEdges(∆+ \ ∆m, ∅, Iq)
103: Iq ··= Iq ∪ Jq

104: return {R(u, v) | ∃q ∈ FR such that q(u, v) ∈ Jq and R(u, v) < (I \ ∆−) ∪ ∆+}

105: function AddEdges(∆,Q, B)
106: Jq ··= Q
107: for each R(v,w) ∈ ∆ such that R appears in Πrch do
108: X ··= X ∪ {R(v,w)}
109: for each predicate S occurring in the head of a rule in Πrch and all q1, q2 ∈ QS such that q2 ∈ δ

S (q1,R) do
110: if q1 = qS

s and q2(v,w) < B ∪ Jq then add q2(v,w) to Q and Jq

111: for each q1(u, v) ∈ Iq do
112: if q2(u,w) < B ∪ Jq then add q2(u,w) to Q and Jq

113: while Q , ∅ do
114: remove an arbitrarily chosen fact q1(u, v) from Q
115: for each predicate S occurring in the head of a rule in Πrch, each R(v,w) ∈ X, and each q2 ∈ δ

S (q1,R) do
116: if q2(u,w) < B ∪ Jq then add q2(u,w) to Q and Jq

117: return Jq

Algorithm 11 DelΠrch [Io, In ···∆−,∆+ ···∆m]
Global variables: Iq, ∆q, X, Y , ZR1 , . . . ,ZRn

118: Q ··= J ··= Jq ··= ∅

119: for each R(v,w) ∈ ∆− such that R appears in Πrch do
120: for each predicate S occurring in the head of a rule in Πrch and all q1, q2 ∈ QS such that q2 ∈ δ

S (q1,R) do
121: if q1 = qS

s and q2(v,w) < ∆q ∪ Jq then add q2(v,w) to Q and Jq

122: for each q1(u, v) ∈ Iq do
123: if q2(u,w) < ∆q ∪ Jq then add q2(u,w) to Q and Jq

124: while Q , ∅ do
125: remove an arbitrarily chosen fact q1(u, v) from Q
126: Let S be the predicate occurring in the head of a rule in Πrch such that q1 ∈ QS

127: for each R(v,w) ∈ X and each q2 ∈ δ
S (q1,R) do

128: if q2(u,w) < ∆q ∪ Jq then add q2(u,w) to Q and Jq

129: for each q(u, v) ∈ Jq do
130: Let R be the predicate occurring in the head of a rule in Πrch such that q ∈ QR

131: ZR ··= ZR ∪ {u}
132: if q ∈ FR and R(u, v) ∈ In \ (∆− ∪ J ∪ Y) then
133: if isTrue(R(u, v)) = t then Y ··= Y ∪ {R(u, v)}
134: else J ··= J ∪ {R(u, v)}
135: Iq ··= Iq \ Jq, ∆q ··= ∆

q ∪ Jq, X ··= X \ ∆−

136: return J

Algorithm 12 RedΠrch [Io, In ···∆]
Global variables: Iq, ∆q, X, Y , ZR1 , . . . ,ZRn

137: Q ··= ∅
138: for each predicate S occurring in the head of a rule in Πrch, each u ∈ ZS , each R(u, v) ∈ X, and each q ∈ δS (qS

s ,R) do
139: if q(u, v) < Q then add q(u, v) to Q
140: Jq ··= AddEdges(Y, Q, ∅)
141: Iq ··= Iq ∪ Jq, ∆q ··= Y ··= ZR1 ··= · · · ··= ZRn ··= ∅

142: return {S (u, v) ∈ ∆ | ∃q ∈ FS such that q(u, v) ∈ Iq}
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Figure 2: NFAs for predicates R (left) and T (right) from Example 31

T (a, b) and W(a, b) to X, updates Iq, and derives R(a, c). Materialisation thus derives the facts shown in equation (45) where
I1 = Π∞[E], and the global sets X and Iq of module M2 are shown in equations (46) and (47).

E = {U(a, b),V(b, c)} (44)
I = {S (a, b),T (a, b),W(a, b),R(a, c)} ∪ E (45)

X = {T (a, b),W(a, b),V(b, c)} (46)
Iq = {q1(a, c), q2(a, b), q3(a, b), q5(a, b)} (47)

E− = {U(a, b)} (48)
E+ = {V(b, d)} (49)

We next apply Algorithm 3 to Π and sets E− and E+ from equations (48) and (49). The algorithm makes the first call to the
module functions during overdeletion in line 28. Function DelM

1
implements one-step rule application; thus, due to rules (39)

and (41) and the deletion of U(a, b), it overdeletes S (a, b) and W(a, b). Function DelM
2

does not update X or Iq at this point since
predicate U does not appear in M2. The algorithm next proceeds to the first iteration of lines 29–34. Function DelM

1
overdeletes

T (a, b) using S (a, b) and rule (40). Function DelM
2

removes W(a, b) from X, removes q5(a, b), q2(a, b), and q1(a, c) from Iq, and
finally overdeletes T (a, b) and R(a, c) in line 134. Thus, after the first iteration of lines 29–34, we have Iq = {q3(a, b)}. In the
second iteration of lines 29–34, function DelM

2
is called with ∆− = {T (a, b),R(a, c)} and ∆m = {T (a, b),R(a, c)}. If at this point

we were to skip the facts in ∆m in line 119, then the q-fact q3(a, b) would be kept after overdeletion, which would be incorrect:
T (a, b) is overdeleted so there does not exist a word that connects a and b and that moves NFA NR from q0 to q3. Therefore, in
the addition phase, function AddM2

would join the added fact V(b, d) with q3(a, b) in line 42; thus, q1(a, d) would be added to Iq

and R(a, d) would be added to I. The latter, however, is incorrect: fact R(a, d) does not hold after update.
Intuitively, facts in ∆− cannot be skipped in line 119 because they can give rise to partial matches of NFAs. In contrast,

Algorithm 5 is conceptually applied to a simpler automaton whose structure allows for such an optimisation.

6.5. Sequencing Totally Ordered Elements

The modules considered in Sections 6.2–6.4 are similar in that they involve negation-free recursive rules that express various
forms of connectivity over binary predicates, which raises the question of whether our framework is beneficial only in such
scenarios. To show that this is not the case, in this section we present a module that involves just one nonrecursive rule with
negation. The motivation for this module arose while working with a well-known financial institution on an application of
Datalog in the financial services domain. The goal of our application was to identify fraudulent transactions by describing
suspicious transactions declaratively using Datalog and then using a highly optimised Datalog reasoner to analyse the data. A
key requirement was to order a set of transactions into a sequence according to the transactions’ timestamps. For example, given
transactions t1, t2, and t3 with timestamps 2, 5, and 9, respectively, our program had to derive a ‘follows’ relationship between t1
and t2, and t2 and t3. This relationship was used in patterns such as ‘three consecutive transactions between the same accounts
within a time period’. To discuss the technical challenges in doing so, we first reformulate the problem in more abstract terms.

To compare timestamps, we must extend Datalog with builtin predicates. To this end, we assume that the signature contains
a special binary predicate <, which is usually written using the infix notation: instead of <(t1, t2), we write (t1 < t2). A rule is
allowed to contain such atoms only in the body, and each variable occurring in such an atom must also occur in an ‘ordinary’
positive body atom. Finally, predicate < is interpreted as a total order over all constants in the signature—that is, we extend each
dataset I s

i from equation (5) in Section 3 with the infinite set of facts involving the < predicate. Since < is not allowed to occur
in rule heads, the facts involving the < predicate are the same in every I s

i , so we do not need to store them explicitly; moreover,
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the restriction on variable use ensures that no rule derives infinitely many facts. Thus, builtin predicates do not change the nature
of Datalog in any significant way [18], and it is straightforward to see that our framework can use them too.

With this extension in place, we can now formulate our problem as follows. We assume facts of the form P(ai) enumerate
all constants that need to be arranged into a sequence—that is, unary predicate P identifies the domain of our sequence. Our
objective is to derive facts of the form R(ai, a j) for all pairs of ai and a j such that ai < a j holds, and for which no constant az

exists that satisfies ai < az < a j. This condition is captured directly by the following definition.

Definition 32. For P a unary predicate, R a binary predicate, and < a total order over all constants, seq(P,R, <) is the module
containing the following rule:

P(x) ∧ P(y) ∧ (x < y) ∧ not∃z.(P(z) ∧ (x < z) ∧ (z < y))→ R(x, y). (50)

To apply Definition 32 to our example, we would use P to enumerate all relevant time stamps and let R be the ‘follows’
relation. In practice, it might be more convenient to modify rule (50) so that it derives the ‘follows’ relationship between
transactions, rather than transaction timestamps. Such modifications are straightforward and they do not significantly change the
nature of our algorithms, so we do not consider them further for the sake of simplicity.

Now let n be the number of facts of the form P(ai), and let us assume that atoms of the form (ai < a j) can be evaluated in
constant time. To evaluate rule (50) using seminaïve evaluation, we need to consider O(n2) rule instances of the form

P(ai) ∧ P(a j) ∧ (ai < a j) ∧ not∃z.(P(z) ∧ (ai < z) ∧ (z < a j))→ R(ai, a j).

To evaluate the negative body literal, we need to consider O(n) possible bindings for z: evaluating (ai < z) may produce infinitely
many candidates for z, so we need to evaluate atom P(z) first. Thus, the worst-case complexity of rule evaluation is O(n3). Due
to this, the application we discussed above could initially process only very small inputs.

However, rule (50) can be applied more efficiently: we retrieve all constants a1, . . . , an occurring in facts with the P predicate,
sort these constants according to the < predicate, and derive R(ai, a j) for all pairs of adjacent constants in the sorted list. The
worst-case complexity of such a solution is clearly determined by the sorting step, which can be realised in O(n log n) steps using,
for example, the heap sort algorithm. Even with an algorithm such as quicksort whose worst-case running time is O(n2), such a
solution is still considerably more efficient than seminaïve evaluation.

Based on this idea, Algorithms 13–15 present functions for the seq(P,R, <) module. Our main challenge is to adapt our
idea to the incremental setting. To avoid recomputing the sorted list of constants in each module function call, our module
maintains a global list of sorted constants S P. The addition function then extends S P with the constants from facts with the
P predicate (line 144); an incremental algorithm such as heap sort can be used to keep S P sorted. Then, in lines 145–147
the algorithm identifies instances of rule (50) where P(b) ∈ ∆+ is matched to P(x) or P(y); and in lines 148–149 the algorithm
identifies instances of rule (50) where P(b) ∈ ∆− is matched to P(z). The deletion function is analogous and it essentially just
reverses this process. Finally, the rederivation function simply returns each fact R(a, b) ∈ ∆ where b comes immediately after a
in the sorted list S P. Theorem 33 shows that our solution satisfies the correctness criterion from Definition 14, and it is proved
in Appendix E.

Theorem 33. Functions Addseq(P,R,<), Delseq(P,R,<), and Redseq(P,R,<) are correct.

7. Empirical Evaluation

To evaluate our work, we have implemented our algorithms in a new research prototype. We then conducted several exper-
iments in order to investigate how our approaches perform under a variety of workloads. In this section, we discuss our test
systems and benchmarks, then we present our experimental setup, and finally we discuss the results. Our test systems, test data,
and results are available online.2

7.1. Test Systems
In order to simplify the development effort, we implemented our system on top of data storage and indexing mechanisms from

RDFox [61]—a state-of-the-art system for Datalog reasoning over RDF data. Our system thus stores RDF triples, which are facts
of the form ⟨s, p, o⟩ where s, p, and o are constants called subject, predicate, and object. All modules considered in this paper
deal only with unary and binary facts, which we transformed into triples by converting each fact of the form C(a) or R(a, b) into
a triple ⟨a, rdf :type,C⟩ or ⟨a,R, b⟩, respectively. RDFox stores all of its triples in RAM, and it provides an interface for retrieving
triples matching a single atom; we implemented our algorithms on top of this interface. Our system creates one module per

2https://krr-nas.cs.ox.ac.uk/2021/modular-reasoning/
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Algorithm 13 Addseq(P,R,<)[I ···∆−,∆+ ···∆m]
Global variable: S P

143: J ··= ∅
144: add each b with P(b) ∈ ∆+ to S P while keeping S P sorted according to <
145: for each P(b) ∈ ∆+ do
146: if b has an immediate predecessor a in S P then J ··= J ∪ {R(a, b)}
147: if b has an immediate successor c in S P then J ··= J ∪ {R(b, c)}
148: for each P(b) ∈ ∆− do
149: if b has an immediate predecessor a in S P and an immediate successor c in S P then J ··= J ∪ {R(a, c)}
150: return J \ ((I \ ∆−) ∪ ∆+)

Algorithm 14 Delseq(P,R,<)[Io, In ···∆−,∆+ ···∆m]
Global variable: S P

151: J ··= ∅
152: for each P(b) ∈ ∆− do
153: if b has an immediate predecessor a in S P then J ··= J ∪ {R(a, b)}
154: if b has an immediate successor c in S P then J ··= J ∪ {R(b, c)}
155: for each P(b) ∈ ∆+ do
156: if b has an immediate predecessor a in S P and an immediate successor c in S P then J ··= J ∪ {R(a, c)}
157: remove each b with P(b) ∈ ∆− from S P and keep S P sorted according to <
158: return J ∩ (In \ ∆−)

Algorithm 15 Redseq(P,R,<)[Io, In ···∆]
Global variable: S P

159: J ··= ∅
160: for each R(a, b) ∈ ∆ do
161: if b is the immediate successor of a in S P then J ··= J ∪ {R(a, b)}
162: return J

stratum that contains all rules in the stratum for which no specialised algorithms exist. Such rules are handled as in DRedc: as
outlined in Section 2.3, each fact is associated with counters that keep track of nonrecursive and recursive derivations; the former
is used to prevent unnecessary overdeletion, and the latter is used to rederive facts without any ‘backward’ rule evaluation. The
nonrecursive counter is also used as a global oracle that is available to all other modules, as described in Section 6.1. Our system
thus combines DRedc with modular reasoning, so we call it M-Dredc. The system is written in C++ and it runs on Linux.

DRedc and B/Fc were shown to outperform standard DRed and B/F on a wide range of inputs, so they provide a natural
baseline for comparison with M-DRedc.

7.2. Test Benchmarks
We compared our test systems on a range of real-world and synthetic benchmarks. For each benchmark, Table 3 shows

the numbers of explicit (|E|) and derived (|I|) facts, nonrecursive (|Πnr|) and recursive (|Πr|) rules, and strata (S ), as well as the
numbers of modules in the partition of the benchmark program (but we do not count the generic modules based on standard rule
matching). We next briefly describe each benchmark.

Claros3 is a dataset about archaeological artefacts, and its structure is described by an OWL ontology. We used the lower
bound extended (Claros-LE) program by Motik et al. [61], which was obtained from the Claros ontology by removing axioms
with features such as existential quantification and disjunction that cannot be captured in Datalog, converting the remaining
axioms into rules, and manually adding several ‘difficult’ rules.

LUBM [37] is a well-known benchmark that models individuals and organisations in a university domain. We used the lower
bound extended program by Motik et al. [61], which was obtained analogously to Claros-LE.

DBpedia [52] contains structured information extracted from Wikipedia. Various Wikipedia categories are represented using
the SKOS vocabulary [58], which defines several transitive properties. We used the Datalog subset of the SKOS RDF schema.

3https://eng.ox.ac.uk/claros/
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Benchmark |E| (k) |I| (k) |Πnr| |Πr| S tc stc rch seq

Claros-LE 18,793.3 533,348.9 1,031 306 11 27 2 0 0
LUBM-LE 133,573.9 332,615.4 85 22 5 1 2 0 0

DBpedia-SKOS 5,000.0 96,992.9 26 15 5 2 1 0 0
DAG-R 100.0 22,886.1 1 1 1 1 0 0 0
Family 1,000.0 51,252.3 202 162 10 5 3 0 0

Relations-STD 854.6 212,220.7 985 520 18 42 3 0 0
Relations-ALL 42 3 8 0
Relations-CUS 40 3 1 0

Seq 2,001.0 2,003.0 1 0 1 0 0 0 1

Table 3: Benchmark Statistics

The materialisation of DBpedia-SKOS is too large to fit into the memory of our test server, so we selected a subset of five million
facts using uniform sampling.

DAG-R is a synthetic benchmark consisting of a randomly generated dataset containing a directed acyclic graph with 10k
nodes and 100k edges, and a program that axiomatises the ‘connected’ predicate as transitive.

The Family benchmark was derived from the Family History Knowledge Base (FHKB) [79] that captures genealogical data.
The FHKB ontology is interesting because it contains several transitive and symmetric–transitive properties, and we extracted
the Datalog subset of the ontology in the usual way. The dataset of FHKB is very small so, to obtain a more substantial dataset,
we extracted a subset of the publicly available Familinx4 genealogical dataset and retrofitted it to the FHKB ontology.

The Relations benchmark is obtained from the Relations Ontology [77], a widely used component of numerous biomedical
ontologies. The ontology does not contain any data, so we created a synthetic dataset using the Watdiv Data Generator [4]. This
benchmark provided us with many nontrivial regular chain rules, which allowed us to evaluate our algorithms from Section 6.4.
However, the Datalog program also contains many transitive and symmetric–transitive rules so, since transitivity axioms are
chain rules, it is not obvious how to partition the program into modules. To study how partition choices affect the reasoning
performance, we partitioned the Datalog program in three different ways. The STD version provides us with a baseline: all
transitive and symmetric–transitive rules were assigned to tc and stc modules, and all remaining chain rules were handled using
standard seminaïve evaluation. The ALL version naturally refines the STD version: in each stratum, we selected a maximum
subset of the chain rules not already assigned to tc and stc modules that satisfies the regularity condition by Horrocks and Sattler
[41], and, if the result was not empty, we created one rch module for the stratum. We thus obtained eight rch modules containing
a total of 119 rules; the largest such module contained 73 rules. Finally, as we discuss shortly, our experiments showed that our
algorithms for regular chain rules can incur a nontrivial overhead. Therefore, we created a custom (CUS) version with just one
rch module that consists of two transitivity rules and several chain rules that we noticed were difficult for seminaïve algorithm.

Seq is a synthetic benchmark designed to test the object sequencing module. The program contains just one rule of the form
(50). The dataset contains 2,000 facts of the form P(a), and 1,999,000 facts axiomatising the ordering predicate <.

7.3. Test Setup and Results
To test incremental reasoning, we needed sets of facts to be removed or added. Thus, for each benchmark dataset E, we

selected subsets E1 and E2 using uniform sampling. For all benchmarks other than Seq, E1 contained 1,000 facts, and E2
contained 25% of E. For Seq, E1 contained 50 facts of the form P(a), and E2 contained 500 facts of that form—that is, 25% of
all the facts in E that are of the form P(a).

We conducted all experiments on a Dell PowerEdge R730 server with 128 GB RAM and two Intel Xeon E5-2660 2.6 GHz
processors running Fedora 33, kernel version 5.8.15. For each benchmark, we loaded the benchmark dataset E into our system
and then measured the wall-clock time needed to accomplish the following reasoning tasks. First, we computed the materialisa-
tion of E. Next, to see how various incremental algorithms deal with small changes, we deleted and then reintroduced subset E1.
Finally, to see how incremental algorithms deal with large changes, we deleted subset E2. Since materialisation and incremental
reasoning is achieved in the same way in all of our algorithms, we did not measure the time for reintroducing E2. The results of
all of our tests are shown in Table 4. Since addition is performed in exactly the same way in DRedc and B/Fc, we report the times
only for the former. Similarly, the partitioning of the program into modules is irrelevant for the DRedc and B/Fc algorithms, so
we report the times of DRedc and B/Fc just for the STD version. Finally, M-Mat was an order of magnitude slower on Relations-
ALL than on Relations-STD, which suggests that the algorithms for regular chain rules from Section 6.4 can incur a nontrivial

4https://familinx.org/data.html
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Benchmark
Materialisation Small Deletions Small Additions Large Deletions

Mat M-Mat DRedc B/Fc M-DRedc DRedc M-DRedc DRedc B/Fc M-DRedc

Claros-LE 4,996 962 1,216 585 1 1 0 4,733 5,132 365
LUBM-LE 1,268 339 4 0 0 0 0 1,568 844 210

DBpedia-SKOS 4,191 120 759 515 31 3 0 4,026 87,287 206
DAG-R 3,799 35 3,262 1,302 104 137 17 4,595 10,580 139
Family 12,052 102 6,781 7,375 12 432 1 9,750 20,274 47

Relations-STD 13,714 1,613 16,754 50,610 637 568 26 12,488 262,417 1,640
Relations-ALL 20,345 − − −

Relations-CUS 680 414 19 842
Seq 8,393 0 27 27 0 27 0 254 251 0

Table 4: Materialisation and Incremental Reasoning Times in Seconds

cost. We believe that these overheads would also dominate the incremental reasoning tests so, in order to run our experiments
more quickly, we omitted the incremental reasoning tests for Relations-ALL.

7.4. Discussion
As one can see from our results, M-Mat significantly outperformed the standard seminaïve evaluation on all benchmarks apart

from Relations-ALL. Performance improvements range from 3.7 times on LUBM-LE and 5.2 times on Claros-LE, to around 100
times on DAG-R and Family and almost four orders of magnitude on Seq. Most benchmarks contain transitive rules, and many
also contain symmetric–transitive rules; moreover, the datasets contain patterns that make evaluation of these rules difficult. For
example, the program of Claros-LE contains a symmetric–transitive predicate relatedPlaces, and the materialisation contains
large cliques of constants connected to each other via this predicate. DBpedia contains long chains/cycles over the transitive
skos:broader predicate [13]. Similarly, the Family benchmark contains the isBloodRelationOf symmetric–transitive predicate.
The cost of exploring all rule instances dominates the performance of reasoning, and our techniques seem to be very effective
at reducing this cost by exploring only a subset of these rule instances as we discussed in Sections 6.2–6.5. In many cases, the
improvement is actually in worst-case complexity, which drops from O(n3) to O(n2) and O(n log n) for stc and seq, respectively.

M-Mat was slower than Mat on Relations-ALL, but much faster on Relations-STD and Relations-CUS. Our investigation
revealed that the slowdown is due to two issues: the overhead of maintaining global sets Iq, ∆q, and X can outweigh the benefits
of distinguishing ‘external’ facts from ‘internal’ ones; moreover, when there are many interconnected chain rules, matching
the ‘external’ facts in many NFAs can be costly. Nevertheless, results for Relations-STD and Relations-CUS show that our
algorithms can still be very useful when they are applied to regular chain rules that generate a large number of ‘internal’ facts:
materialisation and large deletions were twice as fast in the latter case, and the performance of small deletions and additions was
improved too. Thus, an important question for our future work is to develop techniques that can automatically identify cases in
which our optimisation for regular chain rules is likely to lead to performance improvements.

On incremental reasoning tasks, M-DRedc is faster in most cases by at least an order of magnitude than DRedc and B/Fc;
moreover, updates are instantaneous for Seq. Again, the improvement is often due to the reduction in the worst-case complexity.
For example, when a fact of the form relatedPlaces(a, b) is deleted in Claros-LE, DRedc can end up considering up to n3 rule
instances where n is the number of constants in the clique containing a and b; in contrast, the stc module enumerates all elements
of the clique, allowing an update to be completed in O(n2) steps. The worst-case complexity analysis also explains the difference
between Mat and DRedc on Seq: Mat handles four times as much data as DRecc on large deletion so, since rule matching is
cubic, one could expect a slowdown of a factor of around 43 = 64; this is not far from the actual slowdown factor of 33 (i.e.,
8,393 vs 254). In contrast, by using well-known and highly optimised sorting algorithms, the seq module eliminates virtually all
overheads of rule matching, which renders the difference between M-Mat and M-DRedc negligible.

The B/Fc algorithm performs significantly worse than DRedc on all but two benchmarks for large deletions. This is because
B/Fc uses ‘backward’ rule evaluation to search for alternative derivations, which can be very inefficient when rules are complex.
As more facts are deleted in the input, more ‘backward’ rule evaluation is needed; thus, B/Fc can be more efficient than DRedc

on small deletions, but on large deletions DRedc is more efficient because it completely eliminates ‘backward’ rule evaluation.
Please note, however, that our framework is sufficiently general to capture both algorithms, so the optimised algorithms from
Sections 6.2–6.5 can be used with B/Fc, DRedc, or indeed most related algorithms proposed in the literature.

We point out an apparent oddity in the results for DAG-R: for both DRedc and M-DRedc, update times for small deletion
were larger than for the initial materialisation, and they were close to the times for large deletions. This is because deleting 1,000
edges from the graph caused a large part of the materialisation to be overdeleted and rederived. Doing so was much more costly
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than initial materialisation; moreover, the number of deleted edges was only slightly larger in the case of large deletions, which
is why the times for small and large deletions were close. Nevertheless, M-DRedc was faster than DRedc by at least two orders
of magnitude on both types of deletion.

Incremental additions are in general easier to handle than deletions. Intuitively, when an incremental addition algorithm
derives a fact that is already contained in the materialisation, the derived fact can simply be ignored without adding any further
work. In contrast, when any of the incremental algorithms identifies a fact during overdeletion, this fact can be ignored only if the
nonrecursive counter for the fact show that the fact actually holds. Therefore, overdeletion tends to involve much more work and
is generally much harder than fact addition. This is clearly reflected in Table 4. Nevertheless, M-DRedc was several times faster
than DRedc on small additions in all cases apart from LUBM-LE, where both algorithms computed the update instantaneously.

Finally, the results for the two versions of the Relations benchmark show that specialised algorithms for regular chains can
lead to significant improvements: the CUS version is around two times faster than the STD version on materialisation and large
deletions. We take this as confirmation that, despite the complexity of implementation, our algorithms for regular chains may
bring important benefits to performance-sensitive applications.

8. Conclusion

We have proposed a modular framework for the computation and maintenance of Datalog materialisations. The framework
supports the integration of custom algorithms for specific types of rules with standard Datalog reasoning methods. Moreover,
we have presented such custom algorithms for programs axiomatising the transitive and the symmetric–transitive closure of a
binary predicate, dealing with regular chain rules, and sequencing totally ordered elements. Finally, we have shown empirically
that our algorithms consistently outperform the existing ones on a wide range of benchmarks, and that they are faster by several
orders of magnitude in many cases. Thus, our algorithms can play a critical role in performance-sensitive applications that need
to deal with complex rules. In our future work, we shall identify other modules that can be implemented more efficiently using
custom algorithms. Moreover, we shall also consider the problem of automating the process of partitioning a Datalog program
into modules. At present, our system expects a module partition to be produced manually; moreover, our evaluation results have
shown that the performance of our approach can depend on the exact partition used, particularly when using complex chain rules.
To identify a partition that promises optimal performance, we shall consider developing a model for estimating the cost of a given
partition, which would allow us to consider the partitioning problem as a kind of optimisation problem.
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Appendix A. Proof of Theorem 15

Theorem 15. Let Π be a program, let λ be a stratification of Π with maximum stratum index S , let Ms,k with 1 ≤ s ≤ S and
1 ≤ k ≤ ns be the module partition of Π w.r.t. λ such that module functions for each Ms,k are correct, let E0, . . . , Em be datasets,
let I0 be result of applying Algorithm 2 toΠ, λ, and E0, and, for 1 ≤ i ≤ m, let Ii be the result of successively applying Algorithm 3
to Π, λ, E−i = Ei−1 \ Ei, and E+i = Ei \ Ei−1. Then, Ii = Π∞[Ei] for each 0 ≤ i ≤ m.

For the rest of this section, we fix an arbitrary program Π, an arbitrary stratification λ of Π, and arbitrary modules Ms,k with
1 ≤ s ≤ S and 1 ≤ k ≤ ns that constitute a module partition of Π w.r.t. λ such that module functions for each Ms,k are correct.
Moreover, we also fix an arbitrary sequence of datasets E0, . . . , Em, we let I0 be result of applying Algorithm 2 to Π, λ, and
E0, and, for 1 ≤ i ≤ m, we let Ii be the result of successively applying Algorithm 3 to Π, λ, E−i = Ei−1 \ Ei, and E+i = Ei \ Ei−1.
Finally, let Hs,k

m be the call history for module Ms,k obtained by such invocation of Algorithms 2 and 3; and for 0 ≤ i ≤ m and
1 ≤ j ≤ hi, let Hs,k

i, j be the subset of Hs,k
m up to and including call Ci, j. Note that our algorithms always call the functions of all

modules in some stratum in parallel. Thus, for any two modules Ms,k and Ms,k′ belonging to a stratum with the same index s,
histories Hs,k

m and Hs,k′
m consist of the same number of calls, and, for each 0 ≤ i ≤ m and 1 ≤ j ≤ hm, calls Ci, j and C′i, j from these

two histories are of the same type and have the same arguments (but, clearly, their results can differ). Specifically, the numbers
h0, . . . , hm in these histories depend only on the stratum index s, so we often refer to h0, . . . , hm without specifying a history. We
now prove by induction on m that the claim of Theorem 15 and the following properties hold for each module Ms,k:

(H1) call history Hs,k
m is compatible with Π, λ, s, and E0, . . . , Em, and

(H2) Hs,k
m ends with Jm,hm

··= AddMs,k
[Im,hm

···∆−m,hm
,∆+m,hm

···∆m
m,hm

] where Jm,hm = ∅ and Π∞[Em]≤s = ((Im,hm \ ∆
−
m,hm

) ∪ ∆+m,hm
) ∩ O≤s.

For the induction base, in Claim 34 we consider applying Algorithm 2 to E0. For the inductive step, in Claim 35 we assume that
Theorem 15 and properties (H1) and (H2) hold for m − 1, and we show that they also hold after applying Algorithm 3 to Em. In
all cases, it is obvious that the arguments of each call satisfy the conditions specified in Table 1, so we do not discuss this point
any further for the sake of brevity.

Claim 34. Theorem 15 and properties (H1) and (H2) hold for m = 0.

Proof. We consider the run of Algorithm 2 on E0. For each stratum index s and each module Ms,k, the last call in Hs,k is
clearly of the form J0,h0

··= AddMs,k
[I0,h0

···∆−0,h0
,∆+0,h0

···∆m
0,h0

], the loop in lines 13–18 for stratum with index s terminates only when
J0,h0 ⊆ ∆ = ∅, and applying property (M1) below for m ensures that property (H2) holds.

Now let I0 = ∅ and let I s be the content of I after stratum with index s is processed. By induction on s, we prove that property
(H1) holds each s > 0 and that I s = Π∞[E0]≤s holds as well; for s = S , these clearly imply Claim 34. The base case holds
trivially for s = 0. For the induction step, we assume that I s−1 = Π∞[E0]<s holds, and we prove properties (M1)–(M3) shown
below, which imply our claim.

Soundness and property (H1). Let I s
1, I

s
2, . . . and ∆s

1,∆
s
2, . . . be the contents of I and ∆, respectively, in successive iterations just

after line 15 for the stratum with index s. We now show by induction on the steps of Algorithm 2 that, for each 1 ≤ j ≤ h0,

(M1) for each Ms,k, call J0, j ··= AddMs,k
[I0, j

··· ∅,∆+0, j
···∆m

0, j] satisfies conditions in Table 2, and I s
j = I0, j ∪ ∆

+
0, j, and

(M2) I s
j ⊆ Π∞[E0]≤s and ∆s

j ⊆ Π∞[E0]s.

For the base case j = 1, consider line 12. For an arbitrary module Ms,k, the call is of the form J s,k
0,1
··= AddMs,k

[∅ ··· ∅,∆+0,1
··· ∅],

where ∆+0,1 = I s−1 ∪ (E0 ∩ Os) = I s
1 ⊆ Π∞[E0]≤s and the first equality holds by line 10; thus, properties (A1.a) and (M1) hold.

This call is thus correct in the context of E0, Π, λ, and s by the assumption of Theorem 15, so J s,k
0,1 ⊆ Π∞[E0] ∩ Os = Π∞[E0]s.

By combining the outputs of all modules in line 15, we have ∆s
1 ⊆ Π∞[E0]s, so property (M2) holds.

For the inductive step, assume that properties (M1) and (M2) hold for some j − 1 and consider line 18. For an arbitrary
module Ms,k, the call is of the form J s,k

0, j
··= AddMs,k

[I0, j
··· ∅,∆+0, j

···∆m
0, j], where I0, j = I s

j−1 and ∆+0, j = ∆
s
j−1. The previous call is

clearly of the form J s,k
0, j−1
··= AddMs,k

[I0, j−1
··· ∅,∆+0, j−1

···∆m
0, j−1], so property (A2.a) holds. Moreover, property (M1) holds for j−1 by

induction assumption, so we have I0, j = I s
j−1 = I0, j−1 ∪ ∆

+
0, j−1, as required for property (A2.b). In addition, property (M2) holds

for j− 1 by induction assumption, so we have ∆+0, j = ∆
s
j−1 ⊆ Π∞[E0]s. Finally, ∆m

0, j = J s,k
0,i−1 ⊆ ∆

+
0, j = ∆

s
j−1 holds obviously by the

structure of the algorithm, as required for property (A2.c). Thus, property (M1) holds for j. This call is thus correct in the context
of E0, Π, λ, and s by the assumption of Theorem 15, so J s,k

0, j ⊆ Π∞[E0] ∩ Os = Π∞[E0]s. Hence, as in the previous paragraph, we
conclude that property (M2) holds for j.

Completeness. Let Is
0,I

s
1, . . . be the sequence of datasets and let Is

∞ be the dataset from the construction of Π∞[E0] for stratum
with index s from equation (5). By induction on this sequence, we next show the following property:
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(M3) Is
i ⊆ I s holds for each i ≥ 0.

By the inductive assumption on s, we have I s−1 = Is−1
∞ . For the base case, Is

0 = I
s−1
∞ ∪ (E ∩ Os) ⊆ I s, where the inclusion

holds due to line 10. For the inductive step, we assume that property (M3) holds for j − 1, and we show that it holds for j
as well. To this end, we consider an arbitrary fact F ∈ Is

i \ I
s
i−1 derived by an instance rσ of a rule r ∈ Πs; thus, F = h(rσ)

and Is
i−1 |= b(rσ). Since Π is stratified, all atoms occurring in b−(rσ) belong to a stratum with index less than s; more-

over, I s ∩ O<s = I s−1 = Is
i−1 ∩ O<s clearly holds; thus, Is

i−1 |= b−(rσ) implies I s |= b−(rσ). Moreover, Is
i−1 |= b+(rσ) implies

b+(rσ) ⊆ Is
i−1, and Is

i−1 satisfies property (M3) by the induction assumption, so we have b+(rσ) ⊆ I s. This means that, either
b+(rσ) ⊆ I holds in line 11, or b+(rσ) ⊆ I ∪ ∆ holds in line 18 at some point during the algorithm’s execution. By the definition
of module partition, there exists a module Ms,k such that r ∈ Ms,k. The corresponding call to AddMs,k

in line 11 or 18 is correct in
the context of E0, Π, λ, and s by property (M1), so F ∈ MA[∅ ··· ∅, I] ⊆ ∆k or F ∈ MA[I ··· ∅,∆] ⊆ ∆k holds, where the membership
of F is ensured by Definition 8. Thus, F ∈ I s, and property (M3) holds.

Claim 35. If Theorem 15 and properties (H1) and (H2) hold for m − 1, they also hold for m.

Proof. We consider the run of Algorithm 2 on Em for m ≥ 1. The induction assumption for m − 1 ensures that I = Π∞[Em−1]
holds during the entire run up to line 24.

Let I0 = ∅, let I s be the content of (I \ D) ∪ A after stratum with index s is processed, and let I s
D be the content of (I \ D) ∪ A

after function Overdeletion processes stratum with index s. By induction on s, we prove (H1) and the following property:

(U1) I s ∩ O≤s = Π∞[Em]≤s.

For each module Ms,k, the last call of the algorithm is clearly of type AddMs,k
, and property (H2) holds in the same way as in the

proof of Claim 34; for s = S , these clearly imply Claim 35. The base case holds trivially for s = 0. For the inductive step, we
assume that property (U1) holds for s − 1, and we consider the three phases for stratum with index s.

Overdeletion maintains property (H1). Let d be the index of the last DelM
s,k

call. Moreover, let I s
1, I

s
2, . . . and ∆s

1,∆
s
2, . . . be the

contents of (I \ D) ∪ A and ∆, respectively, in successive passes through line 34 for the stratum with index s. We now show by
induction on the steps of function Overdelete that, for each 1 ≤ j ≤ d,

(U2) for each Ms,k, call Jm, j ··= DelM
s,k

[I, In
m, j
···∆−m, j,∆

+
m, j
···∆m

m, j] satisfies conditions in Table 2, and I s
j = (In

m, j \ ∆
−
m, j) ∪ ∆

+
m, j.

(U3) ∆s
j ⊆ Π∞[Em−1]s.

For the base case j = 1, consider line 28. For any module Ms,k, the call is of the form J s,k
m,1
··= DelM

s,k
[I, In

m,1
···∆−m,1,∆

+
m,1
··· ∅],

where In
m,1 = I. The previous call is clearly of type AddMs,k

, and is clearly satisfies properties (D1.a) and (D1.b). Property
(D1.c) follows from property (H2) for m − 1. Property (D1.d) holds trivially. Moreover, property (U1) holds for s − 1, so
I s−1 ∩ O<s = Π∞[Em]<s; thus, in line 28 we have D \ A = Π∞[Em−1]<s \ Π∞[Em]<s and A \ D = Π∞[Em]<s \ Π∞[Em−1]<s; finally,
line 26 ensures ∆ = (Ei \ Ei−1) ∩ Os; consequently, properties (D1.e) and (D1.f) hold. In addition, I s

1 = (In
m,1 \ ∆

−
m,1) ∪ ∆+m,1 clearly

holds, as required for property (U2). This call is correct in the context of Em, Π, λ, and s by the assumption of Theorem 15, so
we have J s,k

m,1 ⊆ I ∩ Os ⊆ Π∞[Em−1]≤s. By combining the outputs of all modules in line 31, we have ∆s
1 ⊆ Π∞[Em−1]s, so property

(U3) holds.
For the inductive step, assume that properties (U2) and (U3) hold for some j − 1 and consider line 34 For an arbitrary module

Ms,k, the call is of the form J s,k
m, j
··= DelM

s,k
[I, In

m, j
···∆−m, j, ∅

···∆m
m, j], where In

m, j = I s
j−1 and ∆−m, j = ∆

s
j−1. The previous call is clearly

of the form J s,k
m, j−1

··= DelM
s,k

[I, In
m, j−1

···∆−m, j−1,∆
+
m, j−1

···∆m
m, j−1], so property (D2.a) holds. Property (D2.b) holds trivially. Moreover,

property (U2) holds for j−1 by induction assumption, so we have In
m, j = I s

j−1 = (In
m, j−1 \ ∆

−
m, j−1) ∪ ∆+m, j−1, as required for property

(D2.c). In addition, property (U3) holds for j − 1 by the induction assumption, so we have ∆−m, j = ∆
s
j−1 ⊆ Π∞[Em−1]s. Finally.

∆−m, j = J s,k
m, j−1 ⊆ ∆

−
m, j ⊆ Π∞[Ei−1]s holds obviously by the structure of the algorithm. Thus, property (U2) holds for j. This call is

thus correct in the context of Em, Π, λ, and s by the assumption of Theorem 15, so J s,k
m, j ⊆ I ∩ Os ⊆ Π∞[Em−1]s. Hence, as in the

previous paragraph, we conclude that property (U3) holds for j.

Overdeletion is complete. We now prove that the overdeletion phase indeed deletes all facts of Os that no longer hold due to the
update. Towards this goal, let Is

0,I
s
1, . . . be the sequence of datasets and let Is

∞ be the dataset from the construction of Π∞[Em−1]
for stratum with index s from equation (5). By induction on this sequence, we next show the following property:

(U4) (Is
i \ Π∞[Em]≤s) ∩ I s

D = ∅.

For the induction base, property (U1) ensures I s ∩ O<s = Π∞[Em]<s; moreover, all facts added to set D in the overdeletion
phase are from Os, so I s

D ∩ O<s = I s ∩ O<s = Π∞[Em]<s. Since Is−1
∞ = Π∞[Em−1]<s, we clearly have (Is−1

∞ \ Π∞[Em]<s) ∩ I s
D = ∅.
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Now Is
0 = I

s−1
∞ ∪ (E ∩ Os) by equation (5). Thus, Is

0 \ Π∞[Em]≤s ⊆ E− ∩ Os, and E− ∩ Os ∩ I s
D = ∅ due to lines 26 and 30.

Consequently, property (U4) holds for i = 0.
For the induction step, we assume that property (U4) holds for some i − 1, and we consider an arbitrary fact F ∈ Is

i \ I
s
i−1

derived by instance rσ of a rule r ∈ Πs such that F < Π∞[Em]≤s. The last observation implies Π∞[Em]≤s ̸|= b(rσ). By the
definition of module partition, there exists a module Ms,k such that r ∈ Ms,k. We now consider the following possibilities.

• There exists a negative body literal L ∈ b−(rσ) such that Π∞[Em]≤s ̸|= L. Then Π∞[Em]<s = I s
D ∩ Os and the fact that L

contains atoms from stratum with index less than s ensure I s
D ̸|= L. Moreover, property (H1) ensures that the call to DelM

s,k

in line 28 is correct in the context of Em, Π, λ, and s, so we have F ∈ MD[I, I ···∆ ∪ (D \ A), A \ D]. But then, lines 31
and 30 ensure F < I s

D, as required.

• ∅ ⊊ b+(rσ) \ Π∞[Em]≤s ⊆ O<s—that is, at least one positive body all of rσ does not hold after update, and all such atoms
are from stratum with index less than s. But then, we have (b+(rσ) \ Π∞[Em]≤s) ∩ I s

D = ∅ and F < I s
D by the call in line 28

in the same way as in the previous case.

• Os ∩ (b+(rσ) \ Π∞[Em]≤s) , ∅. Since b+(rσ) ⊆ Is
i−1, property (U4) for i − 1 ensures Os ∩ (b+(rσ) \ Π∞[Em]≤s) ∩ I s

D = ∅.
But then, there is a point when the last fact in Os ∩ (b+(rσ) \ Π∞[Em]≤s) is in the set ∆, all other facts are in D, and DelM

s,k

is called in either line 28 or 34. But then, we have F < I s
D in the same way as in the previous two cases.

Rederivation maintains property (H1). Consider the call of the form J s,k
i, j
··= RedMs,k

[I, In
i, j
···∆i, j] in line 37 for some module

Ms,k. Properties (R.a), (R.b), and (R.c) hold trivially, and property (R.d) follows from (U2). Moreover, we have In
i, j = I s

D,

so property (D1.d) for the first DelM
s,k

call and the fact that only facts from Os are added to D during overdeletion ensure
I s

D ∩ O<s = Π∞[Em]<s and I s
D ∩ Os ⊆ Π∞[Em−1]s; moreover, property (U4) implies (Π∞[Em−1]≤s \ Π∞[Em]≤s) ∩ I s

D = ∅, which
together with earlier observations ensures I s

D ∩ Os ⊆ Π∞[Em]≤s, as required for the last inclusion of property (R.e); the left equal-
ity in property (R.e) follows from the observation that the first deletion call satisfies properties (D1.d), (D1.e), and (D1.f) and in all
calls of type D2 satisfy property (D2.d)—that is, all deleted facts are from stratum with index s. Finally, D ∩ Os = Π∞[Em−1]s \ I s

D
holds at the point when the call is made, which, together with how argument ∆i, j is computed, ensures property (R.f).

Addition is sound and it maintains property (H1). Let d be the index of the first AddMs,k
call in the addition phase. Moreover, let

I s
d+1, I

s
d+2, . . . and ∆s

d+1,∆
s
d+2, . . . be the contents of I and ∆, respectively, in successive iterations just after line 45 for the stratum

with index s. We now show by induction on the steps of Algorithm 2 that, for each d ≤ j ≤ hm,

(U5) for each Ms,k, call Jm, j ··= AddMs,k
[Im, j

···∆−m, j,∆
+
m, j
···∆m

m, j] satisfies conditions in Table 2, and I s
j = (Im, j \ ∆

−
m, j) ∪ ∆

+
m, j, and

(U6) I s
j ∩ O≤s ⊆ Π∞[Em]≤s and ∆s

j ⊆ Π∞[Em]s.

For the base case, consider line 42. For an arbitrary module Ms,k, the call is of the form J s,k
m, j
··= AddMs,k

[I ···∆−m, j,∆
+
m, j
···∆m

i, j], and

the previous call is of the form Jm, j−1 ··= RedMs,k
[I, In

m, j−1
···∆m, j−1]. Properties (A3.a) and (A3.b) clearly hold. Properties (A3.c)

and (A3.e) hold because the first call to the DelM
s,k

function satisfies properties (D1.e) and (D1.f); property (U3) ensures that
all facts removed from the materialisation during the deletion phase are in Os; and property (R.f) ensures that all facts in-
troduced by rederivation are also in Os. Moreover, In

i, j−1 = I s
D, which implies property (A3.d). Furthermore, line 38 ensures

(Em−1 ∩ Em ∩ ∆m, j−1) ⊆ ∆+m, j and ∆m
m, j = J s,k

m, j−1 ⊆ ∆
+
m, j; also, the call to AddMs,k

is correct in the context of Em, Π, λ, and s

by the assumption of Theorem 15, which implies J s,k
m, j ⊆ Π∞[Em] ∩ Os = Π∞[Em]s; thus, property (A3.f) holds. In addition,

I s
d = (I \ ∆−m, j) ∪ ∆

+
m, j clearly holds, as required for property (U5). By combining the outputs of all modules in line 38, we have

∆s
d ⊆ Π∞[Em]s, so property (U6) holds.

The proof for the inductive step is analogous to the proof used to prove Claim 34, so we omit the details for the sake of
brevity.

Addition is complete. We now prove that the addition phase indeed derives all facts of Os that hold after the update. Towards
this goal, let Is

0,I
s
1, . . . be the sequence of datasets and let Is

∞ be the dataset from the construction of Π∞[Em] for stratum with
index s from equation (5). By induction on this sequence, we next show the following property:

(U7) Is
i ⊆ Π∞[Em]≤s = I s.

For the base case, property (U4) ensures I s
D ∩ O<s = Π∞[Em]<s so, since all facts added to sets D and A are from Os, we

clearly have I s ∩ O<s = Π∞[Em]<s = Is−1
∞ . By equation (5), Is

0 = I
s−1
∞ ∪ (Em ∩ Os). Now consider an arbitrary fact F ∈ Is

0. If
F ∈ I s

D, then I s
D ⊆ I s ensures F ∈ I s. If F < I s

D but F ∈ Em−1 ∩ Em, then F ∈ D holds in line 38, so F is added to ∆ in that line
and line 44 ensures F ∈ I s. Finally, F < Em−1, then F is added to ∆ in line 40, so line 44 ensures F ∈ I s.

34



For the inductive step, we assume that property (U7) holds for some i − 1, and we consider an arbitrary fact F ∈ Is
i \ I

s
i−1

derived by instance rσ of a rule r ∈ Πs; note that this implies F < Em. There exists a module Ms,k such that r ∈ Ms,k. Now
if F ∈ I s

D, then I s
D ⊆ I s ensures F ∈ I s; thus, in the rest of thus proof we assume that F < I s

D holds. We consider the following
possibilities.

• I s
D |= b(rσ). Clearly, then Π∞[Em−1] |= b(rσ) holds as well, so F ∈ (Πs)R[I, I s

D
···∆] holds assuming F ∈ ∆ is satisfied.

Moreover, F ∈ D and F < E \ E− both hold in line 37, and the calls to RedMs,k
in this line are correct the context of Em, Π,

λ, and s. Thus, F ∈ ∆ holds in line 38, so line 44 ensures F ∈ I s.

• I s
D ̸|= b(rσ) and all atoms occurring b(rσ) are from stratum with index less than s. By the assumptions thus far, we clearly

have Π∞[Em−1]<s ̸|= b(rσ) and Π∞[Em]<s |= b(rσ). Moreover, in line 42, we have A \ D = Π∞[Em]<s \ Π∞[Em−1]<s and
(D \ A) ∩ O<s = Π∞[Em−1]<s \ Π∞[Em]<s. Thus, there exists either a positive body atom B ∈ b+(rσ) such that A \ D |= B,
or a negative body literal L ∈ b−(rσ) such that D \ A |= L. The call to AddMs,k

is correct in the context of Em, Π, λ, and s,
so it returns F, which is eventually added to A in line 44. Thus, we have F ∈ I s.

• There exists a positive body atom B ∈ b+(rσ) from stratum with index s such that F < I s
D. By induction assumption, we

have b+(rσ) ⊆ I s, which implies B ∈ I s. Thus, at some point during the algorithm’s run, either b+(rσ) ⊆ (I \ D) ∪ A ∪ ∆
holds in line 42, or b+(rσ) ∩ ∆ , ∅ holds in line 48. The call to AddMs,k

in that point is correct in the context of Em and Π,
so it returns F, which is eventually added to A in line 44. Thus, we have F ∈ I s.

Appendix B. Proof of Theorem 18

Theorem 18. Functions Addtc(R), Deltc(R), and Redtc(R) are correct.

Consider an arbitrary binary predicate R, program Π, stratification λ of Π, stratum index s such that tc(R) ⊆ Πs, sequence of
datasets E0, . . . , Em of datasets, and a call history H for tc(R) that is compatible with Π, λ, s and E0, . . . , Em. We assume that H
is of the form as specified in Definition 12. Moreover, for each 0 ≤ i ≤ m and each 1 ≤ j ≤ ni, let XR

i, j and YR
i, j be the values of XR

and YR, respectively, after call Ci, j. Finally, we define XR
0,0 = YR

0,0 = ∅ and, for 1 ≤ i ≤ m, we let XR
i,0 = XR

i−1,ni−1
and YR

i,0 = YR
i−1,ni−1

.
We next introduce some useful abbreviations and notation. To simplify the notation, let M = tc(R) for the rest of this section.

Also, let S be a set of facts. Then, R-part[S ] is the subset of S containing precisely all facts of S whose predicate is R. Moreover,
for constants u and v and integer ℓ ≥ 0, we write u⇝ℓ v ∈ S if there exist constants w0,w1, . . . ,wℓ such that u = w0, wℓ = v, and
R(wi−1,wi) ∈ S for each 1 ≤ i ≤ ℓ; in other words, u and v are connected in S by a chain of R-facts of length ℓ. Moreover, we
write u⇝ v ∈ S if there exists ℓ ≥ 0 such that u⇝ℓ v ∈ S ; in other words, u and v are connected in S by a chain of R-facts of
an arbitrary (possibly zero) length. Finally, for ∆ another set of facts, let

close[S ,∆] = {R(u, v) | there exist ℓ ≥ 1, constants w0, . . . ,wℓ, and an integer k with 0 ≤ k < ℓ such that
w0 = u, wℓ = v, and R(wk,wk+1) ∈ ∆ and R(wm,wm+1) ∈ S for m with 0 ≤ m < ℓ and m , k} (B.1)

We prove Theorem 18 by showing that, for each 0 ≤ i ≤ m and each 1 ≤ j ≤ hi, call Ci, j in H satisfies properties (T2)–(T4).

(T1) If call Ci, j is of the form Ji, j ··= AddM[Ii, j
···∆−i, j,∆

+
i, j
···∆m

i, j], then the following properties hold.

R-part[(Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j] ∪ Ji, j = M∞[XR

i, j] ⊆ Π∞[Ei]s (B.2)

YR
i, j = ∅ (B.3)

(T2) If call Ci, j is of the form Ji, j ··= DelM[Io
i, j, I

n
i, j
···∆−i, j,∆

+
i, j
···∆m

i, j], then the following properties hold.

close[XR
i,0, (I

o
i, j \ In

i, j) ∪ ∆
−
i, j] = R-part[(Io

i, j \ In
i, j) ∪ ∆

−
i, j] ∪ Ji, j ∪ YR

i, j (B.4)

XR
i, j = XR

i,0 \ ((Io
i, j \ In

i, j) ∪ ∆
−
i, j) ⊆ R-part[In

i, j] ⊆ R-part[Io
i, j] = M∞[XR

i,0] (B.5)

YR
i, j ⊆ Io

i, j ∩ Π∞[Ei]≤s (B.6)

(T3) If call Ci, j is of the form Ji, j ··= RedM[Io
i, j, I

n
i, j
···∆i, j], then the following properties hold.

R-part[In
i, j] ∪ Ji, j ⊆ M∞[XR

i, j] ⊆ (R-part[Io
i, j] \ ∆i, j) ∪ Ji, j ⊆ Π∞[Ei]s (B.7)

YR
i, j = ∅ (B.8)

(T4) Call Ci, j is correct.
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We prove this by double induction on i and j, where we consider each call Ci, j of type from Table 2. The base case involves a call
of type A1, and the inductive step involves all remaining calls. We split the proof into a separate claim for each module function.

Claim 36. If Ci, j is of the form Ji, j ··= AddM[Ii, j
···∆−i, j,∆

+
i, j
···∆m

i, j] and either i = 0 and j = 1, or j > 1 and call Ci, j−1 satisfies
properties (T1)–(T4), then Ci, j satisfies properties (T1) and (T4).

Proof. We first capture the preconditions for the call Ci, j. These are established either at the beginning of the algorithm, or by
the preceding call Ci, j−1. In particular, we define datasets I′, I′′, and J′ and prove that they satisfy the following properties:

R-part[(Ii, j \ ∆
−
i, j) ∪ ∆

m
i, j] ⊆ R-part[I′′] ∪ J′ ⊆ M∞[XR

i, j−1] ⊆ R-part[I′] ∪ J′ ⊆ Π∞[Ei]s (B.9)

R-part[I′] ∪ J′ ⊆ (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j (B.10)

Towards this goal, call Ci, j can be of one of the following three types.

• Assume that Ci, j is of type A1. We let I′ = I′′ = J′ = ∅, and it is obvious that properties (B.9) and (B.10) hold.

• Assume that Ci, j is of type A2. Thus, ∆−i, j = ∅ and call Ci, j−1 is of the form Ji, j−1 ··= AddM[Ii, j−1
···∆−i, j−1,∆

+
i, j−1

···∆m
i, j−1]. We

let J′ = Ji, j−1 and I′ = I′′ = Ii, j = (Ii, j−1 \ ∆
−
i, j−1) ∪ ∆+i, j−1, where the last equality holds by condition (A2.b) from Table 2.

Property (A2.c) ensures J′ = ∆m
i, j, which with I′′ = Ii, j and ∆−i, j = ∅ ensures the left-most inclusion of property (B.9). More-

over, condition (B.2) holds for i and j − 1 by the induction assumption, so the remaining inclusions of property (B.9) hold
as well. Finally, J′ ⊆ ∆+i, j holds by property (A2.c), which together with I′ = Ii, j and ∆−i, j = ∅ ensures property (B.10).

• Assume that Ci, j is of type A3. Thus, call Ci, j−1 is of the form Ji, j−1 ··= RedM[Io
i, j−1, I

n
i, j−1

···∆i, j−1]. We let J′ = Ji, j−1, we let
I′′ = In

i, j−1, and we let I′ = Io
i, j−1 \ ∆i, j−1. Properties (A3.b) and (A3.d), and M ⊆ Πs ensure R-part[Ii, j \ ∆

−
i, j] ⊆ R-part[I′′];

and property (A3.f) ensures ∆m
i, j = J′; together, these ensure the left-most inclusion of property (B.9). Moreover, condition

(B.7) holds for i and j − 1 by the induction assumption, so it clearly ensures the remaining inclusions property (B.9).
Finally, conditions (R.f) and (A3.d) jointly ensure ∆−i, j ∩ Os = ∆i, j−1 ∪ ((Ei ∩ Os) \ In

i, j−1); and condition (A3.f) ensures
(Ei ∩ Os) \ In

i, j−1 ⊆ ∆
+
i, j; jointly, these observations clearly imply property (B.10).

We are now ready to prove that call Ci, j satisfies properties (T1) and (T4). In particular, property (B.3) holds trivially: it is
established either at the beginning of the history or by the preceding call, and Algorithm 4 does not modify set YR.

Inclusions R-part[(Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j] ∪ Ji, j ⊆ M∞[XR

i, j] and R-part[(Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j] ∪ Ji, j ⊆ Π∞[Ei]s in property (B.2) can be

shown from the first and second inclusion in property (B.9) by a straightforward induction on the steps of Algorithm 4. Roughly
speaking, for each fact R(u,w) produced by the algorithm, there are facts R(u, v) and R(v,w) that have been produced previously
and that satisfy these inclusions; hence, R(u,w) is both in the transitive closure of XR

i, j and in Π∞[Ei]s. The proof is routine and
we omit the details for the sake of brevity.

The remaining part of property (B.2) involves proving inclusion M∞[XR
i, j] ⊆ R-part[(Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j] ∪ Ji, j. For an arbitrary

fact R(u,w) ∈ M∞[XR
i, j], if R(u,w) ∈ M∞[XR

i, j−1] holds, then property (B.9) ensures R(u,w) ∈ R-part[I′] ∪ J′, so property (B.10)
ensures R(u,w) ∈ (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j, as required. To complete the proof, we next show that, for all constants u and w and integer ℓ

such that u⇝ℓ w ∈ XR
i, j and R(u,w) < M∞[XR

i, j−1], we have

(♢) R(u,w) ∈ R-part[(Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j] ∪ Ji, j, and

(♦) fact R(u,w) is added to the set Q at some point during the call Ci, j of Algorithm 4.

Note that R(u,w) < M∞[XR
i, j−1] implies R(u,w) < R-part[I′′] ∪ J′ by the first inclusion of (B.9), which, by the left-most inclusion

of (B.9), implies R(u,w) < R-part[(Ii, j \ ∆
−
i, j) ∪ ∆

m
i, j]. Property (B.2) then holds because R(u,w) ∈ M∞[XR

i, j] implies that there
exists ℓ such that u⇝ℓ w ∈ XR

i, j. We prove (♢) and (♦) by induction on ℓ.

• For the base case, consider arbitrary constants u and w such that u⇝1 w ∈ XR
i, j and R(u,w) < M∞[XR

i, j−1]. Thus, fact
R(u,w) was added to set XR during the algorithm’s run, which is only possible in line 50. But then, R(u,w) ∈ ∆′ implies
R(u,w) ∈ ∆+ \ ∆m, which is clearly sufficient for (♢); moreover, fact R(u,w) is clearly added to Q in line 49, so (♦) holds.

• For the inductive step, assume that properties (♢) and (♦) hold for ℓ − 1, and consider arbitrary constants u and w such
that u⇝ℓ w ∈ XR

i, j and R(u,w) < M∞[XR
i, j−1]. Clearly, there exists a constant v such that u⇝1 v ∈ XR

i, j and v⇝ℓ−1 w ∈ XR
i, j

hold. We have the following possibilities.

– Assume R(v,w) ∈ M∞[XR
i, j−1] \ (∆+i, j \ ∆

m
i, j). Thus, we have R(v,w) ∈ M∞[XR

i, j−1] and R(v,w) < ∆+i, j \ ∆
m
i, j. By the

above observation, the former ensures R(v,w) ∈ (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j. Moreover, if R(v,w) ∈ ∆+i, j, then R(v,w) < ∆+i, j \ ∆

m
i, j

ensures R(v,w) ∈ ∆m
i, j. Consequently, we have R(v,w) ∈ (Ii, j \ ∆

−
i, j) ∪ ∆

m
i, j. Furthermore, R(v,w) ∈ M∞[XR

i, j−1] and
R(u,w) < M∞[XR

i, j−1] ensure R(u, v) ∈ XR
i, j \ XR

i, j−1. In other words, R(u, v) is added to XR during the call, which is
possible only if R(u, v) ∈ ∆′. Thus, facts R(u, v) and R(v,w) are considered in line 52.
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– Assume R(v,w) < M∞[XR
i, j−1] \ (∆+i, j \ ∆

m
i, j). Then, either R(v,w) ∈ M∞[XR

i, j−1] ∩ (∆+i, j \ ∆
m
i, j) or R(v,w) < M∞[XR

i, j−1].
In the former case, R(v,w) is added to Q in line 49; and in the latter case, fact R(v,w) is added to Q since the inductive
assumption holds for ℓ − 1. Since R(u, v) ∈ XR

i, j, facts R(u, v) and R(v,w) are considered in lines 55 and 56.

Either way, fact R(u,w) is considered either in line 53 or in line 57. Now if R(u,w) ∈ ∆+i, j \ ∆
m
i, j, then (♢) clearly holds,

and R(u,w) is in added to Q in line 49 so (♦) holds as well. Otherwise, we have R(u,w) < R-part[(Ii, j \ ∆
−
i, j) ∪ ∆

m
i, j] by the

left-most inclusion of property (B.9), so R(u,w) is added to Q and J in line 53 or 57.

This completes our proof of property (B.2).
Finally, we prove (T4)—that is, that call Ci, j is correct. For the upper bound, consider an arbitrary fact R(u, v) ∈ Ji, j; then,

property (B.2) ensures R(u, v) ∈ Π∞[Ei]s, and lines 53 and 57 ensure R(u, v) < (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j, as required. To see that Ji, j

also satisfies the lower bound, consider arbitrary F ∈ MA[Ii, j
···∆−i, j,∆

+
i, j]. By Definition 8, we have F ∈ M

[
(Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j
]

and
F < (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j. The former and the equality in property (B.2) jointly imply F ∈ M

[
M∞[XR

i, j]
]
⊆ M∞[XR

i, j]; thus, prop-
erty (B.2) ensures F ∈ R-part[(Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j] ∪ Ji, j. But then, F < (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j clearly ensures F ∈ Ji, j, as required.

Claim 37. If Ci, j is of the form Ji, j ··= DelM[Io
i, j, I

n
i, j
···∆−i, j,∆

+
i, j
···∆m

i, j] and

• i ≥ 1, j = 1, and call Ci−1,hi−1 satisfies properties (T1)–(T4), or

• j > 1 and call Ci, j−1 satisfies properties (T1)–(T4),

then Ci, j satisfies properties (T2) and (T4).

Proof. We first capture the preconditions for the call Ci, j by proving the following properties. Please remember that, at the
beginning of this section, we defined XR

i,0 = XR
i−1,hi−1

and YR
i,0 = YR

i−1,hi−1
for each i > 0.

close[XR
i,0, I

o
i, j \ In

i, j] = R-part[Io
i, j \ In

i, j] ∪ ∆
m
i, j ∪ YR

i, j−1 (B.11)

XR
i, j−1 = XR

i,0 \ (Io
i, j \ In

i, j) ⊆ R-part[In
i, j] ⊆ R-part[Io

i, j] = M∞[XR
i,0] (B.12)

YR
i, j−1 ⊆ Io

i, j ∩ Π∞[Ei]≤s (B.13)

Towards this goal, call Ci, j can be of one of the following two types.

• Assume that Ci, j is of type D1. Condition (D1.a) and property (B.3) for Ci−1,hi−1 ensure YR
i, j−1 = ∅, as required for prop-

erty (B.13). Moreover, condition (D1.d) ensures Io
i, j \ In

i, j = ∅, which, together with ∆m
i, j = ∅ and YR

i, j−1 = ∅, clearly ensures
(B.11). Finally, property (B.2) for call Ci−1,hi−1 and conditions (D1.b) and (D1.c) jointly ensure R-part[Io

i, j] = M∞[XR
i,0],

which, together with Io
i, j \ In

i, j = ∅, clearly ensures property (B.12).

• Assume that Ci, j is of type D2. Condition (D2.c) ensures R-part[Io
i, j \ In

i, j] = R-part[Io
i, j \ ((In

i, j−1 \ ∆
−
i, j−1) ∪ ∆+i, j−1)]; set

∆+i, j−1 contains no fact from stratum s, and so M ⊆ Πs ensures R-part[Io
i, j \ In

i, j] = R-part[Io
i, j \ (In

i, j−1 \ ∆
−
i, j−1)]. Call his-

tory H is compatible with Π, λ, s, and E0, . . . , Em, so Definition 11 ensures ∆−i, j−1 ⊆ In
i, j−1; property (B.5) holds for i and

j − 1 by the inductive assumption; and conditions (D1.d) and (D2.b) ensure Io
i, j = Io

i, j−1; together, all of these observa-
tions ensure R-part[Io

i, j \ In
i, j] = R-part[(Io

i, j−1 \ In
i, j−1) ∪ ∆−i, j−1]. Together with condition (D2.d) and property (B.4) for i and

j − 1, this ensures (B.11). Moreover, condition (D1.d) or (D2.b) (depending on the type of the previous call) ensures
Io
i, j−1 = Π∞[Ei−1], and property (D2.b) ensures Io

i, j = Π∞[Ei−1]; thus, Io
i, j−1 = Io

i, j; but then, since property (B.6) holds for i
and j− 1 by the induction assumption, this implies property (B.13). Finally, property (B.5) holds for i and j− 1, and so we
have XR

i, j−1 = XR
i,0 \ ((Io

i, j−1 \ In
i, j−1) ∪ ∆−i, j−1); together with conditions (D2.b) and (D2.c), and the fact that ∆+i, j−1 contains no

R-facts, this implies XR
i, j−1 = XR

i,0 \ (Io
i, j \ In

i, j); in addition, XR
i, j−1 = XR

i,0 \ ((Io
i, j−1 \ In

i, j−1) ∪ ∆−i, j−1) clearly ensures that XR
i, j−1 is

disjoint from ∆−i, j−1, which together with XR
i, j−1 ⊆ R-part[In

i, j−1] and condition (D2.c) ensures XR
i, j−1 ⊆ R-part[In

i, j]; moreover,
R-part[In

i, j] ⊆ R-part[Io
i, j] follows from the same property for i and j − 1, conditions (D2.b) and (D2.c), and the fact that

∆+i, j−1 contains no R-facts; finally, the rightmost equality of property (B.12) follows from the same property for i and j − 1
in property (B.5) and condition (D2.b). Hence, (B.12) holds.

Next we prove that call Ci, j satisfies properties (T2) and (T4).
For the ⊆ direction of property (B.4), we consider an arbitrary fact R(u, v) ∈ close[XR

i,0, (I
o
i, j \ In

i, j) ∪ ∆
−
i, j], and we next prove

R(u, v) ∈ (Io
i, j \ In

i, j) ∪ ∆
−
i, j ∪ Ji, j ∪ YR

i, j. By the definition of close[XR
i,0, (I

o
i, j \ In

i, j) ∪ ∆
−
i, j] in equation (B.1), there exist constants

w0,w1, . . . ,wℓ with u = w0 and v = wℓ, and also there exists an index k with 0 ≤ k < ℓ such that R(wk,wk+1) ∈ (Io
i, j \ In

i, j) ∪ ∆
−
i, j

and R(wm,wm+1) ∈ XR
i,0 for m , k. Now R(wk,wk+1) ∈ Io

i, j \ In
i, j clearly implies R(wk,wk+1) ∈ Io

i, j. Otherwise, R(wk,wk+1) ∈ ∆−i, j
holds; call history H is compatible with Π, λ, s, and E0, . . . , Em so Definition 11 ensures ∆−i, j ⊆ In

i, j; and property (B.12) ensures
R-part[In

i, j] ⊆ R-part[Io
i, j]; hence, R(wk,wk+1) ∈ Io

i, j holds as well. But then, property (B.12) ensures R(wk,wk+1) ∈ M∞[XR
i,0]. In

other words, for each m with 0 ≤ m ≤ ℓ, we have u⇝ wm ∈ XR
i,0 and wm ⇝ v ∈ XR

i,0. We next consider the following two cases.
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• There exist (not necessarily consecutive) m and n with 0 ≤ m < n ≤ ℓ such that R(wm,wn) ∈ (Io
i, j \ In

i, j) ∪ ∆
m
i, j ∪ YR

i, j−1.
Then, the ⊇ direction of property (B.11) ensures R(wm,wn) ∈ close[XR

i,0, I
o
i, j \ In

i, j], which, together with u⇝ wm ∈ XR
i,0

and wn ⇝ v ∈ XR
i,0 established earlier, ensures R(u, v) ∈ close[XR

i,0, I
o
i, j \ In

i, j]. The ⊆ direction of (B.11) then ensures
R(u, v) ∈ (Io

i, j \ In
i, j) ∪ ∆

m
i, j ∪ YR

i, j−1; but then, Definition 13 ensures ∆m
i, j ⊆ ∆

−
i, j, and YR

i, j−1 ⊆ YR
i, j clearly holds, all of which

together ensure R(u, v) ∈ (Io
i, j \ In

i, j) ∪ ∆
−
i, j ∪ Ji, j ∪ YR

i, j, as required.

• For all integers m and n with 0 ≤ m < n ≤ ℓ, we have R(wm,wn) < (Io
i, j \ In

i, j) ∪ ∆
m
i, j ∪ YR

i, j−1. Thus, we have

R(wk,wk+1) ∈ (Io
i, j \ In

i, j) ∪ ∆
−
i, j and R(wk,wk+1) < (Io

i, j \ In
i, j) ∪ ∆

m
i, j ∪ YR

i, j−1,

which imply R(wk,wk+1) ∈ ∆−i, j \ (∆m
i, j ∪ YR

i, j−1); consequently, R(wk,wk+1) ∈ ∆′ holds after line 60 of Algorithm 5. We next
show by induction on s from k to 0 that

R(ws, v) ∈ (∆−i, j \ ∆
m
i, j) ∪ Ji, j ∪ (YR

i, j \ YR
i, j−1) (B.14)

holds for each 0 ≤ s ≤ k, and that fact R(ws, v) is added to set Q at some point during the execution of Algorithm 5 in call
Ci, j. Then, (B.14) for s = 0 clearly implies the ⊆ direction of property (B.4).

In the base case s = k, we have two possibilities. If k + 1 = ℓ, then R(ws, v) = R(k, kk+1); thus, fact R(ws, v) is added to Q
in line 60, and moreover R(wk,wk+1) ∈ ∆−i, j \ (∆m

i, j ∪ YR
i, j−1) implies (B.14) for s = k. In the rest of this proof, we assume

k + 1 < ℓ. Then, wk+1 ⇝ v ∈ XR
i,0 and property (B.12) ensure R(wk+1, v) ∈ Io

i, j; by R(wk+1, v) < (Io
i, j \ In

i, j) ∪ ∆
m
i, j ∪ YR

i, j−1, we
have R(wk+1, v) ∈ In

i, j \ (∆m
i, j ∪ YR

i, j−1); hence, R(wk+1, v) ∈ I′ holds in line 60. Thus, R(wk,wk+1) ∈ ∆′ and R(wk+1, v) ∈ I′ are
considered in line 62. Now R(wk, v) < (Io

i, j \ In
i, j) ∪ ∆

m
i, j ∪ YR

i, j−1 holds by our assumption, so R(wk, v) ∈ M∞[XR
i,0] ⊆ Io

i, j im-
plies R(wk, v) ∈ In

i, j \ (∆m
i, j ∪ YR

i, j−1). Now if fact R(wk, v) passes the check in line 63, the fact will be added to Q in line 64,
and to either J in line 65 or YR in line 66; hence, R(wk, v) ∈ Ji, j ∪ YR

i, j, which alongside R(wk, v) < (Io
i, j \ In

i, j) ∪ ∆
m
i, j ∪ YR

i, j−1

ensures R(wk, v) ∈ Ji, j ∪ (YR
i, j \ YR

i, j−1), as required. The only remaining possibility is if condition in line 63 is not satis-
fied. Let J′ and Y ′ be the values of J and YR, respectively, against which fact R(wk, v) is checked in line 63. Then,
R(wk, v) < In

i, j \ (∆−i, j ∪ J′ ∪ Y ′) and R(wk, v) ∈ In
i, j \ (∆m

i, j ∪ YR
i, j−1) imply R(wk, v) ∈ (∆−i, j ∪ J′ ∪ Y ′) \ (∆m

i, j ∪ YR
i, j−1). Thus,

if R(wk, v) ∈ ∆−i, j \ (∆m
i, j ∪ YR

i, j−1), then fact R(wk, v) is added to Q in line 59. Moreover, if either R(wk, v) ∈ J′ ⊆ Ji, j or
R(wk, v) ∈ Y ′ \ YR

i, j−1 ⊆ YR
i, j \ YR

i, j−1, then fact R(wk, v) is added to Q earlier in line 64. Either way, property (B.14) holds.

For the inductive step, we consider arbitrary 0 ≤ s < k such that property (B.14) holds for s + 1 and fact R(ws+1,v) is added
to Q. Thus, fact R(ws+1, v) is extracted from Q in line 68 at some iteration of the loop in lines 67–73. We have established
R(ws,ws+1) ∈ XR

i,0 earlier, and we have R(ws,ws+1) < Io
i, j \ In

i, j by our assumption; together with property (B.12), we have
R(ws,ws+1) ∈ XR

i, j−1, and so fact R(ws,ws+1) is considered in line 69. Consequently, fact R(ws, v) is considered in line 70.
Now analogously to the base case, we can conclude that fact R(ws, v) satisfies property (B.14) and that it is added to Q.

This completes our proof for the ⊆ direction of (B.4).
For the ⊇ direction of property (B.4), let N be the number of iterations of the loop in lines 67–73 during the execution of call

Ci, j; moreover, let J0, Y0, and Q0 be the values of J, YR, and Q, respectively, before line 67; finally, for each 1 ≤ n ≤ N, let Jn,
Yn, and Qn be the values of J, YR, and Q, respectively, after the n-th iteration of lines 67–73. We prove by induction on n that

(Io
i, j \ In

i, j) ∪ ∆
−
i, j ∪ Jn ∪ Yn ∪ Qn ⊆ close[XR

i,0, (I
o
i, j \ In

i, j) ∪ ∆
−
i, j]. (B.15)

Since Ji, j = JN and YR
i, j = YN , the ⊇ direction of property (B.4) follows from property (B.15) for n = N.

• For the induction base, consider an arbitrary fact R(u,w) ∈ (Io
i, j \ In

i, j) ∪ ∆
−
i, j ∪ Jn ∪ Yn ∪ Qn. If R(u,w) ∈ (Io

i, j \ In
i, j) ∪ ∆

−
i, j,

we have R(u,w) ∈ close[XR
i,0, (I

o
i, j \ In

i, j) ∪ ∆
−
i, j] trivially by the definition in equation (B.1). If R(u,w) ∈ YR

i, j−1, then the ⊇
direction of property (B.11) ensures R(u,w) ∈ close[XR

i,0, I
o
i, j \ In

i, j] ⊆ close[XR
i,0, (I

o
i, j \ In

i, j) ∪ ∆
−
i, j]. If R(u,w) is added to

Q0 in line 59, then R(u,w) ∈ ∆−i, j trivially implies the required property. The only remaining possibility is that R(u,w) is
added to Q0 and either J0 or Y0 in lines 65–66. Then, there exists a constant v that satisfies the condition in line 62—
that is, R(u, v) ∈ ∆−i, j \ (∆m

i, j ∪ YR
i, j−1) and R(v,w) ∈ In

i, j \ (∆−i, j ∪ YR
i, j−1). The latter observation and property (B.12) ensure

R(v,w) ∈ M∞[XR
i,0], so clearly R(u,w) ∈ close[XR

i,0, (I
o
i, j \ In

i, j) ∪ ∆
−
i, j], as required.

• For the inductive step, we assume that property B.15 holds for n − 1 with 0 < n < N, and we consider an arbitrary fact
R(u,w) ∈ (Io

i, j \ In
i, j) ∪ ∆

−
i, j ∪ Jn ∪ Yn ∪ Qn. The only nontrivial case is when fact R(u,w) is added to this set in the n-th

iteration. This, in turn, is possible only if R(u,w) is added to Jn, Yn, or Qn in lines 72–73 of the n-th iteration. Then, there
exists a constant v such that fact R(v,w) is extracted from Qn−1 in line 68, and R(u, v) ∈ XR

i, j−1. The former and the inductive
assumption ensure R(v,w) ∈ close[XR

i,0, (I
o
i, j \ In

i, j) ∪ ∆
−
i, j]. Moreover, property (B.12) ensures XR

i, j−1 ⊆ XR
i,0, so R(u, v) ∈ XR

i,0

holds. Clearly, we have R(u,w) ∈ close[XR
i,0, (I

o
i, j \ In

i, j) ∪ ∆
−
i, j], as required.
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For property (B.6), consider arbitrary R(u,w) ∈ YR
i, j. If R(u,w) ∈ YR

i, j−1, then property (B.13) ensures R(u,w) ∈ Io
i, j ∩ Π∞[Ei]≤s.

If R(u,w) is added to YR in line 66, then line 63 and the R-part[In
i, j] ⊆ R-part[Io

i, j] part of property (B.12) ensure R(u,w) ∈ Io
i, j;

moreover, line 65 and Definition 16 ensure R(u,w) ∈ Π∞[Ei]≤s; thus, R(u,w) ∈ Io
i, j ∩ Π∞[Ei]≤s. The remaining possibility of

R(u,w) being added to YR in line 73 is analogous, so we omit the details for the sake of brevity.
For property (B.5), the leftmost equality follows from the leftmost equality in (B.12) and how XR is updated in line 74; the

rest of the property follows immediately from property (B.12).
To see that Ji, j satisfies its lower bound, consider an arbitrary fact R(u, v) ∈ MD[Io

i, j, I
n
i, j
···∆−i, j,∆

+
i, j] \ Π∞[E]. Let r be the

only rule in M. Then, by Definition 9 there exists rule instance rσ of r such that Io
i, j |= b(rσ), In

i, j |= b(rσ), (In
i, j \ ∆

−
i, j) ∪

∆+i, j ̸|= b(rσ), and R(u, v) = h(rσ) ∈ (In
i, j \ ∆

−
i, j) ∪ ∆

+
i, j all hold. ∆+i, j contains no R-facts, so we clearly have In

i, j \ ∆
−
i, j ̸|= b(rσ) and

R(u, v) ∈ In
i, j \ ∆

−
i, j. Let b(rσ) = {R(u,w),R(w, v)}. Then, In

i, j |= b(rσ) and In
i, j \ ∆

−
i, j ̸|= b(rσ) ensure b(rσ) ∩ ∆−i, j , ∅. Without loss

of generality, assume that R(u,w) ∈ ∆−i, j. Together with Io
i, j |= b(rσ) and R-part[Io

i, j] = M∞[XR
i,0] from property (B.5), this implies

R(u, v) ∈ close[XR
i,0, (I

o
i, j \ In

i, j) ∪ ∆
−
i, j]. Then, property (B.4) clearly ensures R(u, v) ∈ (Io

i, j \ In
i, j) ∪ ∆

−
i, j ∪ Ji, j ∪ YR

i, j. Together with
R(u, v) ∈ In

i, j \ ∆
−
i, j, this implies R(u, v) ∈ Ji, j ∪ YR

i, j. Moreover, R(u, v) < Π∞[E] and property (B.6) ensure R(u, v) < YR
i, j. Hence,

R(u, v) ∈ Ji, j holds, as required.
Finally, we show that Ji, j satisfies the upper bound. Lines 63 and 70 imply Ji, j ⊆ R-part[In

i, j \ ∆
−
i, j], which together with

property (B.5) implies Ji, j ⊆ Io
i, j. Moreover, R belongs to stratum s, so Ji, j ⊆ Io

i, j ∩ Os ∩ ((In
i, j \ ∆

−
i, j) ∪ ∆

+
i, j) holds, as required.

Claim 38. If call Ci, j is of type (R) and call Ci, j−1 satisfies properties (T1)–(T4), then call Ci, j satisfies properties (T3) and (T4).

Proof. For the leftmost inclusion of property (B.7), call Ci, j−1 involves the DelM module function so properties (B.4) and (B.5) for
i and j − 1 ensure R-part[In

i, j−1] \ (∆−i, j−1 ∪ Ji, j−1 ∪ YR
i, j−1) ⊆ M∞[XR

i,0] \ close[XR
i,0, (I

o
i, j−1 \ In

i, j−1) ∪ ∆−i, j−1]. Now consider an arbi-
trary fact R(u, v) ∈ R-part[In

i, j−1] \ (∆−i, j−1 ∪ Ji, j−1 ∪ YR
i, j−1); then, there exists a chain of facts in Xi,0 that connect u and v, and none

of these facts belong to (Io
i, j−1 \ In

i, j−1) ∪ ∆−i, j−1. But then, property (B.5) for i and j−1 ensures that all these facts belong to Xi, j−1, so
we have R(u, v) ∈ M∞[XR

i, j−1]. The choice of R(u, v) is arbitrary, so we have R-part[In
i, j−1] \ (∆−i, j−1 ∪ Ji, j−1 ∪ YR

i, j−1) ⊆ M∞[XR
i, j−1].

Together with properties (R.b) and (R.d), and the fact that ∆+i, j−1 contains no R facts this implies R-part[In
i, j] ⊆ YR

i, j−1 ∪ M∞[XR
i, j−1].

Line 76 ensures XR
i, j = XR

i, j−1 ∪ YR
i, j−1, so we have R-part[In

i, j] ⊆ M∞[XR
i, j]. Moreover, due to line 79, each fact R(u, v) ∈ Ji, j satisfies

R(u, v) ∈ M∞[XR
i, j]. Consequently, the required property holds.

For the second inclusion of property (B.7), property (B.5) for i and j − 1 and the fact that call history H is compatible with
Π, λ, s and E0, . . . , Em ensure XR

i, j−1 ⊆ Π∞[Ei−1]≤s. Moreover, property (B.6) for i and j− 1 ensures YR
i, j−1 ⊆ Π∞[Ei−1]≤s. As a re-

sult, line 76 ensures XR
i, j = XR

i, j−1 ∪ YR
i, j−1 ⊆ Π∞[Ei−1]≤s, and so M∞[XR

i, j] ⊆ M∞[Π∞[Ei−1]≤s] ⊆ Π∞[Ei−1]≤s holds. We next prove
M∞[XR

i, j] \ (R-part[Io
i, j] \ ∆i, j) ⊆ Ji, j, which implies our claim. Consider an arbitrary fact R(u, v) ∈ M∞[XR

i, j] \ (R-part[Io
i, j] \ ∆i, j)

holds. Then, M∞[XR
i, j] ⊆ Π∞[Ei−1]≤s and property (R.c) ensure R(u, v) ∈ Io

i, j. Together with R(u, v) < R-part[Io
i, j] \ ∆i, j this im-

plies R(u, v) ∈ ∆i, j. Consequently, R(u, v) is considered in line 78 during the execution of call Ci, j. Since R(u, v) ∈ M∞[XR
i, j] holds,

v is clearly reachable from u via R facts in XR
i, j, and so R(u, v) ∈ ∆i, j ensures that R(u, v) is added to J in line 80. The choice of

R(u, v) is arbitrary, so the second inclusion of property (B.7) holds.
For the third inclusion of property (B.7), conditions (R.c), (R.e), and (R.f), and M ⊆ Πs ensure R-part[Io

i, j] \ ∆i, j ⊆ Π∞[Ei]s.
Moreover, property (B.5) for i and j − 1 ensures XR

i, j−1 ⊆ In
i, j−1 \ ∆

−
i, j−1, which together with conditions (R.d) and (R.e), and

M ⊆ Πs ensures XR
i, j−1 ⊆ Π∞[Ei]s; in addition, property (B.6) for i and j − 1 ensures YR

i, j−1 ⊆ Π∞[Ei]s; hence, line 76 ensures
XR

i, j = XR
i, j−1 ∪ YR

i, j−1 ⊆ Π∞[Ei]s, which in turn implies M∞[XR
i, j] ⊆ Π∞[Ei]s. Together with the leftmost inclusion of (B.7) this

implies Ji, j ⊆ Π∞[Ei]s, as required.
Property (B.8) holds by line 77.
Next we show that Ji, j satisfies its lower bound—that is, MR[Io

i, j, I
n
i, j
···∆i, j] ⊆ Ji, j holds. To this end, consider arbitrary

F ∈ MR[Io
i, j, I

n
i, j
···∆i, j]. Let r be the only rule in M. By Definition 10, there exists rule instance rσ such that F = h(rσ) ∈ ∆i, j,

and Io
i, j |= b(rσ), and In

i, j |= b(rσ) all hold. Without loss of generality, let b(rσ = {R(u, v),R(v,w)}) and h(rσ) = R(u,w). Then,
In
i, j |= b(rσ) implies R(u, v) ∈ In

i, j and R(v,w) ∈ In
i, j. By property (B.7) we have R(u, v) ∈ M∞[XR

i, j] and R(v,w) ∈ M∞[XR
i, j], and

so R(u,w) ∈ M∞[XR
i, j] holds as well. R(u,w) ∈ ∆i, j ensures that R(u,w) is considered in line 78 during the execution of Ci, j, and

R(u,w) ∈ M∞[XR
i, j] ensures that R(u,w) is added to J in line 80—that is, R(u,w) ∈ Ji, j holds.

Finally, Ji, j ⊆ Π∞[Ei]s follows from the rightmost inclusion of (B.7); moreover, line 80 ensures Ji, j ⊆ ∆i, j, which together
with condition (R.f) ensures Ji, j ∩ In

i, j = ∅; hence, Ji, j ⊆ Π∞[Ei]s \ In
i, j holds, so Ji, j satisfies the upper bound.

This completes the proof of Theorem 18. To see that Proposition 19 is correct, note that property B.2 holds even if set XR is
replaced with another set X′ of R-facts satisfying M∞[XR] = M∞[X′].
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Appendix C. Proof of Theorem 24

Theorem 24. Functions Addstc(R), Delstc(R), and Redstc(R) are correct.

Consider an arbitrary binary predicate R, program Π, stratification λ of Π, stratum index s such that stc(R) ⊆ Πs, sequence of
datasets E0, . . . , Em, and a call history H for stc(R) that is compatible with Π, λ, and E0, . . . , Em. We assume that H is of the form
as specified in Definition 12. For each 0 ≤ i ≤ m and each 1 ≤ j ≤ ni, let XR

i, j and YR
i, j be the values of XR and YR, respectively,

after call Ci, j. We define XR
0,0 = YR

0,0 = ∅ and, for 1 ≤ i ≤ m, we let XR
i,0 = XR

i−1,ni−1
and YR

i,0 = YR
i−1,ni−1

.
We next introduce some useful abbreviations and notation. To simplify the notation, let M = stc(R) for the rest of this section.

Just like in Appendix B, for S a set of facts, R-part[S ] is the subset of S containing precisely all facts of S whose predicate is R.
Finally, for XR a set of sets of constants, we say that XR is valid if the sets in XR are disjoint, and we let

close[XR] = {R(u, v) | ∃U ∈ XR such that u ∈ U and v ∈ U} (C.1)

Before proceeding with the main proof, we first prove a clam that characterises the CloseEdges function. This will allow us
to later simplify the analysis of the AddM and RedM functions.

Claim 39. For each call of the form J ··= CloseEdges(∆), let X1 and X2 be the values of XR before and after the call. Then, if X1
is valid, then X2 is also valid and

R-part[∆] ⊆ close[X1] ∪ J = close[X2] ⊆ M∞[close[X1] ∪ R-part[∆]]. (C.2)

Proof. Consider an arbitrary execution of the function where X1 is valid. Notice that XR can only be updated in line 86, line 87,
or line 89; clearly, none of these operations breaks the validity of XR, so X2 is valid as well. To see that R-part[∆] ⊆ close[X2]
holds, consider an arbitrary fact R(u, v) ∈ R-part[∆]. This fact is considered in line 85; moreover, lines 88 and 89 ensure that u
and v end up in the same set in X2, so R(u, v) ∈ close[X2] holds. To prove close[X2] ⊆ close[X1] ∪ J, consider an arbitrary fact
R(u, v) ∈ close[X2] \ close[X1]. If u = v, then u appears in X2 but not in X1, so u is introduced into X2 in either line 86 or line 87;
either way, R(u, v) ∈ J holds. If u , v, then u and v are put into the same set in line 89, so line 90 ensures R(u, v) ∈ J. To prove
close[X1] ∪ J ⊆ close[X2], note that close[X1] ⊆ close[X2] holds trivially since each set in XR only grows during the execution
of the call; moreover, for each fact R(u, v) added to J in lines 86, 87, or 90, constants u and v belong to the same set in X2, which
clearly ensures R(u, v) ∈ close[X2]. Finally, close[X2] ⊆ M∞[close[X1] ∪ R-part[∆]] holds intuitively because the rules in M
axiomatise R as symmetric and transitive; as a consequence, predicate R is also reflexive on every constant occurring in X2. Thus,
R corresponds to an equivalence relation whose equivalence classes are contained in X2. This intuition can be proved formally
by a simple induction on the steps of function CloseEdges; the proof is routine but somewhat verbose, so we omit the details for
the sake of brevity.

We are now ready to prove Theorem 24. To this end, we show that, for each 0 ≤ i ≤ m and each 1 ≤ j ≤ hi, call Ci, j in H
satisfies properties (S1)–(S4).

(S1) If call Ci, j is of the form Ji, j ··= AddM[Ii, j
···∆−i, j,∆

+
i, j
···∆m

i, j], then the following properties hold.

R-part[(Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j] ∪ Ji, j = close[XR

i, j] ⊆ Π∞[Ei]s (C.3)

YR
i, j = ∅ (C.4)

(S2) If call Ci, j is of the form Ji, j ··= DelM[Io
i, j, I

n
i, j
···∆−i, j,∆

+
i, j
···∆m

i, j], then the following properties hold.

R-part[In
i, j] \ (∆−i, j ∪ Ji, j ∪ YR

i, j) = close[XR
i, j] ⊆ R-part[In

i, j] ⊆ R-part[Io
i, j] (C.5)

YR
i, j ⊆ Io

i, j ∩ Π∞[Ei]≤s (C.6)

(S3) If call Ci, j is of the form Ji, j ··= RedM[Io
i, j, I

n
i, j
···∆i, j], then the following properties hold.

R-part[In
i, j] ∪ Ji, j ⊆ close[XR

i, j] ⊆ (R-part[Io
i, j] \ ∆i, j) ∪ Ji, j ⊆ Π∞[Ei]s (C.7)

YR
i, j = ∅ (C.8)

(S4) Call Ci, j is correct, and set XR
i, j is valid.

We prove this by double induction on i and j, where we consider each call Ci, j of type from Table 2. The base case involves a call
of type A1, and the inductive step involves all remaining calls. We split the proof into a separate claim for each module function.
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Claim 40. If Ci, j is of the form Ji, j ··= AddM[Ii, j
···∆−i, j,∆

+
i, j
···∆m

i, j] and either i = 0 and j = 1, or call Ci, j−1 satisfies properties
(S1)–(S4), then Ci, j satisfies properties (S1) and (S4).

Proof. We first capture the preconditions for the call Ci, j. These are established either at the beginning of the algorithm, or by
the preceding call Ci, j−1. In particular, we show that set XR

i, j−1 is valid; moreover, we define datasets I′, I′′, and J′ and prove that
they satisfy the following properties:

R-part[(Ii, j \ ∆
−
i, j) ∪ ∆

m
i, j] ⊆ R-part[I′′] ∪ J′ ⊆ close[XR

i, j−1] ⊆ R-part[I′] ∪ J′ ⊆ Π∞[Ei]s (C.9)

R-part[I′] ∪ J′ ⊆ (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j (C.10)

Towards this goal, call Ci, j can be of one of the following three types.

• Assume that Ci, j is of type A1. Then, XR
i, j−1 = ∅ so set XR

i, j−1 is clearly valid; moreover, we let I′ = I′′ = J′ = ∅, and it is
obvious that properties (C.9) and (C.10) hold.

• Assume that Ci, j is of type A2. Thus, ∆−i, j = ∅ and call Ci, j−1 is of the form Ji, j−1 ··= AddM[Ii, j−1
···∆−i, j−1,∆

+
i, j−1

···∆m
i, j−1].

Property (S4) holds for i and j − 1 by the inductive assumption, so set XR
i, j−1 is valid. We let J′ = Ji, j−1, and we let

I′ = I′′ = Ii, j = (Ii, j−1 \ ∆
−
i, j−1) ∪ ∆+i, j−1, where the last equality holds by condition (A2.b) from Table 2. Property (A2.c)

ensures J′ = ∆m
i, j, which with I′′ = Ii, j and ∆−i, j = ∅ ensures the left-most inclusion of property (C.9). Moreover, condition

(C.3) holds for i and j− 1 by the induction assumption, so the remaining inclusions of property (C.9) hold as well. Finally,
J′ ⊆ ∆+i, j holds by property (A2.c), which together with I′ = Ii, j and ∆−i, j = ∅ ensures property (C.10).

• Assume that Ci, j is of type A3. Thus, call Ci, j−1 is of the form Ji, j−1 ··= RedM[Io
i, j−1, I

n
i, j−1

···∆i, j−1]. Property (S4) holds
for i and j − 1 by the inductive assumption, so set XR

i, j−1 is valid. We let J′ = Ji, j−1, we let I′′ = In
i, j−1, and we let

I′ = Io
i, j−1 \ ∆i, j−1. Properties (A3.b) and (A3.d), and M ⊆ Πs ensure R-part[Ii, j \ ∆

−
i, j] ⊆ R-part[I′′]; and property (A3.f)

ensures ∆m
i, j = J′; together, these ensure the left-most inclusion of property (C.9). Moreover, condition (C.7) holds for i

and j − 1 by the induction assumption, so it clearly ensures the remaining inclusions of property (C.9). Finally, conditions
(R.f) and (A3.d) jointly ensure ∆−i, j ∩ Os = ∆i, j−1 ∪ ((Ei ∩ Os) \ In

i, j−1); and condition (A3.f) ensures (Ei ∩ Os) \ In
i, j−1 ⊆ ∆

+
i, j;

jointly, these observations clearly imply property (C.10).

This completes our proof for the preconditions for Ci, j, and we are now ready to show that Ci, j satisfies (S1) and (S4).
For the ⊆ direction of the equality in property (C.3), consider an arbitrary fact R(u, v) ∈ R-part[(Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j] ∪ Ji, j. If

R(u, v) ∈ R-part[(Ii, j \ ∆
−
i, j) ∪ ∆

m
i, j], then by property (C.9) we have R(u, v) ∈ close[XR

i, j−1]; since XR
i, j−1 and XR

i, j correspond to the
values of XR before and after the execution of the CloseEdges call made in line 82 during the execution of call Ci, j, Claim 39
ensures close[XR

i, j−1] ⊆ close[XR
i, j]; hence, R(u, v) ∈ close[XR

i, j] holds, as required. If R(u, v) < R-part[(Ii, j \ ∆
−
i, j) ∪ ∆

m
i, j], then

R(u, v) ∈ R-part[(Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j] ∪ Ji, j ensures R(u, v) ∈ R-part[∆+i, j \ ∆

m
i, j] ∪ Ji, j; set ∆+i, j \ ∆

m
i, j is the argument of the call to func-

tion CloseEdges in line 82, and Ji, j is contained in the call’s result, so Claim 39 ensures R-part[∆+i, j \ ∆
m
i, j] ∪ Ji, j ⊆ close[XR

i, j];
hence, R(u, v) ∈ close[XR

i, j] holds in this case as well.
For the ⊇ direction of the equality in property (C.3), we prove close[XR

i, j] \ R-part[(Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j] ⊆ Ji, j. To this end, we

consider an arbitrary fact R(u, v) ∈ close[XR
i, j] \ R-part[(Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j]. Then, R(u, v) < R-part[(Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j] and proper-

ties (C.9) and (C.10) jointly ensure R(u, v) < close[XR
i, j−1]; together with R(u, v) ∈ close[XR

i, j] and Claim 39, this ensures that
R(u, v) is contained in the result of the call to CloseEdges in line 82. Finally, R(u, v) < R-part[(Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j] ensures that

R(u, v) is not removed from the result in line 82. Consequently, we have R(u, v) ∈ Ji, j, as required.
For the rightmost ⊆ of property (C.3), line 82 and Claim 39 ensure close[XR

i, j] ⊆ M∞[close[XR
i, j−1] ∪ R-part[∆+i, j \ ∆

m
i, j]].

Property (C.9) ensures close[XR
i, j−1] ⊆ Π∞[Ei]s; moreover, condition (A1.a), (A2.c), or (A3.f), depending on the type of Ci, j,

ensures R-part[∆+i, j \ ∆
m
i, j] ⊆ Π∞[Ei]s. Hence, we have close[XR

i, j] ⊆ M∞[Π∞[E]s] ⊆ Π∞[E]s, as required.
Property (C.4) holds trivially: it is established either at the beginning of the history or by the preceding call, and Algorithm 7

does not modify set YR.
Finally, we show that property (S4) holds. We have already established that XR

i, j−1 is valid; furthermore, XR is updated in
line 82 of call Ci, j, so Claim 39 ensures that XR

i, j is also valid. Property (C.3) and line 82 ensure that Ji, j satisfies the upper bound.
To see that Ji, j also satisfies the lower bound, consider an arbitrary fact R(u,w) ∈ MA[Ii, j

···∆−i, j,∆
+
i, j]. Thus, there exists a rule

instance rσ with r ∈ M such that b(rσ) ⊈ Ii, j, and b(rσ) ⊆ (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j, and R(u,w) = h(rσ) < (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j all hold. We

have the following possibilities for the choice of r.

• Rule r ∈ M is of the form (30). Then, R(u,w) = h(rσ) implies b(rσ) = {R(w, u)} ⊆ (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j. Thus, property (C.3)

ensures R(w, u) ∈ close[XR
i, j], and so w and u belong to the same set in XR

i, j. Hence, we have R(u,w) ∈ close[XR
i, j]; thus,

property (C.3) ensures R(u,w) ∈ R-part[(Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j] ∪ Ji, j; finally R(u,w) < (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j ensures R(u,w) ∈ Ji, j.
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• Rule r ∈ M is of the form (31). Then, there exists a constant v such that b(rσ) = {R(u, v),R(v,w)} ⊆ (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j.

Analogously to above, u, v, and w belong to the same set in XR
i, j. Hence, R(u,w) ∈ close[Ci, j

R ]; thus, property (C.3) ensures
R(u,w) ∈ R-part[(Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j] ∪ Ji, j; finally, R(u,w) < (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j ensures R(u,w) ∈ Ji, j.

Claim 41. If Ci, j is of the form Ji, j ··= DelM[Io
i, j, I

n
i, j
···∆−i, j,∆

+
i, j
···∆m

i, j] and

• i ≥ 1, j = 1, and call Ci−1,hi−1 satisfies properties (S1)–(S4), or

• j > 1 and call Ci, j−1 satisfies properties (S1)–(S4),

then Ci, j satisfies properties (S2) and (S4).

Proof. We first capture the preconditions for the call Ci, j. Please remember that, at the beginning of this section, we defined
XR

i,0 = XR
i−1,hi−1

and YR
i,0 = YR

i−1,hi−1
for each i > 0. Set XR

i, j−1 is valid by property (S4). We next prove the following.

R-part[In
i, j] \ (∆m

i, j ∪ YR
i, j−1) = close[XR

i, j−1] ⊆ R-part[In
i, j] ⊆ R-part[Io

i, j] (C.11)

YR
i, j−1 ⊆ Io

i, j ∩ Π∞[Ei]≤s (C.12)

Inclusion R-part[In
i, j] \ (∆m

i, j ∪ YR
i, j−1) ⊆ R-part[In

i, j] holds trivially. Call Ci, j can be of one of the following two types.

• Assume that Ci, j is of type D1. Condition (D1.a) and property (C.4) for Ci−1,hi−1 ensure YR
i, j−1 = ∅, as required for prop-

erty (C.12). Moreover, condition (D1.d) ensures the rightmost inclusion of (C.11). Furthermore, conditions (D1.c)
and (D1.d) jointly ensure R-part[In

i, j] = R-part[(Ii−1,hi−1 \ ∆
−
i−1,hi−1

) ∪ ∆+i−1,hi−1
], which, together with ∆m

i, j = YR
i, j−1 = ∅, prop-

erty (C.3) for i − 1 and hi−1, and condition (D1.b), clearly ensures the equality in (C.11).

• Assume that Ci, j is of type D2. Condition (D2.c) ensures R-part[In
i, j] = R-part[(In

i, j−1 \ ∆
−
i, j−1) ∪ ∆+i, j−1]; set ∆+i, j−1 con-

tains no fact from stratum s, and so M ⊆ Πs ensures R-part[In
i, j] = R-part[In

i, j−1 \ ∆
−
i, j−1]. Together with condition (D2.d)

and property (C.5) for i and j − 1, this ensures the equality in (C.11). For the rightmost inclusion of (C.11), condi-
tion (D1.d) or (D2.b) (depending on the type of the previous call) ensures Io

i, j−1 = Π∞[Ei−1], and property (D2.b) ensures
Io
i, j = Π∞[Ei−1]; thus, Io

i, j−1 = Io
i, j; but then, R-part[In

i, j] = R-part[In
i, j−1 \ ∆

−
i, j−1] and the rightmost inclusion of property (C.5)

for i and j − 1 jointly ensure R-part[In
i, j] ⊆ R-part[Io

i, j], as required. Finally, property (C.12) follows from property (C.6)
for i and j − 1, and Io

i, j−1 = Io
i, j.

This completes our proof for the preconditions for Ci, j, and we are now ready to show that Ci, j satisfies (S2) and (S4).
For the ⊆ direction of the equality in (C.5), we prove R-part[In

i, j] \ (∆−i, j ∪ YR
i, j−1 ∪ close[XR

i, j]) ⊆ Ji, j ∪ YR
i, j; together with

YR
i, j−1 ⊆ YR

i, j, this ensures the required property. Consider an arbitrary fact R(u, v) ∈ R-part[In
i, j] \ (∆−i, j ∪ YR

i, j−1 ∪ close[XR
i, j]).

Then, ∆m
i, j ⊆ ∆

−
i, j and property (C.11) ensure R(u, v) ∈ close[XR

i, j−1]; together with R(u, v) < close[XR
i, j], this ensures that u and

v belong to a set that is removed from XR in line 97 during the execution of Ci, j. But then, lines 94–96 ensure that R(u, v) is added
to either J in line 95 or YR in line 96; in the former case, R(u, v) ∈ R-part[In

i, j] \ ∆
−
i, j and line 98 ensure R(u, v) ∈ Ji, j; and in the

latter case, we clearly have R(u, v) ∈ YR
i, j. Either way, we have R(u, v) ∈ Ji, j ∪ YR

i, j, as required.
For the ⊇ direction of the equality in (C.5), consider arbitrary R(u, v) ∈ close[XR

i, j]. Then, the way XR is updated in line 97
ensures R(u, v) ∈ close[XR

i, j−1], which together with property (C.11) ensures R(u, v) ∈ R-part[In
i, j] \ (∆m

i, j ∪ YR
i, j−1); this clearly en-

sures R(u, v) ∈ R-part[In
i, j]. Now assume for the sake of a contradiction that R(u, v) ∈ ∆−i, j ∪ Ji, j ∪ YR

i, j. Then, R(u, v) < ∆m
i, j ∪ YR

i, j−1

ensures R(u, v) ∈ (∆−i, j \ ∆
m
i, j) ∪ Ji, j ∪ (YR

i, j \ YR
i, j−1); thus, R(u, v) is considered in line 93, 95, or 96. In each of these cases, the set

in XR
i, j−1 containing u and v is removed in line 97; since XR

i, j−1 is valid, we have R(u, v) < close[XR
i, j], which is a contradiction.

Consequently, we have R(u, v) < ∆−i, j ∪ Ji, j ∪ YR
i, j, so fact R(u, v) belongs to the required set.

The way XR is updated in line 97 ensures close[XR
i, j] ⊆ close[XR

i, j−1]; together with close[XR
i, j−1] ⊆ R-part[In

i, j] ⊆ R-part[Io
i, j]

from property (C.11), this ensures the remaining inclusions of property (C.5).
For property (C.6), consider arbitrary R(u, v) ∈ YR

i, j. If R(u, v) ∈ YR
i, j−1, then property (C.12) ensures R(u, v) ∈ Io

i, j ∩ Π∞[Ei]≤s.
If R(u, v) is added to YR in line 96, then lines 93 and 94 ensure that u and v belong to a set in XR

i, j−1; thus, R(u, v) ∈ close[XR
i, j−1],

which together with the rightmost inclusion of property (C.11) ensures R(u, v) ∈ Io
i, j. Moreover, the oracle function returns true

for R(u, v) in line 95, so by Definition 16 we have R(u, v) ∈ Π∞[Ei]; together with M ⊆ Πs, this ensures R(u, v) ∈ Π∞[Ei]≤s.
Consequently, R(u, v) ∈ Io

i, j ∩ Π∞[Ei]≤s holds, as required.
Finally, we show that property (S4) holds. We have already established that XR

i, j−1 is valid; furthermore, XR is updated
during the execution of Ci, j is line 97, which clearly does not affect the validity of XR; hence, set XR

i, j is also valid. Moreover,
line 98 ensures Ji, j ⊆ In

i, j \ ∆
−
i, j; set Ji, j contains only R facts, so the rightmost inclusion of property (C.11) and M ⊆ Πs ensure

Ji, j ⊆ R-part[In
i, j] ⊆ Io

i, j ∩ Os; hence, Ji, j ⊆ Io
i, j ∩ Os ∩ ((In

i, j \ ∆
−
i, j) ∪ ∆

+
i, j) holds, as required by the upper bound. To see that Ji, j

42



also satisfies the lower bound, consider an arbitrary fact R(u,w) ∈ MD[Io
i, j, I

n
i, j
···∆−i, j,∆

+
i, j] \ Π∞[Ei]. By Definition 9, there exists a

rule instance rσ with r ∈ M such that b(rσ) ⊆ Io
i, j, b(rσ) ⊆ In

i, j, b(rσ) ⊈ (In
i, j \ ∆

−
i, j) ∪ ∆

+
i, j, and R(u,w) = h(rσ) ∈ (In

i, j \ ∆
−
i, j) ∪ ∆

+
i, j

all hold. Set ∆+i, j contains no R-facts, so R(u,w) ∈ In
i, j \ ∆

−
i, j holds. We have the following possibilities for the choice of r.

• Rule r ∈ M is of the form (30). Then, R(u,w) = h(rσ) ensures b(rσ) = {R(w, u)}. Together with b(rσ) ⊈ (In
i, j \ ∆

−
i, j) ∪ ∆

+
i, j

and b(rσ) ⊆ In
i, j, this implies R(w, u) ∈ ∆−i, j. Assume for the sake of a contradiction that R(w, u) ∈ ∆m

i, j holds. Then, the call
must be of type D2, and so property (D2.d) implies R(w, u) ∈ Ji, j−1—that is, w and u belong to a set removed from XR dur-
ing the execution of Ci, j−1. Together with R(u,w) < Π∞[Ei], this implies R(u,w) ∈ Ji, j−1 = ∆

m
i, j ⊆ ∆

−
i, j, which is a contradic-

tion. Hence, we have R(w, u) ∈ ∆−i, j \ ∆
m
i, j. Moreover, R(u,w) ∈ In

i, j \ ∆
−
i, j, and R(u,w) < Π∞[Ei], and ∆m

i, j ⊆ ∆
−
i, j, and prop-

erty (C.12) jointly ensure R(u,w) ∈ R-part[In
i, j] \ (∆m

i, j ∪ YR
i, j−1); but then, property (C.11) ensures R(u,w) ∈ close[XR

i, j−1].
Consequently, the set in XR

i, j−1 containing u and w must be considered in line 93 during the execution of Ci, j. Then, fact
R(u,w) is considered in line 95; moreover, function T is correct in the context of Ei and Π, so R(u,w) ∈ Ji, j holds.

• Rule r ∈ M is of the form (31). Then, there exists v such that b(rσ) = {R(u, v),R(v,w)}. Analogously to above, we have
R(u,w) ∈ close[Ci, j−1

R ]. Moreover, b(rσ) ⊆ In
i, j and b(rσ) ⊈ (In

i, j \ ∆
−
i, j) ∪ ∆

+
i, j imply that one of the two facts must be in ∆−i, j.

We next consider the case when R(u, v) ∈ ∆−i, j; the case of R(v,w) ∈ ∆−i, j is analogous and we omit it for the sake of brevity.
For the sake of a contradiction, assume that R(u, v) ∈ ∆m

i, j = Ji, j−1 holds. Then, the set containing u, v, and w is removed
from XR during the execution of Ci, j−1, which contradicts R(u,w) ∈ close[XR

i, j−1]. Hence, we have R(u, v) ∈ ∆−i, j \ ∆
m
i, j.

Line 93 and R(u,w) ∈ close[XR
i, j−1] ensure that R(u,w) is considered in line 95. Finally, function T in the context of Ei and

Π, so R(u,w) ∈ Ji, j holds.

Claim 42. If call Ci, j is of type (R) and call Ci, j−1 satisfies properties (S1)–(S4), then call Ci, j satisfies properties (S3) and (S4).

Proof. For the leftmost inclusion of property (C.7), call Ci, j−1 involves the DelM module function so properties (C.5) for i
and j − 1 ensures R-part[In

i, j−1] \ (∆−i, j−1 ∪ Ji, j−1 ∪ YR
i, j−1) ⊆ close[XR

i, j−1]. Together with properties (R.b) and (R.d), and the
fact that ∆+i, j−1 contains no R-facts, this implies R-part[In

i, j] ⊆ YR
i, j−1 ∪ close[XR

i, j−1]. Moreover, line 99 and Claim 39 ensure
YR

i, j−1 ⊆ close[XR
i, j], close[XR

i, j−1] ⊆ close[XR
i, j], and Ji, j ⊆ close[XR

i, j]. Hence, R-part[In
i, j] ∪ Ji, j ⊆ close[XR

i, j] holds.
For the second inclusion of property (C.7), property (C.5) for i and j−1, M ⊆ Πs, and condition (D2.b) or (D1.d) (depending

on the type of previous call) ensure close[XR
i, j−1] ⊆ Π∞[Ei−1]s. Moreover, property (C.6) for i and j−1 ensures YR

i, j−1 ⊆ Π∞[Ei−1]s.
As a result, line 99 and Claim 39 ensure close[XR

i, j] ⊆ M∞[close[XR
i, j−1] ∪ YR

i, j−1] ⊆ Π∞[Ei−1]s, and so condition (R.c) ensures
close[XR

i, j] ⊆ R-part[Io
i, j]. We next prove close[XR

i, j] \ (R-part[Io
i, j] \ ∆i, j) ⊆ Ji, j, which implies the required property. To this end,

consider an arbitrary fact R(u, v) ∈ close[XR
i, j] \ (R-part[Io

i, j] \ ∆i, j). Then, close[XR
i, j] ⊆ R-part[Io

i, j] ensures R(u, v) ∈ R-part[Io
i, j].

Together with R(u, v) < R-part[Io
i, j] \ ∆i, j, this implies R(u, v) ∈ ∆i, j. Then, condition (R.f) ensures R(u, v) < In

i, j, which together
with condition (R.d) and property (C.5) for i and j−1 ensures R(u, v) < close[XR

i, j−1]. But then, R(u, v) ∈ close[XR
i, j], line 99, and

Claim 39 ensure that R(u, v) is returned by the CloseEdges(YR) call made in line 99. Together with R(u, v) ∈ ∆i, j, this ensures
R(u, v) ∈ Ji, j, as required.

For the rightmost inclusion of (C.7), conditions (R.c), (R.e), and (R.f), and M ⊆ Πs ensure R-part[Io
i, j] \ ∆i, j ⊆ Π∞[Ei]s. Next

we show that Ji, j ⊆ Π∞[Ei]s holds. Property (C.5) for i and j − 1 ensures close[XR
i, j−1] ⊆ R-part[In

i, j−1] \ ∆−i, j−1, which together
with conditions (R.d), (R.e), and M ⊆ Πs ensures close[XR

i, j−1] ⊆ Π∞[Ei]s. Moreover, property (C.6) for i and j − 1 ensures
YR

i, j−1 ⊆ Π∞[Ei]s. As a result, line 99 and Claim 39 ensure Ji, j ⊆ M∞[close[XR
i, j−1] ∪ YR

i, j−1] ⊆ Π∞[Ei]s.
Property (C.8) holds due to line 100.
Finally, we show that property (S4) holds. The inductive assumption ensures that XR

i, j−1 is valid, and XR is only updated in
line 99 during the execution of Ci, j; hence, Claim 39 ensures that XR

i, j is also valid. Moreover, line 99 clearly ensures Ji, j ⊆ ∆i, j;
then, by condition (R.f) we have Ji, j ∩ In

i, j = ∅; together with the rightmost inclusion of (C.7), we conclude that Ji, j satisfies the
upper bound. To see that Ji, j also satisfies the lower bound, consider arbitrary R(u,w) ∈ MR[Io

i, j, I
n
i, j
···∆i, j]. By Definition 10 there

exists rule instance rσ with r ∈ M such that R(u,w) = h(rσ) ∈ ∆i, j, and b(rσ) ⊆ Io
i, j, and b(rσ) ⊆ In

i, j all hold. There are two
possibilities, which we discuss below.

• Rule r ∈ M is of the form (30). Then, R(u,w) = h(rσ) implies b(rσ) = {R(w, u)}. Together with b(rσ) ⊆ In
i, j, condi-

tions (R.b) and (R.d), and the fact that ∆+i, j−1 contains no R-facts, we have R(w, u) ∈ In
i, j−1 \ (∆−i, j−1 ∪ Ji, j−1). Property (C.5)

for i and j − 1 ensures R(w, u) ∈ close[XR
i, j−1] ∪ YR

i, j−1; hence, line 99 and Claim 39 ensure R(w, u) ∈ close[XR
i, j], which in

turn implies R(u,w) ∈ close[XR
i, j]. Moreover, R(u,w) ∈ ∆i, j implies R(u,w) < In

i, j, which together with condition (R.d) and
property (C.5) for i and j − 1 implies R(u,w) < close[XR

i, j−1]. But then, R(u,w) ∈ close[XR
i, j], line 99, and Claim 39 ensure

that R(u,w) is returned by the CloseEdges(YR) call in line 99; but then, R(u,w) ∈ ∆i, j ensures R(u,w) ∈ Ji, j, as required.

• Rule r ∈ M is of the form (31). Then, there exists v such that b(rσ) = {R(u, v),R(v,w)} holds. Analogously to above, we
have {R(u, v),R(v,w)} ⊆ close[XR

i, j] and R(u,w) < close[XR
i, j−1]. The former ensures R(u,w) ∈ close[XR

i, j]. Consequently,
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line 99 and Claim 39 ensure that R(u,w) is returned by the CloseEdges(YR) call in line 99; but then, R(u,w) ∈ ∆i, j ensures
R(u,w) ∈ Ji, j, as required.

Appendix D. Proof of Theorem 30

Theorem 30. Functions AddΠrch , DelΠrch , and RedΠrch are correct.

Consider a regular chain program Πrch, program Π, stratification λ of Π, stratum index s such that Πrch ⊆ Π
s, sequence of

datasets E0, . . . , Em, and a call history H for Πrch that is compatible with Π, λ, s and E0, . . . , Em. Let ΣH be the set of all head
predicates appearing inΠrch, let ΣP be the set of all predicates appearing inΠrch, and let ΣB = ΣP \ ΣH . For each predicate R ∈ ΣH ,
we fix an NFA NR = ⟨QR,Σb, δ

R, qR
s , F

R⟩ that recognises precisely the unfoldings of R w.r.t. Πrch; we assume that each NFA is
free of ε-transitions, satisfies qR

s < FR, and does not share states with any other NFA. We assume that the call history H is of the
form as specified in Definition 12. For each 0 ≤ i ≤ m and each 1 ≤ j ≤ ni, let Iq

i, j, ∆
q
i, j, Xi, j, Yi, j, and each ZR

i, j with R ∈ ΣH be the
values of Iq, ∆q, X, Y , and ZR, respectively, after call Ci, j. Finally, let Iq

0,0 = ∆
q
0,0 = X0,0 = Y0,0 = ZR

0,0 = ∅ for each R ∈ ΣH and,
for 1 ≤ i ≤ m, we let Iq

i,0 = Iq
i−1,hi−1

, ∆q
i,0 = ∆

q
i−1,hi−1

, Xi,0 = Xi−1,hi−1 , Yi,0 = Yi−1,hi−1 , and ZR
i,0 = ZR

i−1,hi−1
for each R ∈ ΣH .

We next introduce some useful abbreviations and notation. To simplify the notation, let M = Πrch for the rest of this section.
Also, for S a set of facts and T a set of predicates, T -part[S ] is the subset of S containing precisely all facts of S whose predicate
is in T ; by abuse of notation, we write {R}-part[S ] as R-part[S ] when R is a predicate. We use analogous notation when S is a set
of q-facts and T is a set of states. Furthermore, for R ∈ ΣH a predicate and X and ∆ datasets, we define closeR[X,∆] as follows.

closeR[X,∆] = {q(u, v) | there exist ℓ ≥ 1, states q0, . . . , qℓ ∈ QR, binary predicates R0, . . . ,Rℓ−1, constants w0, . . . ,wℓ,
and an integer k with 0 ≤ k < ℓ such that q0 = qR

s , w0 = u, qℓ = q, wℓ = v,
qi+1 ∈ δ

R(qi,Ri) for i with 0 ≤ i < ℓ, and
Rk(wk,wk+1) ∈ ∆ and Rm(wm,wm+1) ∈ X for m with 0 ≤ m < ℓ and m , k}

(D.1)

To simplify the notation, we abbreviate closeR[X, X] as just closeR[X]. For R ∈ ΣH a predicate, X a dataset, and B a q-dataset,
we define extR[B, X] as follows.

extR[B, X] = {q(u, v) | there exist ℓ ≥ 0, states q0, . . . , qℓ ∈ QR, binary predicates R0, . . . ,Rℓ−1, and constants w0, . . . ,wℓ
such that qℓ = q, wℓ = v, q0(u,w0) ∈ B, and
qi+1 ∈ δ

R(qi,Ri) and Ri(wi,wi+1) ∈ X for i with 0 ≤ i < ℓ}
(D.2)

Finally, for B a q-dataset, we define fin[B] as follows.

fin[B] = {R(u, v) | ∃q ∈ FR such that q(u, v) ∈ B} (D.3)

Before proceeding with the main proof, we first prove a clam that characterises the AddEdges function. This will allow us to
later simplify the analysis of the AddM and RedM functions.

Claim 43. For each call of the form Jq ··= AddEdges(∆,Q, B), let Iq be the value during the call, and let X1 and X2 be the values
of X before and after the call. If closeR[X1] = QR-part[Iq] ∪ extR[Q, X1] and extR[B, X1] ⊆ QR-part[Iq] hold for each binary
predicate R ∈ ΣH , then X2 = X1 ∪ Σ

P-part[∆] and (D.4) holds for each binary predicate R ∈ ΣH .

closeR[X2] = QR-part[Iq ∪ Jq] (D.4)

Proof. Consider an arbitrary call as specified in the claim. Note that X is only updated in line 108, so X2 = X1 ∪ Σ
P-part[∆]

clearly holds. Next we show that (D.4) holds for each binary predicate R ∈ ΣH . To this end, consider arbitrary binary predicate
R ∈ ΣH appearing in the head of a rule in M.

For ⊆ direction of property (D.4), we prove (D.5). We next consider the two inclusions of this property in isolation.

closeR[X2] \ QR-part[Iq] ⊆ extR[B ∪ Jq, X2] \ QR-part[Iq] ⊆ QR-part[Jq] (D.5)

For the first inclusion of (D.5), we consider an arbitrary q-fact q(u, v) ∈ closeR[X2] \ QR-part[Iq]. If q(u, v) ∈ closeR[X1],
then q(u, v) ∈ extR[Q, X1] holds by the claim assumption; line 106 ensures Q ⊆ Jq; and X1 ⊆ X2 clearly holds; thus, we have
q(u, v) ∈ extR[B ∪ Jq, X2], as required. Otherwise, we have q(u, v) ∈ closeR[X2] \ closeR[X1]. Then, by (D.1), there exist an in-
teger ℓ ≥ 1, states q0, . . . , qℓ ∈ QR, and facts {R0(w0,w1), . . . ,Rℓ−1(wℓ−1,wℓ)} ⊆ X2 such that q0 = qR

s , w0 = u, qℓ = q, and wℓ = v,
and qi+1 ∈ δ

R(qi,Ri) for 0 ≤ i < ℓ. Moreover, q(u, v) < closeR[X1] ensures that Rk(wk,wk+1) ∈ X1 for at least one k with 0 ≤ k < ℓ.
Without loss of generality, we can choose k to be the smallest index satisfying Rk(wk,wk+1) ∈ X2 \ X1 ⊆ Σ

P-part[∆]. We consider
the following possibilities.
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• k = 0. We thus have, R0(w0,w1) = Rk(wk,wk+1) ∈ ΣP-part[∆], so fact R0(w0,w1) is considered in line 107. But then,
q0 = qR

s and q1 ∈ δ
R(q0,R0) ensure that q1(w0,w1) is considered in line 110; this ensures q1(w0,w1) ∈ QR-part[B ∪ Jq],

which in turn ensures q(u, v) = qℓ(w0,wℓ) ∈ extR[B ∪ Jq, X2], as required.

• k > 0. Since k is the smallest index such that Rk(wk,wk+1) ∈ X2 \ X1 holds, Ri(wi,wi+1) ∈ X1 holds for each 0 ≤ i < k.
Thus, qk(w0,wk) ∈ closeR[X1] holds. We further have the following possibilities.

– qk(w0,wk) ∈ QR-part[Iq]. Then, Rk(wk,wk+1) ∈ ΣP-part[∆] ensures that Rk(wk,wk+1) is considered in line 107. But
then, qk(w0,wk) ∈ QR-part[Iq] and qk+1 ∈ δ

R(qk,Rk) ensure that qk+1(w0,wk+1) is considered in line 112; this ensures
qk+1(w0,wk+1) ∈ QR-part[B ∪ Jq], which in turn ensures q(u, v) = qℓ(w0,wℓ) ∈ extR[B ∪ Jq, X2].

– qk(w0,wk) < QR-part[Iq]. Then, closeR[X1] = QR-part[Iq] ∪ extR[Q, X1] implies qk(w0,wk) ∈ extR[Q, X1]; moreover,
Q ⊆ B ∪ Jq and X1 ⊆ X2 imply extR[Q, X1] ⊆ extR[B ∪ Jq, X2], so we have qk(w0,wk) ∈ extR[B ∪ Jq, X2]; finally, this
ensures q(u, v) = qℓ(w0,wℓ) ∈ extR[B ∪ Jq, X2].

For the second inclusion of (D.5), we prove instead that extR[B ∪ Jq, X2] ⊆ QR-part[Iq ∪ Jq] holds. Consider an arbitrary
q-fact q(u, v) ∈ extR[B ∪ Jq, X2]; then, by (D.2), there exist an integer ℓ ≥ 0, states q0, . . . , qℓ, binary predicates R0, . . . ,Rℓ−1, and
constants w0, . . . ,wℓ such that qℓ = q, wℓ = v, q0(u,w0) ∈ B ∪ Jq, and qi+1 ∈ δ

R(qi,Ri) and Ri(wi,wi+i) ∈ X2 for i with 0 ≤ i < ℓ.
We prove by induction on i with 0 ≤ i < ℓ that property (♢) holds.

(♢) qi(w0,wi) ∈ extR[B, X1] ∪ QR-part[Jq]

For i = ℓ − 1, property (♢) ensures q(u, v) ∈ extR[B, X1] ∪ QR-part[Jq] ⊆ QR-part[Iq ∪ Jq] = QR-part[Iq ∪ Jq], as required. For
the base case, property (♢) holds trivially for i = 0. For the inductive step, consider arbitrary i with 0 < i < ℓ such that property
(♢) holds for i − 1; we show that property (♢) holds for i as well. We have the following three cases.

• qi−1(w0,wi−1) ∈ extR[B, X1] and Ri−1(wi−1,wi) ∈ X1. Then, qi ∈ δ
R(qi−1,Ri−1) ensures qi(w0,wi) ∈ extR[B, X1], as required

by property (♢).

• qi−1(w0,wi−1) ∈ extR[B, X1] and Ri−1(wi−1,wi) ∈ X2 \ X1 ⊆ Σ
P-part[∆]. Then, lines 107, 111, and 112 of the algorithm

ensure that qi(w0,wi) ∈ QR-part[B ∪ Jq]; note that qi−1(w0,wi−1) ∈ Iq holds in line 111 because extR[B, X1] ⊆ QR-part[Iq]
holds by the assumption of our claim. Thus, qi(w0,wi) ∈ extR[B, X1] ∪ QR-part[Jq] holds, as required by property (♢).

• qi−1(w0,wi−1) < extR[B, X1]. Then, property (♢) for i − 1 ensures qi−1(w0,wi−1) ∈ QR-part[Jq], so qi−1(w0,wi−1) is added
to Jq and Q in line 106, 110, 112, or 116. The q-fact qi−1(w0,wi−1) is thus removed from Q in line 114 at some point.
But then, Ri−1(wi−1,wi) ∈ X2 and line 115 ensure that qi(w0,wi) is considered in line 116, which in turn ensures that
qi(w0,wi) ∈ QR-part[B ∪ Jq] ⊆ extR[B, X1] ∪ QR-part[Jq] holds, as required by property (♢).

We now prove the ⊇ direction of property (D.4). Precondition closeR[X1] = QR-part[Iq] ∪ extR[Q, X1] and X1 ⊆ X2 ensure
QR-part[Iq] ⊆ closeR[X1] ⊆ closeR[X2]. To complete the proof, we show that QR-part[Jq] ⊆ closeR[X2] holds as well. To this
end, let N be the total number of iterations for the loop of lines 113–116; moreover, let Jq

0 be the value of Jq right before line 113,
and, for each 1 ≤ k ≤ N, let Jq

k be the value of Jq after the k-th iteration of lines 114–116. We show by induction on k with
0 ≤ k ≤ N that QR-part[Jq

k ] ⊆ closeR[X2] holds; then, QR-part[Jq
k ] ⊆ closeR[X2] for k = N ensures the required property.

• For the base case, note that each q-fact q(u, v) ∈ QR-part[Jq
0] is added to Jq

0 in line 106, 110, or 112. In the first
case, assumption closeR[X1] = QR-part[Iq] ∪ extR[Q, X1] ensures q(u, v) ∈ closeR[X1] ⊆ closeR[X2]. In the second case,
lines 107–110 ensure that there exists Ri(u, v) ∈ X2 such that q ∈ δR(qR

s ,Ri), which implies q(u, v) ∈ closeR[X2]. In the
third case, lines 107, 109, and 111 ensure that there exist q1(u,w) ∈ QR-part[Iq] and Ri(w, v) ∈ X2 such that q ∈ δR(q1,Ri)
holds; then, closeR[X1] = QR-part[Iq] ∪ extR[Q, X1] and closeR[X1] ⊆ closeR[X2] ensure q1(u,w) ∈ closeR[X2], which in
turn ensures q(u, v) ∈ closeR[X2], as required.

• For the inductive step, consider an arbitrary k with 1 ≤ k ≤ N such that QR-part[Jq
k−1] ⊆ closeR[X2] holds, and con-

sider an arbitrary q-fact q(u, v) ∈ QR-part[Jq
k ]. If q(u, v) ∈ QR-part[Jq

k−1], then the inductive assumption for k − 1 ensures
q(u, v) ∈ closeR[X2]. Otherwise, q(u, v) is added to Jq

k in line 116. Thus, line 114 ensures that some q-fact q1(u,w) is ex-
tracted at some point from the set Q; since all facts added to Q are also added to Jq, we also have q1(u,w) ∈ QR-part[Jq

k−1];
but then, the inductive assumption for k − 1 ensures q1(u,w) ∈ closeR[X2]. In addition, line 115 ensures that there exists
Ri(w, v) ∈ X2 such that q ∈ δR(q1,Ri) holds. Together, these observations ensure q(u, v) ∈ closeR[X2], as required.

We now prove Theorem 30 by showing that, for each 0 ≤ i ≤ m and each 1 ≤ j ≤ hi, call Ci, j in the history H satisfies
properties (N1)–(N4).
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(N1) If call Ci, j is of the form Ji, j ··= AddM[Ii, j
···∆−i, j,∆

+
i, j
···∆m

i, j], then the following properties hold.

closeR[Xi, j] = QR-part[Iq
i, j] for each R ∈ ΣH (D.6)

ΣB-part[(Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j] = Σ

B-part[Xi, j] ⊆ Xi, j ⊆ Π∞[Ei]≤s (D.7)

fin[Iq
i, j] = Σ

H-part[(Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j ∪ Ji, j] ⊆ Π∞[Ei]s (D.8)

∆
q
i, j = Yi, j = ZR

i, j = ∅ for each R ∈ ΣH (D.9)

(N2) If call Ci, j is of the form Ji, j ··= DelM[Io
i, j, I

n
i, j
···∆−i, j,∆

+
i, j
···∆m

i, j], then the following properties hold.

QR-part[Iq
i, j] ⊆ closeR[Xi, j] ⊆ closeR[Xi,0] = QR-part[Iq

i,0] for each R ∈ ΣH (D.10)

extR[∆q
i, j, Xi, j] ⊆ QR-part[∆q

i, j] ⊆ closeR[Xi,0, (Io
i, j \ In

i, j) ∪ ∆
−
i, j] for each R ∈ ΣH (D.11)

ΣB-part[Io
i, j ∩ (In

i, j \ ∆
−
i, j)] = Σ

B-part[Xi, j] ⊆ Xi, j = Xi,0 \ ((Io
i, j \ In

i, j) ∪ ∆
−
i, j) ⊆ Io

i, j ∩ (In
i, j \ ∆

−
i, j) (D.12)

fin[closeR[Xi,0, (Io
i, j \ In

i, j) ∪ ∆
−
i, j]] = R-part[(Io

i, j \ In
i, j) ∪ ∆

−
i, j ∪ Ji, j ∪ Yi, j] for each R ∈ ΣH (D.13)

fin[Iq
i, j] = Σ

H-part[In
i, j \ (∆−i, j ∪ Ji, j ∪ Yi, j)] ⊆ ΣH-part[In

i, j] ⊆ Σ
H-part[Io

i, j] = fin[Iq
i,0] (D.14)

Yi, j ⊆ Io
i, j ∩ Π∞[Ei]≤s (D.15)

ZR
i, j ⊇ {u | there exist q and v such that q(u, v) ∈ QR-part[Iq

i,0 \ Iq
i, j]} for each R ∈ ΣH (D.16)

∆
q
i, j ⊇ Iq

i,0 \ Iq
i, j and ∆q

i, j ∩ Iq
i, j = ∅ and fin[∆q

i, j] ∩ (In
i, j \ (∆−i, j ∪ Ji, j ∪ Yi, j)) = ∅ (D.17)

(N3) If call Ci, j is of the form Ji, j ··= RedM[Io
i, j, I

n
i, j
···∆i, j], then the following properties hold.

closeR[Xi, j] = QR-part[Iq
i, j] for each R ∈ ΣH (D.18)

ΣB-part[Io
i, j ∩ In

i, j] = Σ
B-part[Xi, j] ⊆ Xi, j ⊆ Π∞[Ei]≤s (D.19)

ΣH-part[In
i, j ∪ Ji, j] ⊆ fin[Iq

i, j] ⊆ Σ
H-part[(Io

i, j \ ∆i, j) ∪ Ji, j] ⊆ Π∞[Ei]s (D.20)

∆
q
i, j = Yi, j = ZR

i, j = ∅ for each R ∈ ΣH (D.21)

(N4) Call Ci, j is correct.

We prove this by double induction on i and j, where we consider each call Ci, j of type from Table 2. The base case involves a call
of type A1, and the inductive step involves all remaining calls. We split the proof into a separate claim for each module function.

Claim 44. If Ci, j is of the form Ji, j ··= AddM[Ii, j
···∆−i, j,∆

+
i, j
···∆m

i, j] and either i = 0 and j = 1, or j > 1 and call Ci, j−1 satisfies
properties (N1)–(N4), then Ci, j satisfies properties (N1) and (N4).

Proof. We first capture the preconditions for the call Ci, j. These are established either at the beginning of the algorithm, or by
the preceding call Ci, j−1. In particular, we prove that the following properties hold.

closeR[Xi, j−1] = QR-part[Iq
i, j−1] for each R ∈ ΣH (D.22)

ΣB-part[(Ii, j \ ∆
−
i, j) ∪ ∆

m
i, j] = Σ

B-part[Xi, j−1] ⊆ Xi, j−1 ⊆ Π∞[Ei]≤s (D.23)

ΣH-part[(Ii, j \ ∆
−
i, j) ∪ ∆

m
i, j] ⊆ fin[Iq

i, j−1] ⊆ ΣH-part[(Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j] ⊆ Π∞[Ei]s (D.24)

Towards this goal, call Ci, j can be of one of the following three types.

• Assume that Ci, j is of type A1. For each R ∈ ΣH , both sides of the equality in property (D.22) are empty, so the equality
holds. Moreover, Ii, j = ∆

−
i, j = ∆

m
i, j = Xi, j−1 = ∅ ensures property (D.23). Finally, Ii, j = ∆

−
i, j = ∆

m
i, j = Iq

i, j−1 = ∅ ensures the
first and second inclusion of property (D.24), and condition (A1.a) and M ⊆ Πs ensure the third inclusion.

• Assume that Ci, j is of type A2. For each R ∈ ΣH , property (D.6) for i and j − 1 ensures closeR[Xi, j−1] = QR-part[Iq
i, j−1], so

property (D.22) holds. Moreover, property (D.7) for i and j−1 and condition (A2.b) ensure ΣB-part[Ii, j] = ΣB-part[Xi, j−1];
thus, ∆m

i, j = Ji, j−1 from condition (A2.c) and ΣB-part[Ji, j−1] = ∆−i, j = ∅ ensure ΣB-part[(Ii, j \ ∆
−
i, j) ∪ ∆

m
i, j] = Σ

B-part[Xi, j−1],
so the equality in (D.23) holds; property (D.7) for i and j − 1 also ensures the remaining inclusions in property (D.23).
Finally, property (D.8) for i and j−1 and conditions (A2.b) and (A2.c) jointly ensure the first inclusion of property (D.24),
as well as fin[Iq

i, j−1] ⊆ ΣH-part[Ii, j ∪ ∆
m
i, j] ⊆ Π∞[Ei]s. Then, ∆−i, j = ∅ and ∆m

i, j ⊆ ∆
+
i, j from condition (A2.c) ensure the second

inclusion of property (D.24); in addition, ΣH-part[Ii, j ∪ ∆
m
i, j] ⊆ Π∞[Ei]s and ∆+i, j ⊆ Π∞[Ei]s from condition (A2.c) ensure

the third inclusion of property (D.24).
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• Assume that Ci, j is of type A3. For each R ∈ ΣH , property (D.18) for i and j−1 ensures closeR[Xi, j−1] = QR-part[Iq
i, j−1], so

property (D.22) holds. For (D.23), note that property (D.19) for i and j−1 ensures ΣB-part[Io
i, j−1 ∩ In

i, j−1] = ΣB-part[Xi, j−1];
moreover, ∆m

i, j = Ji, j−1 from condition (A3.f) and ΣB-part[Ji, j−1] = ∅ ensure ΣB-part[∆m
i, j] = ∅; furthermore, conditions

(A3.b), (A3.d), and (R.c) ensure ΣB-part[Ii, j \ ∆
−
i, j] = Σ

B-part[Io
i, j−1 ∩ In

i, j−1]; together, all of these observations ensure
that ΣB-part[(Ii, j \ ∆

−
i, j) ∪ ∆

m
i, j] = Σ

B-part[Io
i, j−1 ∩ In

i, j−1] = ΣB-part[Xi, j−1] holds, as required by the equality in (D.23). The
remaining ⊆ relations in (D.23) directly follow from (D.19) for i and j − 1. Next we prove property (D.24). Condi-
tions (A3.b) and (A3.d), and M ⊆ Πs, ensure ΣH-part[Ii, j \ ∆

−
i, j] ⊆ Σ

H-part[In
i, j−1]; together with the leftmost inclusion of

property (D.20) for i and j−1 and ∆m
i, j = Ji, j−1 from condition (A3.f) this ensures the leftmost inclusion of property (D.24).

Furthermore, conditions (R.c), (R.f), (A3.b), (A3.d), and (A3.f), and M ⊆ Πs ensure

ΣH-part[(Io
i, j−1 \ ∆i, j−1) ∪ Ji, j−1] ⊆ ΣH-part[(Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j];

together with property (D.20) for i and j−1 this ensures the second inclusion of property (D.24). Finally, conditions (A3.b),
(A3.d), and (R.e), and M ⊆ Πs jointly ensure ΣH-part[Ii, j \ ∆

−
i, j] ⊆ Π∞[Ei]s; together with ∆+i, j ⊆ Π∞[Ei]≤s from condi-

tion (A3.f), this ensures the rightmost inclusion of property (D.24).

We are now ready to prove that call Ci, j satisfies properties (N1) and (N4). For each R ∈ ΣH , property (D.22) ensures
extR[Iq

i, j−1, Xi, j−1] ⊆ QR-part[Iq
i, j−1]; thus, the preconditions for the AddEdges call in line 102 are satisfied.

For property (D.6), Claim 43 and the way Iq is updated in line 103 ensures closeR[Xi, j] = QR-part[Iq
i, j], as required.

We now prove property (D.7). Line 102 and Claim 43 ensure Xi, j = Xi, j−1 ∪ Σ
P-part[∆+i, j \ ∆

m
i, j]. Now for the equality of the

property, Xi, j = Xi, j−1 ∪ Σ
P-part[∆+i, j \ ∆

m
i, j] ensures ΣB-part[Xi, j] = ΣB-part[Xi, j−1] ∪ ΣB-part[∆+i, j \ ∆

m
i, j]; together with the pre-

condition ΣB-part[(Ii, j \ ∆
−
i, j) ∪ ∆

m
i, j] = Σ

B-part[Xi, j−1], we have ΣB-part[(Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j] = Σ

B-part[Xi, j], as required. Moreover,
condition (A1.a), (A2.c), or (A3.f), depending on the type of Ci, j, ensures ∆+i, j ⊆ Π∞[Ei]≤s; together with property (D.23) and
Xi, j = Xi, j−1 ∪ Σ

P-part[∆+i, j \ ∆
m
i, j], this ensures the remaining inclusions of property (D.7).

For the ⊆ direction of the equality in (D.8), consider an arbitrary fact R(u, v) ∈ fin[Iq
i, j]. By (D.3), there exists q ∈ FR such that

q(u, v) ∈ Iq
i, j holds. If q(u, v) ∈ Iq

i, j−1, then property (D.24) ensures that R(u, v) belongs to the required set. Otherwise, line 103
ensures that q(u, v) belongs to Jq; but then, line 104 ensures R(u, v) ∈ (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j ∪ Ji, j, as required. For the ⊇ direction of

the equality, consider an arbitrary fact R(u, v) ∈ ΣH-part[(Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j ∪ Ji, j]. We discuss the following three possibilities.

• R(u, v) ∈ ΣH-part[(Ii, j \ ∆
−
i, j) ∪ ∆

m
i, j]. Then, property (D.24) ensures R(u, v) ∈ fin[Iq

i, j−1] ⊆ fin[Iq
i, j].

• R(u, v) ∈ ΣH-part[∆+i, j \ ∆
−
i, j]. Since R is an unfolding of itself, automaton NR recognises R. Hence, there exists q ∈ FR such

that q ∈ δR(qR
s ,R). Moreover, line 102 and Claim 43 ensure R(u, v) ∈ ΣH-part[∆+i, j \ ∆

−
i, j] ⊆ Xi, j. Thus, q(u, v) ∈ closeR[Xi, j]

holds; but then, property (D.6) ensures q(u, v) ∈ QR-part[Iq
i, j]; together with q ∈ FR, this ensures R(u, v) ∈ fin[Iq

i, j].

• R(u, v) ∈ ΣH-part[Ji, j]. Then, lines 103 and 104 ensure R(u, v) ∈ fin[Iq
i, j].

To complete the proof of property (D.8), we prove fin[Iq
i, j] ⊆ Π∞[Ei]s. To this end, consider an arbitrary fact R(u, v) ∈ fin[Iq

i, j].
By (D.3), there exists a state q ∈ FR such that q(u, v) ∈ Iq

i, j holds. Moreover, property (D.7), line 102, and Claim 43 then en-
sure q(u, v) ∈ closeR[Xi, j] = closeR[Xi, j−1 ∪ Σ

P-part[∆+i, j \ ∆
m
i, j]]. Together with Xi, j−1 ⊆ Π∞[Ei]≤s from precondition (D.23) and

∆+i, j ⊆ Π∞[Ei]≤s, this ensures q(u, v) ∈ closeR[Π∞[Ei]≤s]. But then, our assumption on q ∈ FR and Proposition 27 ensure that we
have R(u, v) ∈ M∞[Π∞[Ei]≤s] ⊆ Π∞[Ei]s, as required.

Property (D.9) trivially holds since these sets are empty before the call and they are never updated during the call. We now
prove that Ci, j is correct. The rightmost inclusion of property (D.8) and line 104 ensure that Ji, j satisfies the upper bound. For
the lower bound, consider an arbitrary fact R(u, v) ∈ MA[Ii, j

···∆−i, j,∆
+
i, j]. Then, there exists an instance of a rule in M of the form

S 1(c0, c1) ∧ · · · ∧ S n(cn−1, cn)→ R(c0, cn) (D.25)

such that R(c0, cn) < (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j holds, and S k(ck−1, ck) ∈ (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j holds for each k with 1 ≤ k ≤ n. We prove that

for each k with 1 ≤ k ≤ n, there exist facts Rk,1(ck,0, ck,1), . . . ,Rk,mk (ck,mk−1, ck,mk ) ∈ Xi, j such that the sequence of predicates
Rk,1, . . . ,Rk,mk is an unfolding of S k, and ck,0 = ck−1 and ck,mk = ck both hold. To this end, consider arbitrary k with 1 ≤ k ≤ n.
There are two cases.

• S k ∈ Σ
H—that is, S k is a head predicate in M. Then, S k(ck−1, ck) ∈ (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j, the equality in property (D.8), and

property (D.6) ensure the required property.

• S k ∈ Σ
P \ ΣH—that is, S k is a predicate in M that never appears in the head of a rule. Then, S k(ck−1, ck) ∈ (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j

and property (D.7) ensure S k(ck−1, ck) ∈ Xi, j, and so the required property holds.
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Either way, the required property holds. The sequence of predicates R1,1, . . . ,R1,m1 , . . . ,Rn,1, . . .Rn,mn is an unfolding of R, and all
facts belong to Xi, j, so there exists q(u, v) ∈ closeR[Xi, j] such that q ∈ FR holds. Then, property (D.6) and property (D.8) ensure
R(u, v) ∈ ΣH-part[(Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j ∪ Ji, j]; together with R(u, v) < (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j, this ensures R(u, v) ∈ Ji, j.

Claim 45. If Ci, j is of the form Ji, j ··= DelM[Io
i, j, I

n
i, j
···∆−i, j,∆

+
i, j
···∆m

i, j] and

• i ≥ 1, j = 1, and call Ci−1,hi−1 satisfies properties (N1)–(N4), or

• j > 1 and call Ci, j−1 satisfies properties (N1)–(N4),

then Ci, j satisfies properties (N2) and (N4).

Proof. We first capture the preconditions for the call Ci, j by proving the following properties.

QR-part[Iq
i, j−1] ⊆ closeR[Xi, j−1] ⊆ closeR[Xi,0] = QR-part[Iq

i,0] for each R ∈ ΣH (D.26)

extR[∆q
i, j−1, Xi, j−1] ⊆ QR-part[∆q

i, j−1] ⊆ closeR[Xi,0, Io
i, j \ In

i, j] for each R ∈ ΣH (D.27)

ΣB-part[Io
i, j ∩ In

i, j] = Σ
B-part[Xi, j−1] ⊆ Xi, j−1 = Xi,0 \ (Io

i, j \ In
i, j) ⊆ Io

i, j ∩ In
i, j (D.28)

fin[closeR[Xi,0, Io
i, j \ In

i, j]] = R-part[(Io
i, j \ In

i, j) ∪ ∆
m
i, j ∪ Yi, j−1] for each R ∈ ΣH (D.29)

fin[Iq
i, j−1] = ΣH-part[In

i, j \ (∆m
i, j ∪ Yi, j−1)] ⊆ ΣH-part[In

i, j] ⊆ Σ
H-part[Io

i, j] = fin[Iq
i,0] (D.30)

Yi, j−1 ⊆ Io
i, j ∩ Π∞[Ei]≤s (D.31)

{u | there exist q and v such that q(u, v) ∈ QR-part[Iq
i,0 \ Iq

i, j−1]} ⊆ ZR
i, j−1 for each R ∈ ΣH (D.32)

Iq
i,0 \ Iq

i, j−1 ⊆ ∆
q
i, j−1, ∆

q
i, j−1 ∩ Iq

i, j−1 = ∅, and fin[∆q
i, j−1] ∩ (In

i, j \ (∆m
i, j ∪ Yi, j−1)) = ∅ (D.33)

Towards this goal, call Ci, j can be of one of the following two types.

• Assume that Ci, j is of type D1. Property (D.6) for i − 1 and hi−1 ensures property (D.26), and ∆q
i, j−1 = ∅ ensures property

(D.27). Furthermore, condition (D1.c), property (D.7) for i − 1 and hi−1, and M ⊆ Πs ensure ΣB-part[Io
i, j] = Σ

B-part[Xi, j−1];
in addition, the rightmost inclusion of (D.7) for i − 1 and hi−1 and condition (D1.d) ensure the remaining part of property
(D.28). For property (D.29), both sides of the equality are empty for each R ∈ ΣH , so the property holds. For (D.30),
property (D.8) for i − 1 and hi−1 clearly ensures fin[Iq

i, j−1] = ΣH-part[(Ii−1,hi−1 \ ∆
−
i−1,hi−1

) ∪ ∆+i−1,hi−1
∪ Ji−1,hi−1 ]; together

with M ⊆ Πs and conditions (D1.c) and (D1.b), this ensures fin[Iq
i, j−1] = ΣH-part[In

i, j]; moreover, property (D.9) ensures
Yi, j−1 = ∅, which together with ∆m

i, j = ∅ ensures fin[Iq
i, j−1] = ΣH-part[In

i, j \ (∆m
i, j ∪ Yi, j−1)], as required by the leftmost equal-

ity in (D.30); in addition, fin[Iq
i, j−1] = ΣH-part[In

i, j] and condition (D1.d) ensure fin[Iq
i, j−1] = ΣH-part[In

i, j] = Σ
H-part[Io

i, j],
so the remaining part of (D.30) holds as well. Property (D.31) trivially holds since Yi, j−1 is empty. For property (D.32),
consider an arbitrary R ∈ ΣH; property (D.9) for i − 1 and hi−1 ensures ZR

i, j−1 = ∅, and the right-hand side of the inequality
is empty as well, so the property clearly holds. Finally, property (D.33) trivially holds since ∆q

i, j−1 = Iq
i,0 \ Iq

i, j−1 = ∅.

• Assume that Ci, j is of type D2. Property (D.10) for i and j − 1 ensures (D.26). To show property (D.27), consider an
arbitrary predicate R ∈ ΣH . Inclusion extR[∆q

i, j−1, Xi, j−1] ⊆ QR-part[∆q
i, j−1] follows from property (D.11) for i and j − 1;

moreover, ∆−i, j−1 ⊆ In
i, j−1, ∆−i, j−1 ⊆ Io

i, j−1, ∆+i, j−1 ∩ Io
i, j−1 = ∅, and conditions (D1.d), (D2.b), and (D2.c) ensure

(Io
i, j−1 \ In

i, j−1) ∪ ∆−i, j−1 = Io
i, j \ In

i, j;

then, property (D.11) for i and j−1 ensures QR-part[∆q
i, j−1] ⊆ closeR[Xi,0, Io

i, j \ In
i, j], as required. For (D.28), property (D.12)

for i and j − 1 ensures ΣB-part[Io
i, j−1 ∩ (In

i, j−1 \ ∆
−
i, j−1)] = ΣB-part[Xi, j−1]; then, ∆+i, j−1 ∩ Io

i, j−1 = ∅, Io
i, j = Io

i, j−1 = Π∞[Ei−1],
and condition (D2.c) ensure ΣB-part[Io

i, j ∩ In
i, j] = Σ

B-part[Xi, j−1], as required. Property (D.12) for i and j − 1 also en-
sures Xi, j−1 = Xi,0 \ ((Io

i, j−1 \ In
i, j−1) ∪ ∆−i, j−1) = Xi,0 \ (Io

i, j \ In
i, j) ⊆ Io

i, j ∩ In
i, j, as required by the remaining part of (D.28). For

property (D.29), consider an arbitrary R ∈ ΣH . Property (D.13) for i and j − 1 ensures

fin[closeR[Xi,0, (Io
i, j−1 \ In

i, j−1) ∪ ∆−i, j−1]] = R-part[(Io
i, j−1 \ In

i, j−1) ∪ ∆−i, j−1 ∪ Ji, j−1 ∪ Yi, j−1];

together with (Io
i, j−1 \ In

i, j−1) ∪ ∆−i, j−1 = Io
i, j \ In

i, j and condition (D2.d), this ensures the required property. For (D.30), prop-
erty (D.14) for i and j − 1 ensures

fin[Iq
i, j−1] = ΣH-part[In

i, j−1 \ (∆−i, j−1 ∪ Ji, j−1 ∪ Yi, j−1)];

48



set ∆+i, j−1 contains no fact from stratum s, so we have ΣH-part[In
i, j−1 \ ∆

−
i, j−1] = ΣH-part[(In

i, j−1 \ ∆
−
i, j−1) ∪ ∆+i, j−1]; together

with conditions (D2.c) and (D2.d), these observations ensure fin[Iq
i, j−1] = ΣH-part[In

i, j \ (∆m
i, j ∪ Yi, j−1)], as required in (D.30).

Property (D.14) for i and j − 1 also ensures ΣH-part[In
i, j−1] ⊆ ΣH-part[Io

i, j−1] = fin[Iq
i,0], which together with Io

i, j = Io
i, j−1,

and ΣH-part[∆+i, j−1] = ∅, and condition (D2.c) ensures ΣH-part[In
i, j] ⊆ Σ

H-part[Io
i, j] = fin[Iq

i,0], as required by the remaining
part of (D.30). Properties (D.31) and (D.32) follow from (D.15) and (D.16) for the previous call, respectively. Finally,
∆

q
i, j−1 ⊇ Iq

i,0 \ Iq
i, j−1, ∆q

i, j−1 ∩ Iq
i, j−1 = ∅, and fin[∆q

i, j−1] ∩ (In
i, j−1 \ (∆−i, j−1 ∪ Ji, j−1 ∪ Yi, j−1)) = ∅ follow from property (D.17) for

i and j − 1; then, (D2.c) and (D2.d), and M ⊆ Πs ensure fin[∆q
i, j−1] ∩ (In

i, j \ (∆m
i, j ∪ Yi, j−1)) = ∅, as required.

This completes our proof for the preconditions of Ci, j. Next we show that Ci, j satisfies (N2) and (N4).
We first prove a property that is useful for establishing (D.10) and (D.11). In particular, we prove property (D.34) for each

R ∈ ΣH , where Jq is the value of the set after line 128.

extR[∆q
i, j−1 ∪ Jq, Xi, j−1] ⊆ QR-part[∆q

i, j−1 ∪ Jq] (D.34)

To this end, consider an arbitrary R ∈ ΣH and an arbitrary q-fact q(u, v) ∈ extR[∆q
i, j−1 ∪ Jq, Xi, j−1]. By (D.2), there exist ℓ ≥ 0,

states q0, . . . , qℓ ∈ QR, binary predicates R0, . . . ,Rℓ−1, and constants w0, . . . ,wℓ such that qℓ = q, wℓ = v, q0(u,w0) ∈ ∆q
i, j−1 ∪ Jq,

and qi+1 ∈ δ
R(qi,Ri) and Ri(wi,wi+1) ∈ Xi, j−1 for 0 ≤ i < ℓ. By induction on 0 ≤ m ≤ ℓ, we show qm(u,wm) ∈ QR-part[∆q

i, j−1 ∪ Jq];
then, for m = ℓ, this ensures q(u, v) ∈ QR-part[∆q

i, j−1 ∪ Jq]. The base case where m = 0 holds trivially. For the inductive step, con-
sider m with 0 < m ≤ ℓ such that qm−1(u,wm−1) ∈ QR-part[∆q

i, j−1 ∪ Jq]; we show that qm(u,wm) ∈ QR-part[∆q
i, j−1 ∪ Jq] holds as

well. We have two possibilities. If qm−1(u,wm−1) ∈ QR-part[∆q
i, j−1], then precondition (D.27) ensures qm(u,wm) ∈ QR-part[∆q

i, j−1].
Otherwise, we have qm−1(u,wm−1) ∈ QR-part[Jq]. Each q-fact added to Jq is also added to Q, so qm−1(u,wm−1) is added to Q at
some point during the execution of the call. Consider the execution of the loop of lines 124–128 when qm−1(u,wm−1) is extracted
from Q in line 125. Then, Rm−1(wm−1,wm) ∈ Xi, j−1 and qm ∈ δ

R(qm−1,Rm−1) satisfy the condition in line 127; hence, qm(u,wm) is
considered in line 128, which in turn ensures qm(u,wm) ∈ QR-part[∆q

i, j−1 ∪ Jq], as required.
For property (D.10), we prove QR-part[Iq

i, j] ⊆ closeR[Xi, j] for each R ∈ ΣH; then, property (D.26) ensures (D.10). To this
end, we consider an arbitrary R ∈ ΣH and an arbitrary q-fact q(u, v) ∈ QR-part[Iq

i, j], and we show that q(u, v) ∈ closeR[Xi, j] holds.
First, property (D.26) ensures q(u, v) ∈ closeR[Xi, j−1]. Then, by equation (D.1), there exist ℓ ≥ 1, states q0, . . . , qℓ ∈ QR, bi-
nary predicates R0, . . . ,Rℓ−1, constants w0, . . . ,wℓ, and an integer k with 0 ≤ k < ℓ such that q0 = qR

s , w0 = u, qℓ = q, wℓ = v,
qi+1 ∈ δ

R(qi,Ri) for i with 0 ≤ i < ℓ, and Rm(wm,wm+1) ∈ Xi, j−1 for each m with 0 ≤ m < ℓ. Assume for the sake of a contradic-
tion that q(u, v) < closeR[Xi, j] holds. Then, there exists an integer k with 0 ≤ k < ℓ such that Rk(wk,wk+1) ∈ Xi, j−1 \ Xi, j holds.
Without loss of generality, assume that k is the smallest such integer. The way X is updated in line 135 ensures Rk(wk,wk+1) ∈ ∆−i, j.
We discuss the following cases.

• k = 0. Then, Rk(wk,wk+1) ∈ ∆−i, j ensures that Rk(wk,wk+1) is considered in line 119. Then, qk+1 ∈ δ
R(qk,Rk), qk = q0 = qR

s ,
and lines 120–121 jointly ensure qk+1(w0,wk+1) ∈ QR-part[∆q

i, j−1 ∪ Jq].

• k > 0 and qk(w0,wk) ∈ QR-part[Iq
i, j−1]. Then, Rk(wk,wk+1) ∈ ∆−i, j ensures that Rk(wk,wk+1) is considered in line 119. More-

over, qk+1 ∈ δ
R(qk,Rk), qk(w0,wk) ∈ QR-part[Iq

i, j−1], and lines 120 and 122 ensure that qk+1(w0,wk+1) is considered in
line 123, which in turn ensures qk+1(w0,wk+1) ∈ QR-part[∆q

i, j−1 ∪ Jq].

• k > 0 and qk(w0,wk) < QR-part[Iq
i, j−1]. Then, qk(w0,wk) ∈ closeR[Xi, j−1] and (D.26) ensure qk(w0,wk) ∈ QR-part[Iq

i,0]; to-
gether with qk(w0,wk) < QR-part[Iq

i, j−1] and (D.33), this ensures qk(w0,wk) ∈ QR-part[∆q
i, j−1]. But then, qk+1 ∈ δ

R(qk,Rk)
and precondition (D.27) jointly ensure qk+1(w0,wk+1) ∈ QR-part[∆q

i, j−1].

Thus, qk+1(w0,wk+1) ∈ QR-part[∆q
i, j−1 ∪ Jq] holds. But then, property (D.34) for R ensures qℓ(w0,wℓ) ∈ QR-part[∆q

i, j−1 ∪ Jq],
which in turn ensures q(u, v) ∈ QR-part[∆q

i, j−1 ∪ Jq]. Together with precondition (D.33) and the way Iq is updated in line 135,
this ensures q(u, v) < QR-part[Iq

i, j], which is a contradiction. As a result, q(u, v) ∈ closeR[Xi, j] holds, as required.
For property (D.11), consider an arbitrary R ∈ ΣH . Then, line 135 ensures Xi, j ⊆ Xi, j−1 and ∆q

i, j = ∆
q
i, j−1 ∪ Jq; together with

property (D.34) for R, these ensure extR[∆q
i, j, Xi, j] ⊆ QR-part[∆q

i, j]. We prove QR-part[Jq] ⊆ closeR[Xi,0, (Io
i, j \ In

i, j) ∪ ∆
−
i, j], which

together with QR-part[∆q
i, j−1] ⊆ closeR[Xi,0, Io

i, j \ In
i, j] from precondition (D.27) and the way ∆q is updated in line 135 ensures

QR-part[∆q
i, j] ⊆ closeR[Xi,0, (Io

i, j \ In
i, j) ∪ ∆

−
i, j]. To this end, let N be the total number of iterations for the loop of lines 124–128;

let Jq
0 and Q0 be the values of Jq and Q, respectively, before the loop, and for each k with 1 ≤ k ≤ N, let Jq

k and Qk be the
values of Jq and Q, respectively, after the k-th iteration of the loop. We next prove QR-part[Jq

k ] ⊆ closeR[Xi,0, (Io
i, j \ In

i, j) ∪ ∆
−
i, j]

by induction on k; then, for k = N, we have QR-part[Jq] ⊆ closeR[Xi,0, (Io
i, j \ In

i, j) ∪ ∆
−
i, j], as required.
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• For the induction base k = 0, consider an arbitrary q-fact q(u, v) ∈ QR-part[Jq
0]. Then, q(u, v) is added to Jq

0 in line 121
or 123. In the former case, lines 119, 120, and 121 ensure q(u, v) ∈ closeR[Xi,0,∆

−
i, j] ⊆ closeR[Xi,0, (Io

i, j \ In
i, j) ∪ ∆

−
i, j]. In

the latter case, lines 119, 120, and 122 ensure that there exists q1(u,w) ∈ QR-part[Iq
i, j−1] and R1(w, v) ∈ ∆−i, j such that

q ∈ δR(q1,R1) holds; but then, QR-part[Iq
i, j−1] ⊆ closeR[Xi, j−1] from precondition (D.26) and Xi, j−1 ⊆ Xi,0 from precondi-

tion (D.28) ensure q(u, v) ∈ closeR[Xi,0,∆
−
i, j] ⊆ closeR[Xi,0, (Io

i, j \ In
i, j) ∪ ∆

−
i, j], as required.

• For the inductive step, consider arbitrary k with 1 ≤ k ≤ N such that QR-part[Jq
k−1] ⊆ closeR[Xi,0, (Io

i, j \ In
i, j) ∪ ∆

−
i, j] holds;

we show that QR-part[Jq
k ] ⊆ closeR[Xi,0, (Io

i, j \ In
i, j) ∪ ∆

−
i, j] holds as well. Consider an arbitrary q-fact q(u, v) ∈ QR-part[Jq

k ].
If q(u, v) ∈ QR-part[Jq

k−1], then the inductive assumption ensures q(u, v) ∈ closeR[Xi,0, (Io
i, j \ In

i, j) ∪ ∆
−
i, j]. Otherwise, q(u, v)

is added to Jq
k in line 128 during the k-th iteration of the loop. Then, lines 125 and 127 ensure that there exist a

q-fact q1(u,w) ∈ QR-part[Qk−1] and R1(w, v) ∈ Xi, j−1 ⊆ Xi,0 such that q ∈ δR(q1,R1) holds. Each q-fact added to Qk−1

is also added to Jq
k−1, so by the inductive assumption we have q1(u,w) ∈ closeR[Xi,0, (Io

i, j \ In
i, j) ∪ ∆

−
i, j], which ensures

q(u, v) ∈ closeR[Xi,0, (Io
i, j \ In

i, j) ∪ ∆
−
i, j], as required.

For property (D.12), we first prove ΣB-part[Io
i, j ∩ (In

i, j \ ∆
−
i, j)] = Σ

B-part[Xi, j]. For the ⊆ direction, consider an arbitrary fact
R(u, v) ∈ ΣB-part[Io

i, j ∩ (In
i, j \ ∆

−
i, j)]; then, R(u, v) ∈ ΣB-part[Io

i, j ∩ In
i, j] and precondition (D.28) ensure R(u, v) ∈ ΣB-part[Xi, j−1]; to-

gether with R(u, v) < ∆−i, j this ensures R(u, v) ∈ ΣB-part[Xi, j−1 \ ∆
−
i, j]; then, line 135 ensures R(u, v) ∈ ΣB-part[Xi, j], as required.

For the ⊇ direction, consider an arbitrary fact R(u, v) ∈ ΣB-part[Xi, j]; then, the way X is updated in line 135 and precondi-
tion (D.28) ensure R(u, v) ∈ ΣB-part[Xi, j−1] ⊆ ΣB-part[Io

i, j ∩ In
i, j]; line 135 also ensures R(u, v) < ∆−i, j, so ΣB-part[Io

i, j ∩ (In
i, j \ ∆

−
i, j)]

holds, as required. The remaining part of (D.12) also follows from precondition (D.28) and the way X is updated in line 135.
Next, we prove property (D.13). Consider an arbitrary R ∈ ΣH . For the ⊆ direction, consider an arbitrary fact R(u, v)

such that R(u, v) ∈ fin[closeR[Xi,0, (Io
i, j \ In

i, j) ∪ ∆
−
i, j]]. Then, by (D.1) and (D.2), there exist ℓ ≥ 1, states q0, . . . , qℓ ∈ QR with

qℓ ∈ FR, binary predicates R0, . . . ,Rℓ−1, constants w0, . . . ,wℓ, and an integer k with 0 ≤ k < ℓ such that q0 = qR
s , w0 = u, wℓ = v,

qi+1 ∈ δ
R(qi,Ri) for 0 ≤ i < ℓ, and Rk(wk,wk+1) ∈ (Io

i, j \ In
i, j) ∪ ∆

−
i, j and Rm(wm,wm+1) ∈ Xi,0 for 0 ≤ m < ℓ and m , k. We prove

that for each m with 0 ≤ m < ℓ, there exist facts {Rm,0(cm,0, cm,1), . . . ,Rm,nm−1(cm,nm−1, cm,nm )} ⊆ Xi,0 such that the sequence of
predicates Rm,0 · · ·Rm,nm−1 is an unfolding of Rm, and cm,0 = wm and cm,nm = wm+1 hold. Note that this property trivially holds for
each m with 0 ≤ m < ℓ and m , k. For m = k, we discuss the following two possibilities. If Rk ∈ Σ

B, then it is straightforward
to see that Rk(wk,wk+1) ∈ ΣB-part[(Io

i, j \ In
i, j) ∪ ∆

−
i, j] ⊆ Σ

B-part[Io
i, j] = Σ

B-part[Xi,0] holds, where the last equality follows either
from property (D.7) for i − 1 and hi−1 or from the same property for the previous call. Otherwise, we have Rk ∈ Σ

H , so the
last equality in (D.30) and the last equality in (D.26) ensure the required property. Now Rm,0 · · ·Rm,nm−1 is an unfolding of Rm

for each m, and R0 · · ·Rℓ−1 is an unfolding of R, sequence R0,0 · · ·R0,n0−1 · · ·Rm · · ·Rℓ−1,0 · · ·Rℓ−1,nℓ−1−1 is clearly an unfolding
of R for each 0 ≤ m < ℓ; moreover, Rm,t(cm,t, cm,t+1) ∈ Xi,0 holds for each 0 ≤ m < ℓ and 0 ≤ t < nm. These observations ensure
R(u, v) ∈ fin[closeR[Xi,0]], so preconditions (D.26) and (D.30) ensure R(u, v) ∈ R-part[Io

i, j]. We have the following possibilities.

• There exists m with 0 ≤ m < ℓ such that Rm(wm,wm+1) ∈ (Io
i, j \ In

i, j) ∪ ∆
m
i, j ∪ Yi, j−1 holds. If Rm ∈ Σ

B, then Rm(wm,wm+1)
cannot be an element of ∆m

i, j ∪ Yi, j−1 since ∆m
i, j and Yi, j−1 only contain derived facts. Thus, we have Rm(wm,wm+1) ∈ Io

i, j \ In
i, j;

together with the fact that R0,0 · · ·R0,n0−1 · · ·Rm · · ·Rℓ−1,0 · · ·Rℓ−1,nℓ−1−1 is an unfolding of R and that the relevant facts are
all in Xi,0 this ensures R(u, v) ∈ fin[closeR[Xi,0, Io

i, j \ In
i, j]]; but then, precondition (D.29) ensures that R(u, v) belongs to

the required set. Otherwise, we have Rm ∈ Σ
H , so precondition (D.29) ensures Rm(wm,wm+1) ∈ fin[closeR[Xi,0, Io

i, j \ In
i, j]],

which in turn ensures R(u, v) ∈ fin[closeR[Xi,0, Io
i, j \ In

i, j]]; hence, R(u, v) belongs to the required set in this case as well.

• There exists no m with 0 ≤ m < ℓ such that Rm(wm,wm+1) ∈ (Io
i, j \ In

i, j) ∪ ∆
m
i, j ∪ Yi, j−1 holds. Thus, for each m with 0 ≤ m < ℓ

and m , k, we have Rm(wm,wm+1) ∈ Xi,0 \ (Io
i, j \ In

i, j), and so precondition (D.28) ensures Rm(wm,wm+1) ∈ Xi, j−1. Moreover,
Rk(wk,wk+1) ∈ (Io

i, j \ In
i, j) ∪ ∆

−
i, j and Rk(wk,wk+1) < (Io

i, j \ In
i, j) ∪ ∆

m
i, j ∪ Yi, j−1 ensure Rk(wk,wk+1) ∈ ∆−i, j \ (∆m

i, j ∪ Yi, j−1). We
have the following possibilities.

– k = 0. Then, Rk(wk,wk+1) ∈ ∆−i, j \ (∆m
i, j ∪ Yi, j−1) ensures that fact Rk(wk,wk+1) is considered in line 119. More-

over, qk+1 ∈ δ
R(qk,Rk), qk = q0 = qR

s , and lines 120–121 ensure qk+1(w0,wk+1) ∈ QR-part[∆q
i, j−1 ∪ Jq]. Together with

qi+1 ∈ δ
R(qi,Ri) for 0 ≤ i < ℓ, qℓ ∈ FR, and precondition (D.27), this ensures that qℓ(u, v) ∈ FR-part[∆q

i, j−1 ∪ Jq]
holds. If qℓ(u, v) ∈ FR-part[∆q

i, j−1], then R(u, v) ∈ fin[∆q
i, j−1]; by (D.33), we have R(u, v) < In

i, j \ (∆m
i, j ∪ Yi, j−1); together

with R(u, v) ∈ Io
i, j, this ensures R(u, v) ∈ (Io

i, j \ In
i, j) ∪ ∆

m
i, j ∪ Yi, j−1, which is a subset of (Io

i, j \ In
i, j) ∪ ∆

−
i, j ∪ Ji, j ∪ Yi, j.

Otherwise, we have qℓ(u, v) ∈ FR-part[Jq], and so R(u, v) is considered in line 132. If it passes the check, lines 133
and 134 ensure R(u, v) ∈ Ji, j ∪ Yi, j; if R(u, v) does not pass the check, then R(u, v) < In

i, j \ (∆−i, j ∪ Ji, j ∪ Yi, j) holds,
which together with R(u, v) ∈ Io

i, j ensures R(u, v) ∈ (Io
i, j \ In

i, j) ∪ ∆
−
i, j ∪ Ji, j ∪ Yi, j, as required.
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– k > 0 and qk(w0,wk) ∈ QR-part[Iq
i, j−1]. Then, Rk(wk,wk+1) ∈ ∆−i, j \ (∆m

i, j ∪ Yi, j−1) ensures that fact Rk(wk,wk+1) is con-
sidered in line 119. Moreover, qk+1 ∈ δ

R(qk,Rk), qk(w0,wk) ∈ QR-part[Iq
i, j−1], and lines 120 and 122 ensure that

qk+1(w0,wk+1) is considered in line 123, which in turn ensures qk+1(w0,wk+1) ∈ QR-part[∆q
i, j−1 ∪ Jq]. In the same

way as in the first case, we have qℓ(u, v) ∈ FR-part[∆q
i, j−1 ∪ Jq]. Then, in the same way as in the previous case, we

have R(u, v) ∈ (Io
i, j \ In

i, j) ∪ ∆
−
i, j ∪ Ji, j ∪ Yi, j, as required.

– k > 0 and qk(w0,wk) < QR-part[Iq
i, j−1]. Then, qk(w0,wk) ∈ closeR[Xi, j−1] and (D.26) imply qk(w0,wk) ∈ QR-part[Iq

i,0];
by (D.33) we have qk(w0,wk) ∈ QR-part[∆q

i, j−1]; then, precondition (D.27) ensures qk(w0,wk) ∈ closeR[Xi,0, Io
i, j \ In

i, j].
Hence, by (D.1), there exist k′ ≥ 1, states q′0, . . . , q

′
k′ ∈ QR, predicates P0, . . . , Pk′−1, constants v0, . . . , vk′ , and an in-

teger t with 0 ≤ t < k′ such that q′0 = qR
s , q′k′ = qk, v0 = w0, vk′ = wk, q′i+1 ∈ δ

R(q′i , Pi) for each i with 0 ≤ i < k′, and
Pt(vt, vt+1) ∈ Io

i, j \ In
i, j and Pm(vm, vm+1) ∈ Xi,0 for 0 ≤ m < k′ and m , t. Then, q′0 = qR

s , q′i+1 ∈ δ
R(q′i , Pi) for each i

with 0 ≤ i < k′, q′k′ = qk, qi+1 ∈ δ
R(qi,Ri) for k ≤ i < ℓ, and qℓ ∈ FR ensure that NR recognises P0 · · · Pk′−1Rk · · ·Rℓ−1.

Hence, sequence P0 · · · Pk′−1Rk · · ·Rℓ−1 is unfolding of R; since Rk,0 · · ·Rk,nk−1 is an unfolding of Rk, sequence
P0 · · · Pk′−1Rk,0 · · ·Rk,nk−1Rk+1 · · ·Rℓ−1 is an unfolding of R, and so NR must recognise this sequence. Thus, there exist
integer n and states q′′0 , . . . , q

′′
n ∈ QR with q′′n ∈ FR such that n = k′ + nk + (ℓ − k − 1), q′′i+1 ∈ δ

R(q′′i , Pi) for each inte-
ger i with 0 ≤ i < k′, q′′i+1 ∈ δ

R(q′′i ,Rk,i−k′ ) for each integer i with k′ ≤ i < k′ + nk, and finally q′′i+1 ∈ δ
R(q′′i ,Ri−k′−nk+k+1)

for each integer i with k′ + nk ≤ i < n. By Pt(vt, vt+1) ∈ Io
i, j \ In

i, j, Pm(vm, vm+1) ∈ Xi,0 for 0 ≤ m < k′ and m , t, we have
q′′k′ (w0,wk) = q′′k′ (v0, vk′ ) ∈ closeR[Xi,0, Io

i, j \ In
i, j]. Then, {Rk,0(ck,0, ck,1), . . . ,Rk,nk−1(ck,nk−1, ck,nk )} ⊆ Xi,0, ck,0 = wk, and

ck,nk = wk+1 imply q′′k′+nk
(w0,wk+1) ∈ closeR[Xi,0, Io

i, j \ In
i, j]. Finally, {Rk+1(wk+1,wk+2), . . . ,Rℓ−1(wℓ−1,wℓ)} ⊆ Xi,0 en-

sures q′′n (u, v) ∈ closeR[Xi,0, Io
i, j \ In

i, j]; together with q′′n ∈ FR this ensures R(u, v) ∈ fin[closeR[Xi,0, Io
i, j \ In

i, j]]; by pre-
condition (D.29), fact R(u, v) belongs to the required set.

This completes our proof of the ⊆ direction of the property. For the ⊇ direction, consider an arbitrary fact R(u, v) such
that R(u, v) ∈ R-part[(Io

i, j \ In
i, j) ∪ ∆

−
i, j ∪ Ji, j ∪ Yi, j]. If R(u, v) ∈ R-part[(Io

i, j \ In
i, j) ∪ ∆

m
i, j ∪ Yi, j−1], then precondition (D.29) ensures

R(u, v) ∈ fin[closeR[Xi,0, Io
i, j \ In

i, j]] ⊆ fin[closeR[Xi,0, (Io
i, j \ In

i, j) ∪ ∆
−
i, j]], as required. Otherwise, it is straightforward to see that

R(u, v) ∈ R-part[(∆−i, j \ ∆
m
i, j) ∪ Ji, j ∪ (Yi, j \ Yi, j−1)] holds, and we discuss the following two cases.

• R(u, v) ∈ R-part[∆−i, j \ ∆
m
i, j]. Then, since R is an unfolding of itself, there exists a state q ∈ FR such that q ∈ δR(qR

s ,R)
holds; hence, we have q(u, v) ∈ closeR[Xi,0,∆

−
i, j \ ∆

m
i, j] ⊆ closeR[Xi,0, (Io

i, j \ In
i, j) ∪ ∆

−
i, j]; together with q ∈ FR, this ensures

R(u, v) ∈ fin[closeR[Xi,0, (Io
i, j \ In

i, j) ∪ ∆
−
i, j]], as required.

• R(u, v) ∈ R-part[Ji, j ∪ (Yi, j \ Yi, j−1)]. Then, R(u, v) must be considered in line 132 so, due to line 129, there exists q ∈ FR

such that q(u, v) ∈ Jq holds. Therefore, line 135 ensures q(u, v) ∈ ∆q
i, j, and so q ∈ FR and property (D.11) ensure that

R(u, v) ∈ fin[closeR[Xi,0, (Io
i, j \ In

i, j) ∪ ∆
−
i, j]] holds, as required.

To see that property (D.14) holds, we prove fin[Iq
i, j] = Σ

H-part[In
i, j \ (∆−i, j ∪ Ji, j ∪ Yi, j)]; the rest of property (D.14) follows

directly from precondition (D.30). For the ⊆ direction, we prove ΣH-part[(∆−i, j \ ∆
m
i, j) ∪ Ji, j ∪ (Yi, j \ Yi, j−1)] ⊆ fin[∆q

i, j−1 ∪ Jq];
then, preconditions (D.30) and (D.33), and line 135 ensure fin[Iq

i, j] ⊆ Σ
H-part[In

i, j \ (∆−i, j ∪ Ji, j ∪ Yi, j)]. To this end, consider an
arbitrary fact R(u, v) ∈ ΣH-part[(∆−i, j \ ∆

m
i, j) ∪ Ji, j ∪ (Yi, j \ Yi, j−1)]. If R(u, v) ∈ ΣH-part[∆−i, j \ ∆

m
i, j], then R(u, v) is considered in

line 119; moreover, R is an unfolding of itself, so NR recognises R—that is, there exists q ∈ FR such that q ∈ δR(qR
s ,R) holds; but

then, lines 120 and 121 ensure q(u, v) ∈ FR-part[∆q
i, j−1 ∪ Jq], as required. If R(u, v) ∈ ΣH-part[Ji, j ∪ (Yi, j \ Yi, j−1)], then the fact is

considered in either line 133 or line 134; either way, l ines 129–132 ensure R(u, v) ∈ fin[Jq], as required. For the ⊇ direction (i.e.,
ΣH-part[In

i, j \ (∆−i, j ∪ Ji, j ∪ Yi, j)] ⊆ fin[Iq
i, j]), consider an arbitrary fact R(u, v) ∈ ΣH-part[In

i, j \ (∆−i, j ∪ Ji, j ∪ Yi, j)]; then, ∆m
i, j ⊆ ∆

−
i, j,

Yi, j−1 ⊆ Yi, j, and precondition (D.30) ensure R(u, v) ∈ fin[Iq
i, j−1]. Assume for the sake of a contradiction that R(u, v) ∈ fin[Jq] holds.

Then, there exists q ∈ FR such that q(u, v) ∈ Jq holds, and so lines 129 and 130 ensure that R(u, v) is considered in line 132; our
assumption R(u, v) ∈ ΣH-part[In

i, j \ (∆−i, j ∪ Ji, j ∪ Yi, j)] ensures that R(u, v) passes the check in line 132; hence, R(u, v) is added
either to Y in line 133 or to J in line 134, which is a contradiction. Therefore, R(u, v) < fin[Jq] holds, and so R(u, v) ∈ fin[Iq

i, j−1]
and line 135 ensure R(u, v) ∈ fin[Iq

i, j], as required.
For property (D.15), consider an arbitrary fact R(u, v) ∈ Yi, j. If R(u, v) ∈ Yi, j−1, then (D.31) ensures R(u, v) ∈ Io

i, j ∩ Π∞[Ei]≤s,
as required. Otherwise, we have R(u, v) ∈ Yi, j \ Yi, j−1, and so R(u, v) is added to Y in line 133. Since the oracle function returns
true, we clearly have R(u, v) ∈ Π∞[Ei]; line 130 ensures R ∈ ΣH , and so M ⊆ Πs ensures R(u, v) ∈ Π∞[Ei]≤s. Moreover, line 132
ensures R(u, v) ∈ ΣH-part[In

i, j], which together with ΣH-part[In
i, j] ⊆ Σ

H-part[Io
i, j] from precondition (D.30) ensures R(u, v) ∈ Io

i, j.
For property (D.16), consider arbitrary R ∈ ΣH and u for which there exist q and v such that q(u, v) ∈ QR-part[Iq

i,0 \ Iq
i, j]. If

q(u, v) ∈ QR-part[Iq
i,0 \ Iq

i, j−1], then precondition (D.32) ensures u ∈ ZR
i, j−1 ⊆ ZR

i, j. Otherwise, q(u, v) ∈ QR-part[Iq
i, j−1 \ Iq

i, j] holds,
so line 135 ensures q(u, v) ∈ QR-part[Jq]. As a result, lines 129–131 ensure u ∈ ZR

i, j, as required.
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For property (D.17), properties ∆q
i, j ⊇ Iq

i,0 \ Iq
i, j and ∆q

i, j ∩ Iq
i, j = ∅ clearly follow from precondition (D.33) and the way Iq and

∆q are updated in line 135. To see that fin[∆q
i, j] ∩ (In

i, j \ (∆−i, j ∪ Ji, j ∪ Yi, j)) = ∅ holds, consider an arbitrary fact R(u, v) ∈ fin[∆q
i, j].

If R(u, v) ∈ fin[∆q
i, j−1], then precondition (D.33) ensures R(u, v) < In

i, j \ (∆m
i, j ∪ Yi, j−1); together with ∆m

i, j ⊆ ∆
−
i, j and Yi, j−1 ⊆ Yi, j this

ensures R(u, v) < In
i, j \ (∆−i, j ∪ Ji, j ∪ Yi, j), as required. Otherwise, we have R(u, v) ∈ fin[Jq], and so R(u, v) must be considered in

line 132, which clearly ensures R(u, v) < In
i, j \ (∆−i, j ∪ Ji, j ∪ Yi, j).

Finally, we show that Ci, j is correct. To see that Ji, j satisfies the upper bound, consider an arbitrary fact R(u, v) ∈ Ji, j.
Then, lines 130 and 132 ensure R(u, v) ∈ ΣH-part[In

i, j \ ∆
−
i, j]; together with ΣH-part[In

i, j] ⊆ Σ
H-part[Io

i, j] from property (D.14), this
ensures R(u, v) ∈ ΣH-part[Io

i, j]; moreover, M ⊆ Πs ensures R(u, v) ∈ Os; thus, we have R(u, v) ⊆ Io
i, j ∩ Os ∩ ((In

i, j \ ∆
−
i, j) ∪ ∆

+
i, j), as

required. To show that Ji, j also satisfies the lower bound, consider an arbitrary fact R(u, v) ∈ MD[Io
i, j, I

n
i, j
···∆−i, j,∆

+
i, j] \ Π∞[Ei].

Then, there exists an instance of a rule in M of the form

S 1(c0, c1) ∧ · · · ∧ S n(cn−1, cn)→ R(c0, cn) (D.35)

such that u = c0, v = cn, R(c0, cn) ∈ (In
i, j \ ∆

−
i, j) ∪ ∆

+
i, j, S m(cm−1, cm) ∈ Io

i, j ∩ In
i, j holds for each m with 1 ≤ m ≤ n, and there exists

k with 1 ≤ k ≤ n such that S k(ck−1, ck) < (In
i, j \ ∆

−
i, j) ∪ ∆

+
i, j holds. Then, properties S k(ck−1, ck) < In

i, j and S k(ck−1, ck) < In
i, j \ ∆

−
i, j

ensure S k(ck−1, ck) ∈ ∆−i, j. Next we prove that, for each m with 1 ≤ m ≤ n and m , k, there exist a total number of ℓm facts
Rm,1(cm,0, cm,1), . . . ,Rm,ℓm (cm,ℓm−1, cm,ℓm ) ∈ Xi,0 such that the sequence of predicates Rm,1 · · ·Rm,ℓm is an unfolding of S m, and
cm,0 = cm−1 and cm,ℓm = cm both hold. To this end, consider arbitrary m with 1 ≤ m ≤ n. There are two cases.

• S m ∈ Σ
H—that is, S m is a head predicate in M. Then, S m(cm−1, cm) ∈ Io

i, j, the rightmost equality in (D.14), and the rightmost
equality in (D.10) ensure that there exists state q ∈ FR such that q(u, v) ∈ closeR[Xi,0], so the required property holds.

• S m ∈ Σ
B—that is, S m is a predicate in M but it does not appear in the head of any rule. Then, S m(cm−1, cm) ∈ ΣB-part[Io

i, j]
ensures S m(cm−1, cm) ∈ Xi,0; hence, the required property holds as well since S m is an unfolding of itself.

Since S 1 · · · S n is an unfolding of R and, for each m with 1 ≤ m ≤ n and m , k, sequence Rm,1 · · ·Rm,ℓm is an unfolding of
S m, it is straightforward to see that sequence R1,1 · · ·R1,ℓ1 · · ·Rk−1,1 · · ·Rk−1,ℓk−1 S kRk+1,1 · · ·Rk+1,ℓk+1 · · ·Rn,1 · · ·Rn,ℓn is an unfolding
of R. Hence, NR recognises this sequence; moreover, {Rm,1(cm,0, cm,1), . . . ,Rm,ℓm (cm,ℓm−1, cm,ℓm )} ⊆ Xi,0 holds for each m with
1 ≤ m ≤ n and m , k, and S k(ck−1, ck) ∈ ∆−i, j holds; jointly we have R(u, v) ∈ fin[closeR[Xi,0,∆

−
i, j]]. But then, property (D.13)

ensures R(u, v) ∈ (Io
i, j \ In

i, j) ∪ ∆
−
i, j ∪ Ji, j ∪ Yi, j; moreover, ∆+i, j contains no fact from stratum s, so R(u, v) ∈ (In

i, j \ ∆
−
i, j) ∪ ∆

+
i, j ensures

R(u, v) ∈ In
i, j \ ∆

−
i, j; furthermore, R(u, v) < Π∞[Ei] ensures R(u, v) < Yi, j; together, we have R(u, v) ∈ Ji, j, as required.

Claim 46. If call Ci, j is of type (R) and call Ci, j−1 satisfies properties (N1)–(N4), then call Ci, j satisfies properties (N3) and (N4).

Proof. For property (D.18), we show that QR-part[Iq
i, j−1] ∪ extR[Q, Xi, j−1] = closeR[Xi, j−1] and extR[B, Xi, j−1] ⊆ QR-part[Iq

i, j−1]
hold for each R ∈ ΣH , where Q and B are the values of the second and third arguments, respectively, of the AddEdges call made
in line 140. Then, Claim 43 and the way Iq is updated in line 141 jointly ensure property (D.18). Consider an arbitrary R ∈ ΣH .
Property extR[B, Xi, j−1] ⊆ QR-part[Iq

i, j−1] trivially holds since B is empty. Next we show that (D.36) holds.

QR-part[Iq
i, j−1] ∪ extR[Q, Xi, j−1] = closeR[Xi, j−1] (D.36)

For the ⊆ direction, property (D.10) holds for i and j−1 by the inductive assumption, so we have QR-part[Iq
i, j−1] ⊆ closeR[Xi, j−1];

moreover, lines 138–139 ensure QR-part[Q] ⊆ closeR[Xi, j−1], so we have extR[Q, Xi, j−1] ⊆ closeR[Xi, j−1]. Consequently, the ⊆
direction of (D.36) holds. For the ⊇ direction, we prove closeR[Xi, j−1] \ QR-part[Iq

i, j−1] ⊆ extR[Q, Xi, j−1]. To this end, consider
an arbitrary q(u, v) ∈ closeR[Xi, j−1] \ QR-part[Iq

i, j−1]. Then, by (D.1), there exist facts {R0(w0,w1), . . . ,Rℓ−1(wℓ−1,wℓ)} ⊆ Xi, j−1

such that u = w0 and v = wℓ, and states {q0, . . . , qℓ} ⊆ QR such that qR
s = q0 and q = qℓ, and qi+1 ∈ δ

R(qi,Ri) for 0 ≤ i < ℓ.
Moreover, properties (D.10) and (D.12) for i and j − 1 ensure q(u, v) ∈ QR-part[Iq

i,0 \ Iq
i, j−1]; together with (D.16) for i and j − 1,

this ensures u ∈ ZR
i, j−1. Hence, the conditions in line 138 are satisfied, and q1(w0,w1) is added to Q in line 139. Together with

Ri(wi,wi+1) ∈ Xi, j−1 and qi+1 ∈ δ
R(qi,Ri) for 1 ≤ i < ℓ this ensures q(u, v) = qℓ(w0,wℓ) ∈ extR[Q, Xi, j−1], as required.

Next, we prove that property (D.19) holds. Property (D.12) holds for i and j − 1 by the inductive assumption, so we clearly
have ΣB-part[Io

i, j−1 ∩ (In
i, j−1 \ ∆

−
i, j−1)] = ΣB-part[Xi, j−1] ⊆ Xi, j−1 ⊆ Io

i, j−1 ∩ (In
i, j−1 \ ∆

−
i, j−1). Call Ci, j−1 is of type (D1) or (D2); either

way, ∆+i, j−1 is disjoint from Io
i, j−1, and so we have ΣB-part[Io

i, j−1 ∩ ((In
i, j−1 \ ∆

−
i, j−1) ∪ ∆+i, j−1)] = ΣB-part[Xi, j−1]; moreover, condi-

tions (D1.d), (D2.b), and (R.c) ensure Io
i, j = Io

i, j−1; together with condition (R.d), this ensures ΣB-part[Io
i, j ∩ In

i, j] = Σ
B-part[Xi, j−1];

furthermore, line 140 and Claim 43 ensure Xi, j = Xi, j−1 ∪ Yi, j−1, but Yi, j−1 contains only derived facts, so it is straightforward to
see that ΣB-part[Xi, j] = ΣB-part[Xi, j−1] holds; putting it all together, we have ΣB-part[Io

i, j ∩ In
i, j] = Σ

B-part[Xi, j], as required in
(D.19). Finally, we prove Xi, j ⊆ Π∞[Ei]≤s. To this end, Xi, j−1 ⊆ Io

i, j−1 ∩ (In
i, j−1 \ ∆

−
i, j−1) and condition (R.d) ensure Xi, j−1 ⊆ In

i, j;
set Xi, j−1 contains only facts from stratum s or lower, so condition (R.e) ensures Xi, j−1 ⊆ Π∞[Ei]≤s; moreover, Yi, j−1 ⊆ Π∞[Ei]≤s

holds by property (D.15) for i and j − 1; thus, we have Xi, j = Xi, j−1 ∪ Yi, j−1 ⊆ Π∞[Ei]≤s, as required.
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For the leftmost inclusion of (D.20), we consider an arbitrary fact R(u, v) ∈ ΣH-part[In
i, j ∪ Ji, j] and consider the following

possibilities.

• R(u, v) ∈ ΣH-part[In
i, j \ Yi, j−1]. Then, condition (R.d) ensures R(u, v) ∈ ΣH-part[((In

i, j−1 \ ∆
−
i, j−1) ∪ ∆+i, j−1) \ Yi, j−1]; predicate

R belongs to stratum s, and ∆+i, j−1 contains no fact from stratum s, so we have R(u, v) ∈ ΣH-part[In
i, j−1 \ (∆−i, j−1 ∪ Yi, j−1)];

together with condition (R.b), this ensures R(u, v) ∈ ΣH-part[In
i, j−1 \ (∆−i, j−1 ∪ Ji, j−1 ∪ Yi, j−1)]. Property (D.14) holds for i

and j − 1 by the inductive assumption, so we have R(u, v) ∈ fin[Iq
i, j−1]; then, the way Iq is updated in line 141 ensures

R(u, v) ∈ fin[Iq
i, j], as required.

• R(u, v) ∈ ΣH-part[Yi, j−1]. Since R is an unfolding of itself, automaton NR recognises R. Hence, there exists q ∈ FR such
that q ∈ δR(qR

s ,R). Moreover, line 140 and Claim 43 jointly ensure R(u, v) ∈ ΣH-part[Yi, j−1] ⊆ ΣH-part[Xi, j]. Consequently,
we have q(u, v) ∈ closeR[Xi, j]; but then, property (D.18) ensures q(u, v) ∈ QR-part[Iq

i, j]; together with q ∈ FR, this ensures
R(u, v) ∈ fin[Iq

i, j], as required.

• R(u, v) ∈ ΣH-part[Ji, j]. Then, line 142 ensures R(u, v) ∈ fin[Iq
i, j], as required.

For the second inclusion of (D.20), consider an arbitrary fact R(u, v) such that there exists q(u, v) ∈ FR-part[Iq
i, j]. Then, prop-

erty (D.18) and Claim 43 ensure q(u, v) ∈ closeR[Xi, j] = closeR[Xi, j−1 ∪ Yi, j−1]. Together with properties (D.12) and (D.15) for i
and j−1, we have q(u, v) ∈ closeR[Π∞[Ei−1]≤s]. Then, q ∈ FR and Proposition 27 ensure R(u, v) ∈ M∞[Π∞[Ei−1]≤s] ⊆ Π∞[Ei−1];
together with condition (R.c), we have R(u, v) ∈ Io

i, j. Now if R(u, v) < ∆i, j, then fact R(u, v) clearly belongs to the required set.
Otherwise, R(u, v) ∈ ∆i, j, q(u, v) ∈ FR-part[Iq

i, j], and line 142 ensure R(u, v) ∈ Ji, j.
For the third inclusion of (D.20), consider an arbitrary fact R(u, v) ∈ ΣH-part[(Io

i, j \ ∆i, j) ∪ Ji, j]. If R(u, v) ∈ ΣH-part[Io
i, j \ ∆i, j],

then M ⊆ Πs and conditions (R.c), (R.e), and (R.f) ensure R(u, v) ∈ Π∞[Ei]s. Otherwise, we have R(u, v) ∈ ΣH-part[Ji, j]; then,
due to line 142, there exists q(u, v) ∈ FR-part[Iq

i, j]. Property (D.18) ensures q(u, v) ∈ closeR[Xi, j], which together with the right-
most inclusion of (D.19) ensures q(u, v) ∈ closeR[Π∞[Ei]≤s]. In the same way as above, we have R(u, v) ∈ Π∞[Ei]s, as required.

Property (D.21) trivially holds due to line 141. We next prove that Ci, j is correct. Property (D.20) ensures Ji, j ⊆ Π∞[Ei]s;
moreover, line 142 ensures Ji, j ⊆ ∆i, j, which together with condition (R.f) ensures Ji, j ∩ In

i, j = ∅; hence, Ji, j ⊆ Π∞[Ei]s \ In
i, j holds,

and so Ji, j satisfies the upper bound. For the lower bound, consider an arbitrary fact R(u, v) ∈ MR[Io
i, j, I

n
i, j
···∆i, j]. Then, there exists

an instance of a rule in Πrch of the form

S 1(c0, c1) ∧ · · · ∧ S n(cn−1, cn)→ R(c0, cn) (D.37)

such that u = c0, v = cn, R(c0, cn) ∈ ∆i, j, and S k(ck−1, ck) ∈ Io
i, j ∩ In

i, j holds for each k with 1 ≤ k ≤ n. We prove that, for each k
with 1 ≤ k ≤ n, there exist facts {Rk,1(ck,0, ck,1), . . . ,Rk,mk (ck,mk−1, ck,mk )} ⊆ Xi, j such that the sequence of predicates Rk,1, . . . ,Rk,mk

is an unfolding of S k, and ck,0 = ck−1 and ck,mk = ck both hold. To this end, consider arbitrary k with 1 ≤ k ≤ n. We have the
following two cases.

• S k ∈ Σ
H—that is, S k is a head predicate in M. Then, S k(ck−1, ck) ∈ In

i, j, the leftmost inclusion of property (D.20), and
property (D.18) ensure the required property.

• S k ∈ Σ
B—that is, S k is a predicate in M but it does not appear in the head of any rule. Then, S k(ck−1, ck) ∈ ΣB-part[Io

i, j ∩ In
i, j]

and property (D.19) ensure S k(ck−1, ck) ∈ Xi, j. Since S k is an unfolding of itself, the required property holds.

Since the sequence of predicates R1,1, . . . ,R1,m1 , . . . ,Rn,1, . . .Rn,mn is an unfolding of R and all the facts belong to Xi, j, there exists
q(u, v) ∈ closeR[Xi, j] such that q ∈ FR holds. Then, property (D.18) ensures q(u, v) ∈ FR-part[Iq

i, j]; together with R(u, v) ∈ ∆i, j

and line 142, this ensures R(u, v) ∈ Ji, j, as required.

Appendix E. Proof of Theorem 33

Theorem 33. Functions Addseq(P,R,<), Delseq(P,R,<), and Redseq(P,R,<) are correct.

Consider an arbitrary unary predicate P, binary predicates R and <, program Π, stratification λ of Π, stratum index s such that
seq(P,R, <) ⊆ Πs, sequence of datasets E0, . . . , Em of datasets, and a call history H for seq(P,R, <) that is compatible with Π, λ,
s and E0, . . . , Em. We assume that H is of the form as specified in Definition 12. We also assume that the implicit assumptions
from Definition 32 are satisfied; this clearly ensures that R and < do not occur in a rule head in Π \ seq(P,R, <). Also, for λ to
be a valid stratification, predicates P and < must be assigned to a stratum with index less than s. For each 0 ≤ i ≤ m and each
1 ≤ j ≤ hi, let S P

i, j be the values of S P after call Ci, j. Furthermore, we define S P
0,0 = ∅ and, for 1 ≤ i ≤ m, we let S P

i,0 = S P
i−1,hi−1

.
Finally, to simplify the notation, let M = seq(P,R, <) for the rest of this section.

We prove Theorem 33 by showing that, for each 0 ≤ i ≤ m and each 1 ≤ j ≤ hi, call Ci, j in H satisfies properties (N1)–(N3).
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(N1) If call Ci, j is of the form Ji, j ··= AddM[Ii, j
···∆−i, j,∆

+
i, j
···∆m

i, j], then the following property holds.

S P
i, j = {b | P(b) ∈ Π∞[Ei]} (E.1)

(N2) If call Ci, j is of the form Ji, j ··= DelM[Io
i, j, I

n
i, j
···∆−i, j,∆

+
i, j
···∆m

i, j] or Ji, j ··= RedM[Io
i, j, I

n
i, j
···∆i, j], then the following property holds.

S P
i, j = {b | P(b) ∈ Π∞[Ei−1] ∩ Π∞[Ei]} (E.2)

(N3) Call Ci, j is correct.

We prove this claim by double induction on i and j, where we consider each call Ci, j of type shown in Table 2. The base case
involves a call of type A1, and the inductive step involves all remaining calls. We structure our proof into five claims.

Claim 47. If call Ci, j is of type A1, or of type A3 and call Ci, j−1 satisfies properties (N1)–(N3), then Ci, j satisfies properties (N1)
and (N3).

Proof. Assume that Ci, j is of the form Ji, j ··= AddM[Ii, j
···∆−i, j,∆

+
i, j
···∆m

i, j]. We next define set E′ and show that properties (E.3) and
(E.5) are established either at the beginning of the algorithm or by the preceding call Ci, j−1.

S P
i, j−1 = {b | P(b) ∈ Π∞[E′] ∩ Π∞[Ei]} (E.3)

Ii, j = Π∞[E′] (E.4)
[(Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j] ∩ O<s = Π∞[Ei]<s (E.5)

Towards this goal, call Ci, j can be of one of the following three types.

• Assume that Ci, j is of type A1. We define E′ = ∅. Properties (E.3) and (E.4) hold trivially, and property (E.5) is implied
by property (A1.a).

• Assume that Ci, j is of type A3. We define E′ = Ei−1. Call Ci, j−1 is of the form Ji, j−1 ··= RedM[Io
i, j−1, I

n
i, j−1

···∆i, j−1], so
property (E.2) holds for i and j−1 by the inductive assumption, and it implies property (E.3). Moreover, properties (A3.b),
(A3.c), and (A3.d) imply properties (E.4) and (E.5).

We are now ready to prove that call Ci, j satisfies properties (N1) and (N3).
For the ⊆ direction of property (E.1), consider an arbitrary constant b ∈ S P

i, j. If b ∈ S P
i, j−1 holds already, then property (E.3)

ensures P(b) ∈ Π∞[E′] ∩ Π∞[Ei] ⊆ Π∞[Ei], as required. Otherwise, we have b ∈ S P
i, j \ S P

i, j−1, so b is added to S P
i, j in line 144,

which ensures P(b) ∈ ∆+i, j; but then, property (E.5) and P(b) ∈ O<s ensure P(b) ∈ Π∞[Ei]. For the ⊇ direction of property (E.1),
consider an arbitrary constant b such that P(b) ∈ Π∞[Ei]. If P(b) ∈ Π∞[E′], then property (E.3) ensures b ∈ S P

i, j−1 ⊆ S P
i, j,

as required. Otherwise, we have P(b) ∈ Π∞[Ei] \ Π∞[E′]; property (E.4) ensures Ii, j = Π∞[E′]; and property (E.5) ensures
P(b) ∈ (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j; together, these observations imply P(b) ∈ ∆+i, j, in which case line 144 ensures b ∈ S P

i, j, as required.
We next prove Ji, j = MA[Ii, j

···∆−i, j,∆
+
i, j], which ensures that call Ci, j is correct. For the ⊆ direction, consider an arbitrary fact

R(e, f ) ∈ Ji, j, and let r′ be the instance of rule (50) where x is mapped to e and y is mapped to f .

• Assume R(e, f ) is added to Ji, j in line 146. Then, lines 145 and 146 ensure P( f ) ∈ ∆+i, j and e ∈ S P
i, j; moreover, proper-

ties (E.1) and (E.5) ensure P(e) ∈ (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j. Thus, we have (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j |= P(e) ∧ P( f ) ∧ (e < f ). Moreover,

by the condition in line 145, constant e is the immediate predecessor of f in S P
i, j, so properties (E.1) and (E.5) ensure

(Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j |= not∃z.(P(z) ∧ (e < z) ∧ (z < f )). Hence, we have (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j |= r′. Moreover, P( f ) ∈ ∆+i, j and

∆+i, j ∩ Ii, j = ∅ ensure P( f ) < Ii, j, which in turn ensures Ii, j ̸|= r′. Finally, line 150 ensures R(e, f ) < (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j, so

R(e, f ) ∈ MA[Ii, j
···∆−i, j,∆

+
i, j] holds, as required.

• The case when R(e, f ) is added to Ji, j in line 147 is analogous to above one, so we omit the details for the sake of brevity.

• Assume R(e, f ) is added to Ji, j in line 149. Then, there exists a constant g with e < g < f such that {e, f } ⊆ S P
i, j and

P(g) ∈ ∆−i, j hold. Properties (E.1) and (E.5) then ensure (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j |= P(e) ∧ P( f ) ∧ (e < f ). Moreover, P(g) ∈ ∆−i, j,

and ∆−i, j ⊆ Ii, j, and ∆+i, j ∩ Ii, j = ∅ ensure P(g) < (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j; together with properties (E.1) and (E.5), we have g < S P

i, j.
But then, e and f are adjacent in S P

i, j by line 149, so (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j |= not∃z.(P(z) ∧ (e < z) ∧ (z < f )) holds by proper-

ties (E.1) and (E.5). Thus, (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j |= r′ holds. Furthermore, P(g) ∈ ∆−i, j ⊆ Ii, j and e < g < f ensure Ii, j ̸|= r′; and

line 150 ensures R(e, f ) < (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j. Thus, R(e, f ) ∈ MA[Ii, j

···∆−i, j,∆
+
i, j] holds, as required.
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For the ⊇ direction, consider an arbitrary fact R(e, f ) ∈ MA[Ii, j
···∆−i, j,∆

+
i, j], and let r′ be the instance of rule (50) where x is mapped

to e and y is mapped to f . Thus, we have Ii, j ̸|= r′, (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j |= r′, and R(e, f ) < (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j. But then, properties (E.1)

and (E.5) and (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j |= r′ ensure {P(e), P( f )} ⊆ (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j, and e and f are adjacent in S P

i, j with e < f . Moreover,
Ii, j ̸|= r′ ensures that one of the following two cases holds.

• Assume Ii, j ̸|= P(e) ∧ P( f ) ∧ (e < f ). Together with {P(e), P( f )} ⊆ (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j this ensures {P(e), P( f )} ∩ ∆+i, j , ∅, so

we have P(e) ∈ ∆+i, j or P( f ) ∈ ∆+i, j. For the former case, P(e) is considered in line 145. Since f is the immediate successor
of e in S P

i, j, fact R(e, f ) is added to J in line 147. Then, line 150 and R(e, f ) < (Ii, j \ ∆
−
i, j) ∪ ∆

+
i, j ensure R(e, f ) ∈ Ji, j, as

required. The case where P( f ) ∈ ∆+i, j is analogous, so we omit the details for the sake of brevity.

• Assume Ii, j ̸|= not∃z.(P(z) ∧ (e < z) ∧ (z < f )). Thus, there exists a fact P(g) ∈ Ii, j such that e < g < f holds. In addition,
(Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j |= r′ ensures P(g) < (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j. Hence, we have P(g) ∈ ∆−i, j, so P(g) is considered in line 148. Since

e and f are adjacent in S P
i, j, fact R(e, f ) is added to J in line 149. Then, line 150 and R(e, f ) < (Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j ensure

R(e, f ) ∈ Ji, j, as required.

This completes our proof for Ji, j = MA[Ii, j
···∆−i, j,∆

+
i, j] ⊆ M

[
(Ii, j \ ∆

−
i, j) ∪ ∆

+
i, j
]
⊆ Π∞[Ei]s, where first inclusion follows from Def-

inition 8, and the second inclusion follows from property (E.5) and the fact that all body atoms of rule (50) belong to a stratum
with index less than s and that the head atom of the rule belongs to stratum s. Hence, call Ci, j is correct.

Claim 48. If call Ci, j is of type A2 and call Ci, j−1 satisfies properties (N1)–(N3), then Ci, j satisfies properties (N1) and (N3).

Proof. The previous call Ci, j−1 involves the AddM function, so property (E.1) holds for i and j − 1 by the inductive assumption.
Moreover, ∆−i, j = ∅ holds in all calls of type A2, and condition (A2.c) and the fact that P belongs to a stratum with index less
s than ensure that ∆+i, j contains no P-facts. Thus, property (E.1) remains preserved for i and j; and Algorithm 13 ensures
Ji, j = MA[Ii, j

···∆−i, j,∆
+
i, j] = ∅, so call Ci, j is correct.

Claim 49. If call Ci, j is of type D1 and call Ci−1,hi−1 satisfies properties (N1)–(N3), then Ci, j satisfies properties (N2) and (N3).

Proof. Assume that Ci, j is of the form Ji,1 ··= DelM[Io
i,1, I

n
i,1
···∆−i,1,∆

+
i,1
···∆m

i,1] with i ≥ 1, so condition (D1.d) ensures (E.6). More-
over, call Ci−1,hi−1 involves the AddM function, so the inductive assumption ensures that property (E.1) holds for i−1 and hi−1 and
can be rewritten as (E.7).

Io
i,1 = In

i,1 = Π∞[Ei−1] (E.6)

S P
i,0 = {b | P(b) ∈ Io

i,1} (E.7)

We are now ready to prove that call Ci,1 satisfies properties (N2) and (N3).
We first consider property (E.2). In particular, line 157 ensures S P

i,1 = S P
i,0 \ {b | P(b) ∈ ∆−i,1}, and condition (D1.e) ensures

∆−i,1 ∩ O<s = Π∞[Ei−1]<s \ Π∞[Ei]<s; thus, since predicate P belongs to a stratum with index less than s, property (E.2) holds.
We next prove Ji,1 = MD[Io

i,1, I
n
i,1
···∆−i,1,∆

+
i,1], which ensures that call Ci,1 is correct. For the ⊆ direction, consider an arbitrary

fact R(e, f ) ∈ Ji,1, and let r′ be the instance of rule (50) where x is mapped to e and y is mapped to f .

• Assume R(e, f ) is added to Ji,1 in line 153. Then, lines 152 and 153 ensure e ∈ S P
i,0 and P( f ) ∈ ∆−i,1. Properties (E.6)

and (E.7) ensure P(e) ∈ Io
i,1 = In

i,1, and ∆−i,1 ⊆ In
i,1 implies P( f ) ∈ Io

i,1; thus, Io
i,1 |= P(e) ∧ P( f ) ∧ (e < f ) holds. Furthermore,

line 153 ensures that there exists no P(g) ∈ Io
i,1 with e < g < f , or e would not be the immediate predecessor of f in S P

i,0;
hence, Io

i,1 |= not∃z.(P(z) ∧ (e < z) ∧ (z < f )) holds as well. Thus, Io
i,1 |= r′ and In

i,1 |= r′ hold. Moreover, P( f ) ∈ ∆−i,1 implies
P( f ) < ∆+i,1, so (In

i,1 \ ∆
−
i,1) ∪ ∆+i,1 ̸|= r′ holds. Furthermore, line 158 ensures R(e, f ) ∈ (In

i,1 \ ∆
−
i,1) ∪ ∆+i,1. Consequently, we

have R(e, f ) ∈ MD[Io
i,1, I

n
i,1
···∆−i,1,∆

+
i,1], as required.

• The case when R(e, f ) is added to Ji,1 in line 154 is analogous to above one, so we omit the details for the sake of brevity.

• Assume R(e, f ) is added to Ji,1 in line 156. Then, there exists a constant g with e < g < f such that {e, f } ⊆ S P
i,0, and

P(g) ∈ ∆+i,1 all hold. Properties (E.6) and (E.7) ensure Io
i,1 |= P(e) ∧ P( f ) ∧ (e < f ). Also, P(g) ∈ ∆+i,1 and ∆+i,1 ∩ Io

i,1 = ∅

ensure P(g) < Io
i,1, which together with property (E.7) ensures g < S P

i,0. But then, e and f are adjacent in S P
i,0 by line 156,

so Io
i,1 |= not∃z.(P(z) ∧ (e < z) ∧ (z < f )) holds. Thus, Io

i,1 |= r′ and In
i,1 |= r′ hold. Furthermore, P(g) ∈ ∆+i,1 clearly ensures

(In
i,1 \ ∆

−
i,1) ∩ ∆+i,1 ̸|= r′; and line 158 ensures R(e, f ) ∈ In

i,1 \ ∆
−
i,1 ⊆ (In

i,1 \ ∆
−
i,1) ∪ ∆+i,1. Thus, R(e, f ) ∈ MD[Io

i,1, I
n
i,1
···∆−i,1,∆

+
i,1]

holds, as required.

For the ⊇ direction, consider an arbitrary fact R(e, f ) ∈ MD[Io
i,1, I

n
i,1
···∆−i,1,∆

+
i,1], and let r′ be the instance of rule (50) where x

is mapped to e and y is mapped to f . Thus, we have Io
i,1 |= r′, In

i,1 |= r′, (In
i,1 \ ∆

−
i,1) ∪ ∆+i,1 ̸|= r′, and R(e, f ) ∈ (In

i,1 \ ∆
−
i,1) ∪ ∆+i,1.

Consequently, there does not exist a fact P(g) ∈ Io
i,1 with e < g < f . Then, property (E.7) ensures that e and f are adjacent

elements in S P
i,0 with e < f . Moreover, (In

i,1 \ ∆
−
i,1) ∪ ∆+i,1 ̸|= r′ ensures that one of the following two cases holds.
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• Assume (In
i,1 \ ∆

−
i,1) ∪ ∆+i,1 ̸|= P(e) ∧ P( f ) ∧ (e < f ). Together with In

i,1 |= r′ this ensures P(e) ∈ ∆−i,1 or P( f ) ∈ ∆−i,1. In the
former case, P(e) is considered in line 152. Since f is the immediate successor of e in S P

i,0, fact R(e, f ) is added to J in
line 154. Then, R(e, f ) ∈ (In

i,1 \ ∆
−
i,1) ∪ ∆+i,1 and condition (D1.f) ensure R(e, f ) ∈ In

i,1 \ ∆
−
i,1, so line 158 ensures R(e, f ) ∈ Ji,1,

as required. The case where P( f ) ∈ ∆−i,1 is analogous, so we omit the details for the sake of brevity.

• Assume (In
i,1 \ ∆

−
i,1) ∪ ∆+i,1 ̸|= not∃z.(P(z) ∧ (e < z) ∧ (z < f )). Thus, there exists a fact P(g) ∈ (In

i,1 \ ∆
−
i,1) ∪ ∆+i,1 such that

e < g < f holds. In addition, In
i,1 |= r′ ensures P(g) ∈ ∆+i,1, so P(g) is considered in line 155. Since e and f are adja-

cent in S P
i,0, constant e is the immediate predecessor of g in S P

i,0 and constant f is the immediate successor of g in S P
i,0.

Consequently, fact R(e, f ) is added to J in line 156. In the same way as in the previous case, we have R(e, f ) ∈ Ji,1, as
required.

This completes our proof for Ji,1 = MD[Io
i,1, I

n
i,1
···∆−i,1,∆

+
i,1] ⊆ (In

i,1 \ ∆
−
i,1) ∪ ∆+i,1, where the last inclusion follows from Definition 9.

Hence, call Ci,1 is correct.

Claim 50. If call Ci, j is of type D2 and call Ci, j−1 satisfies properties (N1)–(N3), then Ci, j satisfies properties (N2) and (N3).

Proof. The previous call Ci, j−1 involves the DelM function, so property (E.2) holds for i and j − 1 by the inductive assumption.
Moreover, ∆+i, j = ∅ holds in all calls of type D2, and condition (D2.d) and the fact that P belongs to a stratum with index less
than s ensure that ∆−i, j contains no P-facts. Thus, property (E.2) remains preserved for i and j; and Algorithm 14 ensures
Ji, j = MD[Io

i, j, I
n
i, j
···∆−i, j,∆

+
i, j] = ∅, so call Ci, j is correct.

Claim 51. If call Ci, j is of type (R) and call Ci, j−1 satisfies properties (N1)–(N3), then Ci, j satisfies properties (N2) and (N3).

Proof. Assume that Ci, j is of the form Ji, j ··= RedM[Io
i, j, I

n
i, j
···∆i, j]. The previous call Ci, j−1 involves the DelM function, so the

inductive assumption ensures that property (E.2) holds for i and j − 1. Since Algorithm 15 does not change S P, property (E.2)
clearly holds for i and j. In addition, condition (R.c) ensures property (E.8), and condition (R.e), ensures property (E.9).

Io
i, j = Π∞[Ei−1] (E.8)

In
i, j ∩ O<s = Π∞[Ei−1]<s (E.9)

We next prove Ji, j = MR[Io
i, j, I

n
i, j
···∆i, j], which ensures that call Ci, j is correct. For the ⊆ direction, consider an arbitrary

fact R(a, b) ∈ Ji, j, and let r′ be the instance of rule (50) where x is mapped to a and y is mapped to b. Line 161 then en-
sures R(a, b) ∈ ∆i, j, and that b is the immediate successor of a in S P

i, j; thus, a < b holds; moreover property (E.2) ensures
{P(a), P(b)} ⊆ Π∞[Ei−1] ∩ Π∞[Ei], and it also ensures that there does not exist a fact P(c) ∈ Π∞[Ei−1] ∩ Π∞[Ei] with a < c < b.
Together with properties (E.8) and (E.9), we clearly have Io

i, j |= r′ and In
i, j |= r′, so R(a, b) ∈ MR[Io

i, j, I
n
i, j
···∆i, j], as required. For

the ⊇ direction, consider an arbitrary fact R(a, b) ∈ MR[Io
i, j, I

n
i, j
···∆i, j], and let r′ be the instance of rule (50) where x is mapped

to a and y is mapped to b. Thus, we have Io
i, j |= r′, In

i, j |= r′, and R(a, b) ∈ ∆i, j. Then, there does not exist a fact P(c) ∈ Io
i, j ∩ In

i, j

with a < c < b. By properties (E.2), (E.8), and (E.9), then there does not exist a constant c in S P
i, j such that a < c < b. But then,

line 161 ensures R(a, b) ∈ Ji, j, as required. Hence, call Ci, j is correct.
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