
Materialisation and Data Partitioning Algorithms for Distributed RDF
Systems
Temitope Ajileyea,b,∗, Boris Motika,b,∗

aDepartment of Computer Science, University of Oxford, UK
bSirius Research Centre, Oslo, Norway

A R T I C L E I N F O
Keywords:
Datalog materialisation
distributed reasoning
streaming partitioning
RDF

A B S T R A C T
Many RDF systems support reasoning with Datalog rules via materialisation, where all conclusions
of RDF data and the rules are precomputed and explicitly stored in a preprocessing step. As the
amount of RDF data used in applications keeps increasing, processing large datasets often requires
distributing the data in a cluster of shared-nothing servers. While numerous distributed query
answering techniques are known, distributed materialisation is less well understood. In this paper, we
present several techniques that facilitate scalable materialisation in distributed RDF systems. First,
we present a new distributed materialisation algorithm that aims to minimise communication and
synchronisation in the cluster. Second, we present two new algorithms for partitioning RDF data,
both of which aim to produce tightly connected partitions, but without loading complete datasets into
memory. We evaluate our materialisation algorithm against two state-of-the-art distributed Datalog
systems and show that our technique offers competitive performance, particularly when the rules are
complex. Moreover, we analyse in depth the effects of data partitioning on reasoning performance
and show that our techniques offer performance comparable or superior to the state of the art min-cut
partitioning, but computing the partitions requires considerably less time and memory.

1. Introduction
The Resource Description Framework (RDF) is a pop-

ular data format that allows a domain of interest to be
represented in terms of entities called resources, and la-
belled relationships between resources called triples. An
RDF dataset can be seen as a directed graph in which triples
correspond to edges between resources. While answering
queries over an RDF dataset is the focus of most RDF
applications, reasoning capabilities of RDF systems have
been growing in importance. RDF reasoning systems take
as input an RDF dataset and a formal description of an ap-
plication domain, which is often captured using a prominent
rule-based formalism called Datalog [3]. A Datalog rule
expresses an ‘if-then’ condition specifying how to derive one
or more triples from structural patterns in an RDF dataset.
When answering queries, RDF reasoning systems take into
account not only the explicitly given triples, but also triples
that logically follow from a given set of Datalog rules. The
computational properties and the expressivity of Datalog are
well understood, which has contributed to wide adoption of
Datalog in practice. For example, reasoning in the OWL 2
RL profile of the Web Ontology Language (OWL) can be
supported either by translating an OWL ontology into rules
[18], or by using the fixed rule set from the OWL 2 RL
specification [39]. Furthermore, application logic is some-
times captured directly in Datalog rules [44, 35, 38]. Thus,
developing efficient algorithms for Datalog reasoning over
RDF datasets is an active research topic. Datalog reasoning

∗Corresponding author
temitope.ajileye@cs.ox.ac.uk (T. Ajileye);

boris.motik@cs.ox.ac.uk (B. Motik)
ORCID(s): 0000-0002-3657-7624 (T. Ajileye); 0000-0003-2506-4118 (B.

Motik)

is often supported by materialisation: all triples that logi-
cally follow from a dataset and a set of rules are precomputed
and stored in a preprocessing step, so that queries can be
evaluated without referring to the rules. Materialisation is
typically realised using the seminaïve algorithm [3], which
ensures the nonrepetition property: no rule is applied to the
same triples more than once. This was shown to be essential
in practice for even moderately sized datasets.

The size of RDF datasets used in applications has been
increasing continuously. For example, the UniProt1 dataset
contains over 34 billion triples; moreover, many applica-
tions combine several large datasets. This poses significant
challenges to RDF systems that centralise processing on a
single computer. The answer is often to partition the data
in a cluster of shared-nothing servers, but this introduces
considerable complexity: related triples may reside on dif-
ferent servers so network communication may be needed.
In the context of distributed RDF querying, numerous so-
lutions have been presented and incorporated into systems
such as YARS2 [24], 4store [23], H-RDF-3X [26], Trin-
ity.RDF [59], SHARD [46], SHAPE [33], Partout [14],
AdPart [5], TriAD [21], SemStore [57], DREAM [22], and
WARP [25]. Abdelaziz et al. [2] surveyed 22 and evaluated
11 such systems on a variety of data and query loads, show-
ing AdPart [5] and TriAD [21] to be the best performing.

Distributed reasoners face several problems that are not
found in distributed query answering systems: freshly de-
rived triples must participate in all relevant inferences, which
can interact with mechanisms for distributing and storing
derived triples; moreover, it is essential for the nonrepetition
property to be preserved. These issues have been addressed
in practice in several different ways. Certain systems handle

1https://www.uniprot.org/

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 1 of 29

https://www.uniprot.org/

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

only fixed Datalog rules: systems by Kaoudi et al. [30] and
Weaver and Hendler [55] handle RDFS rules; WebPIE [54]
and Cichlid [19] support the so-called ter Horst fragment
[53]; and SPOWL [34] supports OWL 2 RL rules. While
tailoring the reasoning algorithms to specific rules simplifies
issues such as nonrepetition of derivations, such solutions
are limited in their generality. PLogSPARK [58] can han-
dle arbitrary rules, but it does not seem to use seminaïve
evaluation. BigDatalog [50] and Cog [28] implement the
seminaïve algorithm, but they seem to be able to process only
a few linear rules at a time. Distributed SociaLite [48] imple-
ments the seminaïve algorithm for arbitrary Datalog rules.
The standard techniques for implementing the seminaïve
algorithm require maintaining and copying several auxiliary
relations, which can be inefficient in a distributed system.
Thus, the tradeoffs in developing algorithms for distributed
Datalog reasoning do not yet seem to be fully understood.

Another problem in distributed RDF systems is to par-
tition the data in a way that facilitates efficient distributed
computation: intuitively, tightly connected clusters of re-
sources should be placed on a single server in order to
reduce communication during both rule matching and fact
derivation. Very little attention has been devoted to this
problem so far. Most distributed RDF systems use a variant
of either subject hashing, where the placement of a triple is
determined by hashing the triple’s subject, or min-cut par-
titioning [31], where resources are partitioned to minimise
the number of triples spanning two partitions. The former
technique is simple to implement, but it does not produce
tightly connected partitions; in contrast, min-cut partitioning
tends to produce tight partitions, but it requires considerable
time and memory and may be infeasible on large datasets.
Thus, the question of how to partition the data in distributed
RDF reasoning systems is still largely open.

In this paper, we present several novel techniques that
provide the foundation for scalable distributed RDF reason-
ing systems. Our contribution is two-fold.

First, we present a new algorithm for distributed mate-
rialisation of Datalog rules over RDF datasets. We build on
the work by Potter et al. [45] on distributed query answering
using dynamic data exchange, from which we inherit several
important properties. First, inferences that can be made
within a single server are made without any communica-
tion; coupled with careful data partitioning, this can signif-
icantly reduce network communication overheads. Second,
rule evaluation is completely asynchronous, which promotes
parallelism. This, however, introduces a complication: to
ensure nonrepetition of inferences, we must be able to par-
tially order rule derivations across the cluster. We address
this problem using Lamport timestamps [32], which al-
lows us to support seminaïve evaluation without expensive
maintenance of auxiliary relations. Moreover, dynamic data
exchange requires careful maintenance of certain indexes
as new facts are derived, which introduces considerable
technical difficulties due to asynchronous processing. We
present our materialisation algorithm in Section 4.

Second, we consider the problem of partitioning RDF
data. We draw our inspiration from the extensive literature
on streaming graph partitioning algorithms that can process
large graphs ‘on the fly’. Specifically, such algorithms read
a suitable encoding of a graph sequentially (possibly more
than once), but their memory use is determined by the num-
ber of vertices, rather than the number of edges in the graph.
A recent survey [42] identified the HDRF [43] algorithm for
streaming partitioning of undirected graphs as particularly
suitable for graphs with power-law degree distribution. The
more recently proposed 2PS [37] algorithm seems to be
able to outperform HDRF in some cases. RDF datasets
often contain at least an order of magnitude more triples
than resources, so one can expect streaming approaches to
be particularly suitable to very large RDF datasets. Thus,
in Section 5 we present two new algorithms for streaming
partitioning of RDF data that adapt the HDRF and 2PS
algorithms to the specifics of RDF. Since subject–subject
joins are the most common in RDF queries [15], a key
challenge is to ensure that our modified algorithms always
place all triples with the same subject on one server.

We have implemented our reasoning and partitioning
algorithms in a prototype system called DMAT. In Section 6,
we present the results of several experiments that we used
to evaluate our techniques. First, we analysed how different
data partitioning strategies affect the performance of rea-
soning. Second, to explore the limits of our approach, we
investigated how reasoning performance scales with increas-
ing data loads. Third, to evaluate our reasoning approach
against the state of the art, we compared the performance
of materialisation in DMAT with that of BigDatalog [50]
and Cog [28]. Our results show that our data partitioning
algorithms are generally very effective in reducing commu-
nication during reasoning, and that this often leads to shorter
reasoning times. Moreover, DMAT could handle increasing
data loads well, and it outperformed the competition on
all benchmarks. Thus, our techniques seem to provide a
sound foundation for the development of massively scalable
distributed RDF reasoners.

2. Preliminaries
To make this paper self-contained, we now recapitulate

the definitions that we use in the rest of this paper.
Syntax. A constant is an IRI, a blank node, or a literal. A
term is a constant or a variable. An atom is an expression
of the form ⟨𝑡𝑠, 𝑡𝑝, 𝑡𝑜⟩ over terms 𝑡𝑠 (subject), 𝑡𝑝 (predicate),
and 𝑡𝑜 (object). Let Π = {𝑠, 𝑝, 𝑜} be the set of positions.
Then, given an atom 𝑎 = ⟨𝑡𝑠, 𝑡𝑝, 𝑡𝑜⟩ and a position 𝜋 ∈ Π,
𝑎|𝜋 is the term that occurs in atom 𝑎 at position 𝜋—that
is, 𝑎|𝜋 = 𝑡𝜋 . A fact is a variable-free atom. Whenever no
explicit qualification is given, we use lowercase letters from
the end of the alphabet (𝑥, 𝑦, 𝑧, . . .) for variables, lowercase
letters from the beginning of the alphabet (𝑎, 𝑏, 𝑐, . . .) for
subject and object constants, and uppercase letters from the
middle of the alphabet (𝑅, 𝑆, 𝑇 , . . .) for predicate constants.

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 2 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

An (RDF) dataset 𝐺 is a finite set of facts. The vo-
cabulary of 𝐺 is the set of all constants occurring in 𝐺.
For 𝑐 a constant, let 𝐺+(𝑐) = {⟨𝑠, 𝑝, 𝑜⟩ ∈ 𝐺 ∣ 𝑠 = 𝑐} and
𝐺(𝑐) = {⟨𝑠, 𝑝, 𝑜⟩ ∈ 𝐺 ∣ 𝑠 = 𝑐 or 𝑜 = 𝑐}. Then, |𝐺+(𝑐)| and
|𝐺(𝑐)| are the out-degree and the degree of 𝑐, respectively.

A query is a conjunction of atoms of the form (1), where
𝑛 ≥ 1 and all 𝑎𝑖 are atoms. A Datalog rule is an implication
of the form (2), where ℎ is the head atom, all 𝑏𝑖 are body
atoms, 𝑛 ≥ 1, and each variable occurring in ℎ also occurs
in some 𝑏𝑖. A Datalog program is a finite set of rules.

𝑎1 ∧⋯ ∧ 𝑎𝑛 (1)
ℎ ← 𝑏1 ∧⋯ ∧ 𝑏𝑛 (2)

Note that this definition allows for arbitrarily shaped rules
over RDF data. In particular, it includes, but is not limited
to, the OWL 2 RL/RDF rules [39], or any subset of these
rules such as, for example, the ter Horst fragment [53].

In RDF literature, constants are often called RDF terms,
atoms are called triple patterns, facts are called triples, and
datasets are called RDF graphs. In this paper, however, we
adopt the terminology commonly used in the literature on
Datalog reasoning.
Substitutions. A substitution 𝜎 is a partial function that
maps finitely many variables to constants. For 𝛼 a term or an
atom, 𝛼𝜎 is the result of replacing with 𝜎(𝑥) each occurrence
of a variable 𝑥 in 𝛼 on which 𝜎 is defined.
Semantics. Let 𝐺 be a dataset. For 𝑄 a query of the form
𝑎1 ∧⋯ ∧ 𝑎𝑛, substitution 𝜎 is an answer to 𝑄 on 𝐺 if 𝜎
is defined precisely on all variables occurring in 𝑄, and
𝑎𝑖𝜎 ∈ 𝐺 holds for each 1 ≤ 𝑖 ≤ 𝑛. The result of applying a
rule 𝑟 of the form ℎ ← 𝑏1 ∧⋯ ∧ 𝑏𝑛 to 𝐺 is the set of facts

𝑟(𝐺) = 𝐺 ∪ {ℎ𝜎 ∣ 𝜎 is an answer to 𝑏1 ∧⋯∧ 𝑏𝑛 on 𝐺}.

For 𝑃 a program, let 𝑃 (𝐺) =
⋃

𝑟∈𝑅 𝑟(𝐺); let 𝑃 0(𝐺) = 𝐺;
and let 𝑃 𝑖+1(𝐺) = 𝑃 (𝑃 𝑖(𝐺)) for 𝑖 ≥ 0. Then, the closure of
𝑃 on 𝐺 is defined as 𝑃∞(𝐺) =

⋃

𝑖≥0 𝑃
𝑖(𝐺). When the clo-

sure is computed in advance and persisted, we refer to both
𝑃∞(𝐺) and the process of computing it as materialisation.
Seminaïve Evaluation. We can compute 𝑃∞(𝐺) using the
definition just given: we evaluate the body of each rule
𝑟 ∈ 𝑃 as a query over 𝐺 and instantiate the head of 𝑟 for
each query answer, we eliminate duplicate facts, and we
repeat the process until no new facts are derived. How-
ever, 𝑃 𝑖(𝐺) ⊆ 𝑃 𝑖+1(𝐺) holds for each 𝑖 ≥ 0, so this naïve
approach derives in each round of rule application all facts
from all previous rounds. The semïnaive strategy avoids this
problem: when matching a rule 𝑟 in round 𝑖+ 1, at least one
body atom of 𝑟 must be matched to a fact derived in round 𝑖.
This is critical in practice even for very simple rules.
Dataset Partitions. A partition of an RDF dataset 𝐺 is a
list of RDF datasets = 𝐺1,… , 𝐺𝓁 such that 𝐺𝑖 ∩ 𝐺𝑗 = ∅
for 1 ≤ 𝑖 < 𝑗 ≤ 𝓁 and 𝐺 =

⋃𝓁
𝑖=1𝐺𝑖. We call datasets 𝐺𝑖

partition elements. The objective of distributed reasoning is
to compute 𝑃∞(𝐺) using a partition where each partition
element is stored in a distinct server in a shared-nothing

cluster. For convenience, we identify each server in the
cluster by an integer between 1 and 𝓁.
Partitioning Problem. A key question in distributed RDF
processing is to compute a partition of an RDF dataset that
facilitates efficient query processing and reasoning. In the
graph partitioning literature, the vertex replication factor is
often used as a measure of partition ‘tightness’ [43, 42]. This
notion can be adapted to RDF as follows: for = 𝐺1,… , 𝐺𝓁a partition of an RDF dataset, the replication set of a constant
𝑐 is defined as 𝐴(𝑐) = {𝑘 ∣ 𝐺𝑘 ∩ 𝐺(𝑐) ≠ ∅}, and the replica-
tion factor of a partition is defined as

𝖱𝖥(𝐺,) = 1
|𝑉 |

∑

𝑐∈𝑉
|𝐴(𝑐)| (3)

where 𝑉 is the vocabulary of 𝐺. In other words, the repli-
cation factor is the average number of servers that constants
occur on. The term ‘replication’ is sometimes used in the
RDF literature to denote the idea of storing the same fact in
more than one server, but this is not the intended meaning
in the literature on graph partitioning and our work; in fact,
partition elements in this paper are all pairwise disjoint.

Given a fixed tolerance parameter 𝛼 ≥ 1, the objective
of graph partitioning is to compute a partition of an RDF
dataset 𝐺 such that |𝐺𝑖| ≤ 𝛼 |𝐺|

𝓁
holds for each 1 ≤ 𝑖 ≤ 𝓁,

while minimising the replication factor 𝖱𝖥(𝐺,). In other
words, each 𝐺𝑖 should hold roughly the same number of
facts, while ensuring that constants are replicated as little
as possible. Solving this problem exactly is computationally
hard, so the objective is usually weakened in practice. The al-
gorithms we present in this paper will honour the restrictions
on the sizes of 𝐺𝑖, and they will aim to make the replication
factor small, but without firm minimality guarantees.

3. Related Work
Before presenting our contribution, we first discuss the

relevant related work. In Section 3.1, we discuss the existing
distributed Datalog reasoning systems and approaches. In
Section 3.2, we survey the work by Potter et al. [45] on
distributed query answering with dynamic data exchange,
which provides the starting point for our distributed reason-
ing algorithm. In Section 3.3, we discuss the data partition-
ing approaches typically used in distributed RDF systems.
3.1. Approaches to Distributed Reasoning

A number of approaches were developed in the 90s for
materialising Datalog programs when the data is distributed
across several processors. These approaches are not specific
to RDF, but we shall discuss them in our setting. The key idea
is to partition rule applications to processors. For example,
to evaluate ⟨𝑥,𝑅, 𝑧⟩ ← ⟨𝑥,𝑅, 𝑦⟩ ∧ ⟨𝑦, 𝑅, 𝑧⟩ on 𝓁 processors,
we let each processor 𝑖 with 1 ≤ 𝑖 ≤ 𝓁 evaluate rule

⟨𝑥,𝑅, 𝑧⟩ ← ⟨𝑥,𝑅, 𝑦⟩ ∧ ⟨𝑦, 𝑅, 𝑧⟩ ∧ ℎ(𝑦) = 𝑖, (4)
where ℎ(𝑦) is a partition function that maps values of 𝑦
to integers between 1 and 𝓁. If ℎ is uniform and constants

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 3 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

are uniformly distributed across triples, then each processor
receives roughly the same fraction of the workload. Practical
experience suggests that such an approach can often paral-
lelise computation very effectively. However, since a fact of
the form ⟨𝑠, 𝑅, 𝑜⟩ can match either atom in the body of rule
(4), each such fact must be replicated to processors ℎ(𝑠) and
ℎ(𝑜) to ensure completeness. Based on this idea, Ganguly
et al. [16] show how to handle general Datalog; Zhang et al.
[61] study different partition functions; Seib and Lausen [47]
identify programs and partition functions where no replica-
tion of derived facts is needed; Shao et al. [49] further break
rules in segments; and Wolfson and Ozeri [56] replicate all
facts to all processors in order to increase parallelism. The
primary motivation behind these approaches seems to be
parallelisation of computation, which explains why the high
rates of data replication were deemed acceptable.

Materialisation can also be implemented without any
data replication. First, one must select a data partitioning
strategy: a common approach is to assign each triple ⟨𝑠, 𝑝, 𝑜⟩
to server ℎ(𝑠) using a suitable hash function ℎ, and another
popular option is to use a distributed file system (e.g., HDFS)
and thus leverage its partitioning mechanism. Second, the
rule bodies are evaluated using a distributed query eval-
uation algorithm, the newly derived facts are distributed
according to the partitioning strategy, and the process is
repeated iteratively as long as fresh facts are derived.

These principles were applied to reasoning over RDF
datasets. Most systems in this category handle only fixed
rule sets (i.e., the rules are hardcoded in the algorithms and
cannot be changed). The systems by Weaver and Hendler
[55] and Kaoudi et al. [30] support RDFS reasoning. Other
systems borrow mechanisms for distributed data storage and
query evaluation from big data frameworks such as Hadoop
and Spark. In particular, WebPIE [54] supports the ter Horst
fragment [53] in Hadoop; Cichlid [19] also supports ter
Horst fragment, but in Spark; and SPOWL [34] supports
extensions of the OWL 2 RL rules in Spark. Handling only
fixed rule sets considerably simplifies the design of reason-
ing algorithms. For example, seminaïve evaluation is not
needed for RDFS reasoning since nonrepetition of inferences
can be ensured by evaluating the rules in a particular order.
Greater generality is offered by PLogSPARK [58], which
handles general Datalog rules over RDF data in Spark.
However, this system seems to use naïve rule evaluation,
which can be prohibitive when the rules are complex.

Distributed Datalog reasoning has also been studied in
the database community. BigDatalog [50] and Cog [28] were
implemented on top of Spark and Flink, respectively, but
they target a slightly different setting. Both systems accept
as input a Datalog program and a query. They then select
the rules relevant to the query, compute their materialisa-
tion, and evaluate the given query over the materialisation.
However, the materialisation is not persisted: it is treated as a
temporary object used to just answer the query. Both systems
claim to support arbitrary Datalog and seminaïve evaluation,
but, as we report in Section 6, we managed to use them with

only a handful of linear rules. Yedalog [10] is Google’s pri-
vate implementation of Datalog on top of a proprietary data
model. Distributed SociaLite [48] implements distributed
seminaïve materialisation for general Datalog, but users
must explicitly specify the data distribution strategy and
communication patterns. For example, by writing a fact
𝑅(𝑎, 𝑏) as𝑅[𝑎](𝑏), one specifies that the fact should be stored
on server ℎ(𝑎) for some hash function ℎ. Rule (4) can then
be written in SociaLite as 𝑅[𝑥](𝑧) ← 𝑅[𝑥](𝑦) ∧ 𝑅[𝑦](𝑧),
specifying that the rule should be evaluated by sending each
fact 𝑅[𝑎](𝑏) to server ℎ(𝑏), joining such facts with 𝑅[𝑏](𝑐),
and sending the resulting facts 𝑅[𝑎](𝑐) to server ℎ(𝑎). While
the evaluation of some of these rules can be parallelised,
all servers in a cluster must synchronise after each round
of rule application. Yedalog and SociaLite also implement
extensions of Datalog, such as monotonic aggregation and
builtin predicates.
3.2. Dynamic Data Exchange

Distributed query answering is a key ingredient of dis-
tributed reasoning algorithms. Most distributed query eval-
uation algorithms can be understood as using a variant of
the data exchange operators first introduced in the Volcano
system [17]. Such operators send and receive partial query
answers during query evaluation, and are introduced into
query plans to ensure that all partial answers that may
participate in a join are transmitted to one server.

Recently, Potter et al. [45] presented a distributed query
evaluation algorithm where data exchange is dynamic: com-
munication is guided by the data encountered during query
evaluation, rather than being fixed at query compilation time.
The objectives of dynamic data exchange are to reduce com-
munication and eliminate synchronisation between servers.
To this end, each server 𝑘 maintains three indexes called
occurrence mappings. For each constant 𝑐 occurring in 𝐺𝑘,
occurrence mapping 𝜇𝑘,𝑠(𝑐) contains all servers where 𝑐 oc-
curs in the subject position, and occurrence mappings𝜇𝑘,𝑝(𝑐)and 𝜇𝑘,𝑜(𝑐) provide analogous information for the predicate
and object positions. Occurrence mappings thus allow a
server to locate all facts containing a particular constant
during query answering; this is reminiscent of decentralised
indexes in peer-to-peer RDF systems by Aebeloe et al. [4].

To make these ideas concrete, consider evaluating query
(5) over partition elements (6) and (7).

𝑄 = ⟨𝑥,𝑅, 𝑦⟩ ∧ ⟨𝑦, 𝑅, 𝑧⟩ (5)
𝐺1 = {⟨𝑎,𝑅, 𝑏⟩, ⟨𝑏, 𝑅, 𝑐⟩} (6)
𝐺2 = {⟨𝑏, 𝑅, 𝑑⟩, ⟨𝑑,𝑅, 𝑒⟩} (7)

The occurrence mappings are initialised as shown in Table 1.
In particular, the occurrence mappings on each server must
cover all constants occurring in this server; thus, 𝜇1,𝑠, 𝜇1,𝑝,
and 𝜇1,𝑜 are defined on constants 𝑎, 𝑏, 𝑐, and 𝑅, whereas 𝜇2,𝑠,
𝜇2,𝑝, and 𝜇2,𝑜 are defined on constants 𝑏, 𝑑, 𝑒, and 𝑅.

Query processing is started by sending the query to the
two servers, each storing a partition element. Each server in-
dependently evaluates𝑄 over its partition using index nested
loop joins. Thus, server 1 evaluates atom ⟨𝑥,𝑅, 𝑦⟩ over

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 4 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

Table 1
Example Occurrence Mappings on Servers 1 and 2

𝜇1,𝑠 = { 𝑎 ↦ {1}, 𝑏 ↦ {1, 2}, 𝑐 ↦ ∅, 𝑅 ↦ ∅ }
𝜇1,𝑝 = { 𝑎 ↦ ∅, 𝑏 ↦ ∅, 𝑐 ↦ ∅, 𝑅 ↦ {1, 2} }
𝜇1,𝑜 = { 𝑎 ↦ ∅, 𝑏 ↦ {1}, 𝑐 ↦ {1}, 𝑅 ↦ ∅ }

𝜇2,𝑠 = { 𝑏 ↦ {1, 2}, 𝑑 ↦ {2}, 𝑒 ↦ ∅, 𝑅 ↦ ∅ }
𝜇2,𝑝 = { 𝑏 ↦ ∅, 𝑑 ↦ ∅, 𝑒 ↦ ∅, 𝑅 ↦ {1, 2} }
𝜇2,𝑜 = { 𝑏 ↦ {1}, 𝑑 ↦ {2}, 𝑒 ↦ {2}, 𝑅 ↦ ∅ }

𝐺1, which produces a partial answer 𝜎1 = {𝑥 ↦ 𝑎, 𝑦 ↦ 𝑏}.
Server 1 then evaluates ⟨𝑦, 𝑅, 𝑧⟩𝜎1 = ⟨𝑏, 𝑅, 𝑧⟩ over 𝐺1 and
thus obtains one full answer 𝜎2 = {𝑥 ↦ 𝑎, 𝑦 ↦ 𝑏, 𝑧 ↦ 𝑐}.
To see whether ⟨𝑏, 𝑅, 𝑧⟩ can be matched on other servers,
server 1 consults its occurrence mappings for all constants
in the atom. Since 𝜇1,𝑠(𝑏) = 𝜇1,𝑝(𝑅) = {1, 2}, server 1 sends
the partial answer 𝜎1 to server 2, telling it to continue
matching the query from the second atom. After receiv-
ing 𝜎1, server 2 matches atom ⟨𝑏, 𝑅, 𝑧⟩ in 𝐺2 to obtain
another full answer 𝜎3 = {𝑥 ↦ 𝑎, 𝑦 ↦ 𝑏, 𝑧 ↦ 𝑑}. Server 2
also evaluates ⟨𝑥,𝑅, 𝑦⟩ over 𝐺2 and obtains partial answer
𝜎4 = {𝑥 ↦ 𝑏, 𝑦 ↦ 𝑑}, and it consults its occurrences to de-
termine which servers can match ⟨𝑦, 𝑅, 𝑧⟩𝜎4 = ⟨𝑑,𝑅, 𝑧⟩.
Since 𝜇2,𝑠(𝑑) = {2}, server 2 knows it is the only one that
can match this atom, so it proceeds without any communi-
cation and computes 𝜎5 = {𝑥 ↦ 𝑏, 𝑦 ↦ 𝑑, 𝑧 ↦ 𝑒}.

This strategy has several important benefits. First, all
answers that can be produced within a single server, such
as 𝜎5 in our example, are produced without any communi-
cation. Second, the location of every constant is explicitly
recorded, rather than computed using a fixed rule such as
a hash function. An RDF dataset can thus be partitioned
based on its structural properties, and highly interconnected
constants can all be placed on one server with the aim of
reducing network communication. Third, the system is fully
asynchronous: when server 1 sends 𝜎1 to server 2, server 1
does not need to to wait for server 2 to finish, and server 2
can process 𝜎1 whenever it can. The lack of synchronisation
between servers is beneficial to parallelisation.
3.3. Data Partitioning

Reducing I/O cost via judicious data partitioning has a
long tradition in RDF systems; for example, Aluç et al. [7]
proposed a self-tuneable data partitioning scheme that aims
to optimise on-disk placement of data. However, while it
is intuitive to expect that partitioning the data carefully to
minimise communication would improve the performance
of distributed systems, the effects of data partitioning remain
poorly understood. Janke et al. [29] studied this problem
in the context of distributed query processing. Interestingly,
they concluded that reducing communication can be detri-
mental if done at the expense of uneven server workload.
However, it is unclear to what extent their conclusions ap-
ply to distributed reasoning. Reasoning over large datasets

involves evaluating millions of queries and distributing de-
rived facts, both of which can incur much more communica-
tion than in the case of a single query. Moreover, workload
imbalances in individual queries could even themselves out
when many queries are evaluated.

Existing approaches to data partitioning can be broadly
divided into three groups. The first groups consists of sys-
tems that store their data in a distributed file system. Data
is usually allocated randomly to servers, which makes ex-
ploiting data locality during reasoning difficult. The second
group consists of hash-based variants, where the location of
a fact is determined by hashing one or more of the fact’s
components (usually subject). The third group consists of
variants based on min-cut graph partitioning, which aims to
reduce communication by minimising the number of edges
between partitions. Since subject–subject joins were shown
to be very common [15], most systems in the latter two
groups colocate triples with the same subjects.

Distributed RDF systems sometimes use data replica-
tion, where some or all facts are stored on more than one
server. The decision which facts to replicate is typically
made during data loading. A prominent approach is 𝑛-
hop replication, where facts are replicated so that all path
queries of length 𝑛 or less can be processed without any
communication [27]. Other approaches to replicating data
during loading have been considered too [21, 33]. A more
recent approach aims to analyse the query load and replicate
commonly used triples on the fly [5]. While data replication
can be effective at reducing communication in a distributed
RDF system, it can also significantly increase the storage
requirements; for example, it was shown that undirected two-
hop replication can increase the storage requirements by a
factor of 4.2 [27]. In reasoning systems, data replication can
increase the communication needed to store newly derived
facts, and it may lead to redundant derivations. Since our
main objective is to devise a distributed reasoning algorithm
that does not repeat derivations, we do not consider data
replication in our work. In fact, we are unaware of any related
approach to distributed reasoning that uses data replication.

4. Distributed Materialisation Algorithm
We now present our distributed materialisation algo-

rithm. Before presenting the technical details, in Section 4.1
we discuss our main technical challenges. Then, in Sec-
tion 4.2 we discuss data structures used to store facts; in
Section 4.3 we introduce the occurrence mappings; in Sec-
tion 4.4 we discuss the communication infrastructure; in
Section 4.5 we discuss how to detect termination; in Sec-
tion 4.6 we present the algorithm’s pseudocode and argue
about its correctness; and in Section 4.7 we illustrate various
aspects of our algorithm using a simple example.
4.1. Technical Challenges

As mentioned in Section 2, seminaïve evaluation is crit-
ical to ensuring practicability of materialisation. This algo-
rithm evaluates rule bodies as queries, so it may be tempting
to try to adapt seminaïve evaluation to a distributed setting

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 5 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

by switching to a distributed query answering algorithm. We
discuss the problems of such a straightforward approach by
means of the example rule (8).

⟨𝑥,𝑅, 𝑧⟩ ← ⟨𝑥,𝑅, 𝑦⟩ ∧ ⟨𝑦, 𝑅, 𝑧⟩ (8)
The objective of seminaïve evaluation is to avoid re-

peating derivations, where a derivation refers to matching
the body of a rule to a particular set of facts. For example,
matching rule (8) to facts ⟨𝑎,𝑅, 𝑐⟩ and ⟨𝑐, 𝑅, 𝑏⟩, and to facts
⟨𝑎,𝑅, 𝑑⟩ and ⟨𝑑,𝑅, 𝑏⟩, constitutes two distinct derivations.
Seminaïve evaluation ensures that each of these derivations
is made just once, but it does not prevent both derivations
from producing ⟨𝑎,𝑅, 𝑏⟩: a separate duplicate elimination
step is required to deal with that issue. To this end, rules
are applied in rounds, but in each rule application at least
one body atom is matched to a fact derived in the previous
round. A common way to ensure this is to maintain four sets
of facts: the set of ‘current’ facts, the set of ‘old’ facts derived
before the last round, the ‘delta’ set of facts that are present
in the ‘current’ but not the ‘old’ set, and the set of ‘new’
facts derived in each round of rule application. Rule (8) is
then rewritten to use these sets as follows.

⟨𝑥,𝑅, 𝑧⟩𝑛𝑒𝑤 ← ⟨𝑥,𝑅, 𝑦⟩Δ ∧ ⟨𝑦, 𝑅, 𝑧⟩ (9)
⟨𝑥,𝑅, 𝑧⟩𝑛𝑒𝑤 ← ⟨𝑥,𝑅, 𝑦⟩𝑜𝑙𝑑 ∧ ⟨𝑦, 𝑅, 𝑧⟩Δ (10)

Thus, rule (9) produces all derivations of rule (8) where
atom ⟨𝑥,𝑅, 𝑦⟩ in the latter rule is matched to a fact derived
in the previous round of rule application. Rule (9) handles
the second body atom of rule (8) analogously; by matching
the first body atom of rule (10) to the ‘old’ facts, we ensure
no repetition of inferences between the two rules. Rules (9)
and (10) can be evaluated using any distributed query evalu-
ation strategy. Each round of rule application is followed by
a round of updates: the ‘delta’ facts are added to the ‘old’
facts, and the difference between the ‘new’ and the ‘current’
facts is copied to the ‘delta’ facts and added to the ‘current’
facts. This can be inefficient for at least two reasons. First,
the update round requires shuffling of data between datasets,
which can be costly; this can be particularly acute in systems
built on top of Hadoop and Spark, where data storage and
distribution is managed automatically by a distributed file
system. Second, rounds must be synchronised (i.e., updates
cannot begin before rule application finishes and vice versa),
which can lead to workload skew.

We address these problems by drawing inspiration from
the work by Motik et al. [40] on parallelising Datalog mate-
rialisation in centralised, shared memory systems. Instead of
applying rules in rounds, this approach considers each fact
in the dataset, identifies each rule and body atom that can
be matched to the fact, and evaluates the rest of the rule as a
query. Moreover, all facts are ordered totally based on the se-
quence of their derivation; this order can be recovered easily
from how facts are stored. To prevent inference repetition,
each query is evaluated only against the facts derived before
the fact being processed. Such an approach does not proceed
in rounds and does not need an explicit update step; rather,

rules are applied asynchronously, which is beneficial for
parallelisation: the number of facts is generally very large,
so the materialisation process decomposes naturally into a
large number of completely independent steps that can be
evaluated in parallel. The approach has been successfully
applied to very large datasets [41].

Our distributed materialisation algorithm is based on
the same general principle: each server in a cluster matches
the rules to locally stored facts, but the resulting queries
are evaluated using dynamic data exchange. Our approach
thus requires no synchronisation between servers, and com-
munication is reduced in the same way as described in
Section 3.2. We thus expect the same benefits as for the
query answering algorithm by Potter et al. [45]. However,
the lack of synchronisation between servers introduces a
complication: since there is no notion of a rule application
round, it is not obvious how to guarantee nonrepetition of
inferences. A straightforward solution might be to associate
each fact with a timestamp recording when the fact was
derived so that the order of fact derivation can be recovered;
however, this would require maintaining a high coherence of
server clocks in the cluster, which is generally impractical.
In Section 4.2, we discuss how we solve this problem using
Lamport timestamps [32]—a well known, simple way of
determining a partial order of events across a cluster.

Another complication arises due to the observation that
occurrence mappings may need updating when new facts
are derived. The occurrence mappings of all relevant servers
must be updated before any rule is applied to such newly
derived facts; otherwise, such facts might be skipped during
query evaluation, which would jeopardise completeness.
Our solution to this problem is again fully asynchronous.

Finally, since no central coordinator keeps track of the
state of the computation of different servers, detecting when
the system as a whole can terminate is not straightforward.
We solve this problem using a well-known termination de-
tection algorithm based on token passing [11].
4.2. Lamport Timestamps

To prevent repetition of derivations, we need to arrange
all derived facts into a sequence that reflects the derivation
order. As mentioned already, maintaining a precise global
clock in a distributed system is very challenging, so we
instead use Lamport timestamps [32], a general and simple
technique for ordering events in a distributed system. In
particular, each event is annotated with an integer timestamp
in a way that guarantees the following property:

(∗) if there is any way for an event 𝐴 to possibly
influence an event 𝐵, then the timestamp of 𝐴
is strictly smaller then the timestamp of 𝐵.

To achieve this, each server keeps an integer counter called
the local clock (even though this counter does not measure
time), which is incremented whenever an event of interest
occurs; this clearly ensures property (∗) for events 𝐴 and
𝐵 occurring in the same server. Now assume that events 𝐴
and 𝐵 occur in servers 1 and 2, respectively; clearly, 𝐴 can

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 6 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

influence 𝐵 only if server 1 sends a message to server 2, and
server 2 processes this message before event 𝐵 takes place.
To ensure property (∗), server 1 includes its current clock
value into the message it sends to server 2; moreover, when
processing this message, server 2 updates its local clock to
the maximum of the message clock and the local clock, and
then increments the local clock. Thus, when event𝐵 happens
after receiving the message, the timestamp of the event is
guaranteed to be larger than the timestamp of event 𝐴.

To apply this idea to Datalog materialisation, a deriva-
tion of a fact corresponds to the notion of an event, and using
a fact to derive another fact corresponds to the ‘influences’
notion. Thus, we associate facts with integer timestamps.

More precisely, each server 𝑘 in the cluster maintains
an integer 𝐶𝑘 called the local clock, a dataset 𝐺𝑘 of facts
stored in the server, and a timestamp function 𝑇𝑘 ∶ 𝐺𝑘 → ℕ
that associates each fact in the server with a natural number.
Before materialisation, 𝐶𝑘 is initialised to zero, and all input
facts (i.e., the facts given by the user) assigned to server 𝑘
are loaded into 𝐺𝑘 and assigned a zero timestamp.

To capture formally how timestamps are used during
query evaluation, we introduce the notion of an annotated
query as a conjunction of the form

𝑄 = 𝑎⋈1
1 ∧⋯ ∧ 𝑎⋈𝑛

𝑛 , (11)
where each 𝑎⋈𝑖

𝑖 is an annotated atom consisting of an atom
𝑎𝑖 and a symbol ⋈𝑖 that can be < or ≤. Answers to an
annotated query are computed with respect to a timestamp.
More precisely, a substitution 𝜎 is an answer to 𝑄 on a
dataset 𝐺𝑘 and function 𝑇𝑘 w.r.t. an integer timestamp 𝜏 if

• 𝜎 is an answer to the ‘ordinary’ query 𝑎1 ∧⋯ ∧ 𝑎𝑛 on
dataset 𝐺𝑘 as usual, and

• 𝑇𝑘(𝑎𝑖𝜎) ⋈𝑖 𝜏 holds for each 1 ≤ 𝑖 ≤ 𝑛.
For example, let 𝑄, 𝐺, and 𝑇 be as below, and let 𝜏 = 2

be a timestamp.
𝑄 = ⟨𝑥,𝑅, 𝑦⟩< ∧ ⟨𝑦, 𝑆, 𝑧⟩≤

𝐺 = {⟨𝑎,𝑅, 𝑏⟩, ⟨𝑏, 𝑆, 𝑐⟩, ⟨𝑏, 𝑆, 𝑑⟩}
𝑇 = {⟨𝑎,𝑅, 𝑏⟩ ↦ 1, ⟨𝑏, 𝑆, 𝑐⟩ ↦ 2, ⟨𝑏, 𝑆, 𝑑⟩ ↦ 3}

Then, 𝜎1 = {𝑥 ↦ 𝑎, 𝑦 ↦ 𝑏, 𝑧 ↦ 𝑐} is an answer to 𝑄 on 𝐺
and 𝑇 w.r.t. 𝜏, but 𝜎2 = {𝑥 ↦ 𝑎, 𝑦 ↦ 𝑏, 𝑧 ↦ 𝑑} is not an
answer to 𝑄 on 𝐺 and 𝑇 w.r.t. 𝜏 due to 𝑇 (⟨𝑏, 𝑆, 𝑑⟩) > 2.

We assume that each server can evaluate one annotated
atom—that is, server 𝑘 can call EVALUATE(𝑎⋈, 𝜏, 𝐺𝑘, 𝑇𝑘, 𝜎),where 𝑎⋈ is an annotated atom, 𝜏 is a timestamp, 𝐺𝑘 is the
dataset stored in the server, 𝑇𝑘 provides timestamps for the
facts in 𝐺𝑘, and 𝜎 is a substitution. The call returns each
substitution 𝜌 defined over the variables in 𝑎 and 𝜎 such that
𝜎 ⊆ 𝜌, 𝑎𝜌 ∈ 𝐺𝑘, 𝑇𝑘 is defined on 𝑎𝜌, and 𝑇 (𝑎𝜌) ⋈ 𝜏 holds.
In other words, EVALUATE matches 𝑎⋈ on 𝐺𝑘, 𝑇𝑘, and 𝜏,
and it returns each match that extends 𝜎 and satisfies 𝑎⋈ and
𝜏. For efficiency, server 𝑘 should index the facts in 𝐺𝑘. Any
RDF indexing scheme can be used, and index lookup can be
modified to skip facts whose timestamps do not match 𝜏.

Finally, we assume that each server implements a func-
tion MATCHRULES(𝑓, 𝑃) that takes as input a fact 𝑓 and a
Datalog program 𝑃 . For each rule ℎ ← 𝑏1 ∧⋯ ∧ 𝑏𝑛 in 𝑃 ,
each body atom 𝑏𝑝 with 1 ≤ 𝑝 ≤ 𝑛, and each substitution
𝜎 over the variables of 𝑏𝑝 such that 𝑏𝑝𝜎 = 𝑓 , the function
returns the 4-tuple (𝜎, 𝑏𝑝, 𝑄, ℎ) where

𝑄 = 𝑏<1 ∧⋯ ∧ 𝑏<𝑝−1 ∧ 𝑏≤𝑝+1 ∧⋯ ∧ 𝑏≤𝑛 . (12)
Intuitively, MATCHRULES identifies each rule and each

pivot body atom 𝑏𝑝 that can be matched to 𝑓 via substitution
𝜎. This 𝜎 will be extended to all body atoms of the rule
by recursively matching all remaining atoms using function
EVALUATE. The annotations in (12) specify how to match
the remaining atoms without repetition: facts matched before
the pivot must have timestamps strictly smaller than the
timestamp of 𝑓 , and facts matched after the pivot must have
timestamps strictly smaller or equal to the timestamp of
𝑓 . The atoms of query (12) may need to be reordered to
obtain an efficient query plan. This can be achieved using
any known query planning technique, and further discussion
of this issue is out of scope of this paper.
4.3. Occurrence Mappings

As in the query answering approach based on dynamic
data exchange [45], each server 𝑘 must store indexes 𝜇𝑘,𝑠,
𝜇𝑘,𝑝, and 𝜇𝑘,𝑜 called occurrence mappings. Each of these
maps constants to (possibly empty) sets of integers identi-
fying servers. Intuitively, 𝜇𝑘,𝑠(𝑐) can be used on server 𝑘
to identify the servers on which constant 𝑐 occurs as the
subject of a fact. However, requiring each server to track
the location of all constants would mean that the servers’
memory use is determined by the size of the entire RDF
dataset, rather than the size of the partition element stored
in the servers. To remedy this, we allow each server to track
locations of certain constants; the exact conditions on which
constants must be tracked are formalised in Definition 4.1.
Roughly speaking, we require each server to keep track only
of constants occurring in the partition element stored in the
server, so the size of each occurrence mapping is bounded
by the size of the corresponding partition element.
Definition 4.1. Let 𝑃 be a program, let 𝐺𝐺𝐺 = 𝐺1,… , 𝐺𝓁 be
datasets, and let 𝜇𝜇𝜇 = 𝜇1,𝑠, 𝜇1,𝑝, 𝜇1,𝑜,… , 𝜇𝓁,𝑠, 𝜇𝓁,𝑝, 𝜇𝓁,𝑜 be a
collection of occurrence mappings.

A constant 𝑐 is relevant for 𝑃 , 𝐺𝐺𝐺, and index 𝑘 ∈ [1,𝓁] if
𝑐 occurs in the head of a rule of 𝑃 or in 𝐺𝑘 at any position.

Occurrence mappings 𝜇𝜇𝜇 are consistent with 𝑃 and 𝐺𝐺𝐺 if
𝑗 ∈ 𝜇𝑘,𝜋(𝑐) holds for all 𝑘, 𝑗 ∈ [1,𝓁], each position 𝜋 ∈ Π,
and each constant 𝑐 that is relevant for 𝑃 ,𝐺𝐺𝐺, and 𝑘 and that
occurs at position 𝜋 of a fact in 𝐺𝑗 .

Occurrence mappings 𝜇𝜇𝜇 satisfy the subject constraint if,
for each constant 𝑐 and each server 𝑘, set 𝜇𝑘,𝑠(𝑐) contains
at most one element, and 𝑗 ∈ 𝜇𝑘,𝑠(𝑐) implies that constant 𝑐
occurs in subject position of a fact in 𝐺𝑗 .

Occurrence mappings𝜇𝜇𝜇 are correct for 𝑃 and𝐺𝐺𝐺 if 𝜇𝜇𝜇 are
consistent with 𝑃 and 𝐺 and satisfy the subject constraint.

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 7 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

To simplify the presentation of our algorithm, we assume
that each 𝜇𝑘,𝜋 is defined on all constants. In practice, an
implementation can choose to explicitly store only the values
for the relevant constants, and use the empty set as the
default value for all other constants. Moreover, occurrence
mappings of one server are shared and possibly updated
by multiple threads of execution during materialisation. We
assume that mappings are accessed atomically: whenever
𝜇𝑘,𝜋(𝑐) is used in our algorithm, the result is the value of
mapping 𝜇𝑘,𝜋 on 𝑐 at a point in time.

We illustrate Definition 4.1 by an example involving the
following partition elements 𝐺1 and 𝐺2 and rule 𝑟.

𝐺1 = {⟨𝑎,𝑅, 𝑏⟩, ⟨𝑎,𝑅, 𝑑⟩, ⟨𝑑, 𝑆, 𝑐⟩} (13)
𝐺2 = {⟨𝑏, 𝑆, 𝑎⟩, ⟨𝑏, 𝑆, 𝑐⟩} (14)
𝑟 = ⟨𝑧, 𝑇 , 𝑥⟩ ← ⟨𝑥,𝑅, 𝑦⟩ ∧ ⟨𝑦, 𝑆, 𝑧⟩ (15)

Constant 𝑏 is relevant to server 1 because 𝑏 occurs in
𝐺1 (at any position). Consistency ensures that server 1 has
complete information about the whereabouts of constant 𝑏—
that is, 1 ∈ 𝜇1,𝑜(𝑏) and 2 ∈ 𝜇1,𝑠(𝑏) must hold. Intuitively,
since constant 𝑏 is relevant to server 1, there is a chance that
the body of some rule can be matched to a fact containing
𝑏, which can instantiate a variable in the rest of the rule
body. In our example, atom ⟨𝑥,𝑅, 𝑦⟩ in rule 𝑟 can be matched
to ⟨𝑎,𝑅, 𝑏⟩, which instantiates the second atom to ⟨𝑏, 𝑆, 𝑧⟩.
To continue matching the rule body, 2 ∈ 𝜇1,𝑠(𝑏) is needed
to instruct server 1 to forward the partial match to server 2
so that the latter server can potentially complete the match.
Thus, consistency ensures completeness of rule body eval-
uation by placing a lower bound on occurrence mappings.
Note that, say, 2 ∈ 𝜇1,𝑜(𝑑) is allowed to hold even though
constant 𝑑 does not occur in 𝐺2: this can only make server
1 send superfluous partial matches to server 2.

The subject constraint consists of two parts. The first part
ensures that all facts with the same subject are assigned to
one server. In our example, consistency ensures 1 ∈ 𝜇1,𝑠(𝑎),and the subject constraint ensures 𝜇1,𝑠(𝑎) = {1}—that is, all
facts where 𝑎 occurs in the subject position must occur in
𝐺1. Most distributed RDF systems group facts by subject for
performance (see Section 3.3), but our approach uses this ad-
ditionally to send each derived fact to the server containing
the fact’s subject. For example, when server 2 completes the
match from the previous paragraph and derives ⟨𝑎, 𝑇 , 𝑎⟩, it
knows that the fact should be sent to server 1. The second
part of the subject constraint ensures that the subject occur-
rence mappings do not contain superfluous servers, which
is also important for correct placement of derived facts.
Note that both servers 1 and 2 can derive ⟨𝑐, 𝑇 , 𝑑⟩. Now
let us assume that 𝜇1,𝑠(𝑐) = {1} (which is allowed by the
consistency condition), so the fact is recorded on server 1. In
contrast, let us assume that 𝜇2,𝑠(𝑐) = ∅ (which also satisfies
consistency). Then, server 2 has no information about where
to send ⟨𝑐, 𝑇 , 𝑑⟩, so it determines the destination by hashing
the fact’s subject. Now hashing 𝑐 can result in the fact being
sent to server 2, which would break the first part of the
subject constraint. To remedy this, our approach requires the
occurrences for the subject position to be exact.

The correctness condition just combines consistency and
the subject contrast, and ensuring that this property remains
preserved as new facts are derived is a key source of techni-
cal difficulty in our approach.

Allowing servers to track the location of relevant con-
stants only introduces one complication: when server 𝑘 re-
ceives a partial match 𝜎 from another server, the occurrence
mappings stored in server 𝑘 may not cover all constants in
𝜎. Potter et al. [45] solve this by accompanying each partial
match 𝜎 with a vector 𝜆𝜆𝜆 = 𝜆𝑠, 𝜆𝑝, 𝜆𝑜 of partial occurrences.
Whenever a server extends 𝜎 by matching an atom, it also
records in 𝜆𝜆𝜆 its local occurrences for each constant added to
𝜎 that can be used in the rest of the rule body. Occurrences
of the matched constants are propagated together with partial
matches, which ensures that each server has access to occur-
rences of constants in atoms that are yet to be matched.
4.4. Communication Infrastructure and Messages

We assume that each server in the cluster can send a
message 𝑚 to a destination server 𝑑 by calling SEND(𝑚, 𝑑).
This function can return immediately, and the receiver can
process the message later—that is, communication can be
asynchronous. Also, our core algorithm is correct as long
as each sent message is processed eventually—that is, mes-
sages sent between a pair of servers can be processed in
an arbitrary order without affecting correctness. However,
the approach used to detect termination (which is largely or-
thogonal to our core algorithm) can introduce other message
types and might impose constraints on the order of message
processing; we discuss this in more detail in Section 4.5.

Message 𝖯𝖠𝖱[𝑖, 𝜎,𝑄, ℎ, 𝜏,𝜆𝜆𝜆] informs a server that 𝜎 is
a partial match obtained by matching some fact with times-
tamp 𝜏 to the body of a rule with head atom ℎ; moreover, the
remaining atoms to be matched are given by an annotated
query 𝑄 starting from the atom with index 𝑖. The partial
occurrences of the constants in 𝜎 that may be needed when
matching the remaining atoms of 𝑄 are recorded in 𝜆𝜆𝜆.

Message 𝖥𝖢𝖳[𝑓, 𝜏,𝜆𝜆𝜆] says that 𝑓 is a new fact to be
stored at server processing the message. Timestamp 𝜏 re-
flects when the message was sent, and 𝜆𝜆𝜆 records the partial
occurrences of the constants in 𝑓 .

Message 𝖮𝖢𝖢[𝑓,𝐷, 𝑘ℎ, 𝜏,𝜆𝜆𝜆] says that 𝑓 is a new fact
to be stored at server 𝑘ℎ. Set 𝐷 identifies servers whose
occurrences may need updating before 𝑓 can be added to
𝐺𝑘ℎ . Timestamp 𝜏 reflects when the message was sent, and
𝜆𝜆𝜆 records the partial occurrences of the constants in 𝑓 .

Potter et al. [45] observed that 𝖯𝖠𝖱messages correspond
to partial join results so a large number of such messages
can be produced during query evaluation. For asynchronous
processing, the 𝖯𝖠𝖱messages may need to be buffered on the
receiving server, which can require considerable memory.
They also presented a flow control mechanism that can
restrict memory consumption at each server without jeop-
ardising completeness. This solution is directly applicable
in our approach as well, so we do not discuss it further.

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 8 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

4.5. Ensuring Termination
Termination of our approach follows in the same way as

in a centralised setting. In particular, the set of facts stored
in each server grows monotonically and duplicate facts are
removed; since the number of constants in the input dataset
is finite, each server can derive at most finitely many facts.
Analogously, occurrence mappings grow monotonically as
well, so each server can end up containing the maximal
occurrence mappings, which are clearly finite as well. Thus,
at some point in time, each server will run out of facts
to process, at which point it will not generate any further
messages. Once all messages queued in the system have been
processed, all servers can terminate. However, no server in
our approach keeps track of the progress of other servers, so
detecting that all servers are idle is not straightforward. We
next summarise a well-known solution to this problem.

When messages between each pair of servers are guaran-
teed to be processed in the order in which they are sent (as is
the case in our implementation), one can use Dijkstra’s token
ring algorithm [11]. All servers in the cluster are numbered
from 1 to 𝓁 and are arranged in a ring (i.e., server 1 comes
after server 𝓁). Each server can be black or white, and the
servers will pass between them a token that can also be black
or white. Initially, all servers are white and server 1 has a
white token. The algorithm proceeds as follows.

• When server 1 has the token and it becomes idle (i.e.,
it has no pending work or messages), it sends a white
token to the next server in the ring.

• When a server other than 1 has the token and it
becomes idle, the server changes the token’s colour
to black if the server is itself black (and it leaves
the token’s colour unchanged otherwise); the server
forwards the token to the next server in the ring; and
the server changes its colour to white.

• A server 𝑖 turns black whenever it sends a message
(i.e., not just a token message) to a server 𝑗 < 𝑖.

• All servers can terminate when server 1 receives a
white token.

The Dijkstra–Scholten algorithm [12] can be used when
messages sent between a pair of servers are not guaranteed
to be processed in the order in which they are sent. We do
not use this algorithm in our implementation, so we do not
discuss the details any further.
4.6. The Algorithm

With these definitions in mind, Algorithm 1 presents
our approach to distributed Datalog materialisation. Before
starting, each server 𝑘 receives a copy of the program 𝑃 to be
materialised, loads the corresponding partition element into
its local store 𝐺𝑘, sets the timestamp of each fact in 𝐺𝑘 to
zero, initialises its occurrence mappings 𝜇𝑘,𝑠, 𝜇𝑘,𝑝, and 𝜇𝑘,𝑜to be correct for 𝑃 and 𝐺1,… , 𝐺𝓁 as per Definition 4.1, and
initialises its local clock 𝐶𝑘 to zero. The server then starts
an arbitrary number of server threads, each executing the

SERVERTHREAD function. Each thread repeatedly processes
an unprocessed fact 𝑓 in 𝐺𝑘 or an unprocessed message 𝑚;
if both are available, ties are broken arbitrarily. Otherwise,
termination is checked as discussed in Section 4.5.

The core of our approach involves matching body atoms
of the rules in the program. Rule matching on server 𝑘 can
commence in one of the following two ways. First, an unpro-
cessed fact 𝑓 can be extracted from the partition element 𝐺𝑘and passed to the PROCESSFACT function. To start matching
the rules to 𝑓 , our algorithm calls MATCHRULES to identify
all rules where one pivot atom matches to 𝑓 via a partial
answer 𝜎, and it uses the FINISHMATCH function to extend
𝜎 to a full answer. Second, a 𝖯𝖠𝖱 message can be received.
The message contains a partial answer 𝜎, and it instructs
the server to continue matching a rule body from atom 𝑖.
Thus, the server evaluates atom 𝑎⋈𝑖

𝑖 in 𝐺𝑘 and 𝑇𝑘 w.r.t. 𝜏
to enumerate all partial answers 𝜎′, and for each it uses the
FINISHMATCH function to extend 𝜎′ to a full answer.

Function FINISHMATCH finishes matching atom 𝑎𝑙𝑎𝑠𝑡 by
(i) extending 𝜆𝜆𝜆 with the occurrences of all constants that
might be relevant for the remaining body atoms or the rule
head, and (ii) either matching the next body atom or deriving
the rule head. For the former, when variable 𝑥 is matched to
a constant 𝑐, the occurrences of 𝑐 can be needed to match the
rest of the rule only if 𝑥 occurs in the remaining body atoms
or in the head atom of the rule being matched. Therefore,
the algorithm identifies in line 17 each such variable 𝑥 and
adds the occurrences of 𝑥𝜎 to 𝜆𝜋 for each position 𝜋. Now
if 𝑄 has been matched completely (line 18), the server also
ensures that the partial occurrences are correctly defined for
the constants occurring in the rule head (lines 19–20), it
identifies the server 𝑘ℎ that should receive the derived fact as
described in Section 4.3, and sends the 𝖥𝖢𝖳 message to 𝑘ℎ.
Otherwise, atom 𝑎𝑖+𝑖𝜎 must be matched next. To determine
the set 𝐷 of servers that could possibly match 𝑎𝑖+𝑖𝜎, server
𝑘 intersects the occurrences of each constant from 𝑎𝑖+𝑖𝜎(line 26) and sends a 𝖯𝖠𝖱 message to all servers in 𝐷.

A 𝖥𝖢𝖳 message informs server 𝑘 that fact 𝑓 is a newly
derived fact that should be added to 𝐺𝑘. The main chal-
lenge is to ensure that adding 𝑓 to 𝐺𝑘 does not affect the
correctness condition from Definition 4.1. To this end, our
algorithm identifies in lines 31–36 the set of servers𝐷whose
occurrences might need updating. In particular, if 𝑓 contains
a constant 𝑐 = 𝑓 |𝜋 at position 𝜋 and server 𝑘 does not occur
in the local occurrences 𝜇𝑘,𝜋(𝑐), then all servers containing
constant 𝑐 at any position might need updating (line 36);
moreover, if 𝑐 occurs in the head of a rule in 𝑃 , then all
servers need to be informed of the location of 𝑐 (line 34).
Once the set 𝐷 of candidate servers has been constructed,
an 𝖮𝖢𝖢 message is sent to some server in 𝐷; since the
occurrences of all servers must be updated before fact 𝑓 is
added to partition element 𝐺𝑘, the message is sent to server
𝑘ℎ only if 𝑘ℎ is the only remaining server in 𝐷.

An 𝖮𝖢𝖢 message informs server 𝑘 that fact 𝑓 will be
added to 𝐺𝑘ℎ so the occurrences of the constants in 𝑓 might
need updating. Set 𝐷 lists the remaining servers that must be
informed. A key difficulty arises when constant 𝑐 becomes

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 9 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

Algorithm 1 Distributed Materialisation Algorithm at Server 𝑘 in a cluster of 𝓁 servers
1: function SERVERTHREAD
2: while cannot terminate do
3: if 𝐺𝑘 contains an unprocessed fact 𝑓 , or a message 𝑚 is pending then
4: PROCESSFACT(𝑓, 𝑇𝑘(𝑓)) or PROCESSMESSAGE(𝑚), as appropriate
5: else if the termination token has been received then
6: Process the termination token
7: function PROCESSFACT(𝑓, 𝜏)
8: SYNCHRONISE(𝜏)
9: for each (𝜎, 𝑎,𝑄, ℎ) ∈ MATCHRULES(𝑓, 𝑃) do

10: FINISHMATCH(0, 𝜎, 𝑎, 𝑄, ℎ, 𝜏,∅∅∅) ⊳ ∅∅∅ is the vector of empty partial occurrences
11: function PROCESSMESSAGE(𝖯𝖠𝖱[𝑖, 𝜎,𝑄, ℎ, 𝜏,𝜆𝜆𝜆]) where 𝑄 = 𝑎⋈1

1 ∧⋯ ∧ 𝑎⋈𝑛
𝑛 and 𝜆𝜆𝜆 = 𝜆𝑠, 𝜆𝑝, 𝜆𝑜

12: SYNCHRONISE(𝜏)
13: for each substitution 𝜎′ ∈ EVALUATE(𝑎⋈𝑖

𝑖 , 𝜏, 𝐺𝑘, 𝑇𝑘, 𝜎) do
14: FINISHMATCH(𝑖, 𝜎′, 𝑎𝑖, 𝑄, ℎ, 𝜏,𝜆𝜆𝜆)
15: function FINISHMATCH(𝑖, 𝜎, 𝑎𝑙𝑎𝑠𝑡, 𝑄, ℎ, 𝜏,𝜆𝜆𝜆) where 𝑄 = 𝑎⋈1

1 ∧⋯ ∧ 𝑎⋈𝑛
𝑛 and 𝜆𝜆𝜆 = 𝜆𝑠, 𝜆𝑝, 𝜆𝑜

16: for each position 𝜋 ∈ Π and each variable 𝑥 that occurs in 𝑎𝑙𝑎𝑠𝑡 and either in ℎ or in some 𝑎𝑗 with 𝑗 > 𝑖 do
17: if 𝜆𝜋 is undefined on 𝑥𝜎 then Extend 𝜆𝜋 with the mapping 𝑥𝜎 ↦ 𝜇𝑘,𝜋(𝑥𝜎)
18: if 𝑖 = 𝑛 then
19: for each position 𝜋 ∈ Π and each constant 𝑐 occurring in ℎ do
20: if 𝜆𝜋 is undefined on 𝑐 then Extend 𝜆𝜋 with the mapping 𝑐 ↦ 𝜇𝑘,𝜋(𝑐)
21: if 𝜆𝑠(ℎ𝜎|𝑠) = ∅ then 𝑘ℎ ∶= ℎ𝜎|𝑠 mod 𝓁
22: else 𝑘ℎ ∶= the singleton element in 𝜆𝑠(ℎ𝜎|𝑠)
23: PROCESSORSENDMESSAGE(𝖥𝖢𝖳[ℎ𝜎, 𝐶𝑘, 𝜆𝜆𝜆], 𝑘ℎ)
24: else
25: 𝐷 ∶= the set of all servers
26: for each position 𝜋 ∈ Π such that 𝑎𝑖+1𝜎|𝜋 is a constant 𝑐 do 𝐷 ∶= 𝐷 ∩ 𝜆𝜋(𝑐)
27: for each 𝑑 ∈ 𝐷 do PROCESSORSENDMESSAGE(𝖯𝖠𝖱[𝑖 + 1, 𝜎, 𝑄, ℎ, 𝜏,𝜆𝜆𝜆], 𝑑)
28: function PROCESSMESSAGE(𝖥𝖢𝖳[𝑓, 𝜏,𝜆𝜆𝜆]) where 𝜆𝜆𝜆 = 𝜆𝑠, 𝜆𝑝, 𝜆𝑜
29: SYNCHRONISE(𝜏)
30: 𝐷 ∶= {𝑘}
31: for each position 𝜋 ∈ Π and 𝑐 = 𝑓 |𝜋 such that 𝑘 ∉ 𝜇𝑘,𝜋(𝑐) do
32: Add 𝑘 to 𝜆𝜋(𝑐)
33: if 𝑐 occurs in the head of a rule in 𝑃 then
34: Extend 𝐷 to contain all servers in the cluster
35: else
36: for each position 𝜋′ ∈ Π do Add 𝜆𝜋′ (𝑐) ∪ 𝜇𝑘,𝜋′ (𝑐) to 𝐷
37: Remove an element 𝑑 from 𝐷, preferring any element over 𝑘 if possible
38: PROCESSORSENDMESSAGE(𝖮𝖢𝖢[𝑓,𝐷, 𝑘, 𝐶𝑘, 𝜆𝜆𝜆], 𝑑)
39: function PROCESSMESSAGE(𝖮𝖢𝖢[𝑓,𝐷, 𝑘ℎ, 𝜏,𝜆𝜆𝜆]) where 𝜆𝜆𝜆 = 𝜆𝑠, 𝜆𝑝, 𝜆𝑜
40: SYNCHRONISE(𝜏)
41: for each position 𝜋 ∈ Π and each constant 𝑐 in 𝑓 do
42: Atomically compute 𝑀 ∶= 𝜇𝑘,𝜋(𝑐) ⧵ 𝜆𝜋(𝑐) and then add 𝜆𝜋(𝑐) to 𝜇𝑘,𝜋(𝑐)
43: Add 𝑀 to both 𝐷 and 𝜆𝜋(𝑐)
44: if 𝐷 = ∅ then Atomically check whether 𝑓 ∉ 𝐺𝑘, and if so, add 𝑓 to 𝐺𝑘 and set 𝑇𝑘(𝑓) to 𝐶𝑘
45: else
46: Remove an element 𝑑 from 𝐷 preferring any element over 𝑘ℎ if possible
47: SEND(𝖮𝖢𝖢[𝑓,𝐷, 𝑘ℎ, 𝐶𝑘, 𝜆𝜆𝜆], 𝑑)
48: function SYNCHRONISE(𝜏)
49: Atomically check if 𝐶𝑘 ≤ 𝜏, and set 𝐶𝑘 ∶= 𝜏 + 1 if so
50: function PROCESSORSENDMESSAGE(𝑚, 𝑑)
51: if 𝑑 = 𝑘 then PROCESSMESSAGE(𝑚) else SEND(𝑚, 𝑑)

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 10 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

relevant to several distinct servers at roughly the same time,
so several 𝖮𝖢𝖢 messages referring to the same 𝑐 are circu-
lating simultaneously. This problem is addressed as follows.
Upon receiving an 𝖮𝖢𝖢 message for a fact 𝑓 containing
a constant 𝑐 at position 𝜋, set 𝜆𝜋(𝑐) contains the servers
that knew about 𝑐 when 𝑓 was derived. Moreover, another
intervening 𝖮𝖢𝖢 message for constant 𝑐 will have already
updated 𝜇𝑘,𝜋(𝑐); thus, 𝑀 ∶= 𝜇𝑘,𝜋(𝑐) ⧵ 𝜆𝜋(𝑐) identifies the
servers whose occurrences may need additional updating.
After computing 𝑀 , server 𝑘 updates its 𝜇𝑘,𝜋(𝑐) by adding
𝜆𝜋(𝑐); these steps must be performed atomically so that, if
two messages concurrently update 𝜇𝑘,𝜋(𝑐), set 𝑀 computed
in the second message contains the servers added by the
first message. This set 𝑀 is then added to 𝐷 and 𝜆𝜋(𝑐)(line 43). If set 𝐷 is empty at that point, then 𝑘 = 𝑘ℎ holds
due to how servers are extracted from 𝐷 in lines 37 and 46;
consequently, all servers have been updated and fact 𝑓 can be
added to the local partition element 𝐺𝑘 (line 44). Otherwise,
the 𝖮𝖢𝖢 message is forwarded to the remaining servers in
𝐷 ensuring that 𝑘ℎ is processed last (lines 46 and 47).

The following theorem captures the formal properties of
our algorithm—that is, the algorithm correctly computes the
materialisation and exhibits the nonrepetition property. The
proof is given in full in Appendix A.
Theorem 4.1. Let 𝐼 be a dataset, let 𝑃 be a Datalog
program, and let 𝐺1,… , 𝐺𝓁 be the datasets obtained by
applying Algorithm 1 to an arbitrary partition of 𝐼 as
specified in this section. Then, 𝑃∞(𝐼) = 𝐺1 ∪⋯ ∪ 𝐺𝓁 , and
moreover the algorithm exhibits the nonrepetition property.

4.7. Example
To clarify the ideas presented in this paper, we next

present a simple example that illustrates the flow of pro-
cessing in our system. To make the example manageable,
we consider the rule 𝑟 from Section 4.3 and just two servers
with partition elements 𝐺1 and 𝐺2, each initially containing
juts a single fact as shown below.

𝐺1 = {⟨𝑎,𝑅, 𝑏⟩} (16)
𝐺2 = {⟨𝑏, 𝑆, 𝑐⟩} (17)
𝑟 = ⟨𝑧, 𝑇 , 𝑥⟩ ← ⟨𝑥,𝑅, 𝑦⟩ ∧ ⟨𝑦, 𝑆, 𝑧⟩ (18)

The timestamps of both facts are initialised to zero, and the
occurrence mappings for the subject and object positions are
initialised as follows. To make the example easier to follow,
we ignore the occurrence mappings for predicate positions,
and we do not consider constants occurring in such positions.

𝜇𝑠,1 = {𝑎 ↦ {1}, 𝑏 ↦ {2}} (19)
𝜇𝑜,1 = {𝑎 ↦ ∅, 𝑏 ↦ {1}} (20)
𝜇𝑠,2 = {𝑏 ↦ {2}, 𝑐 ↦ ∅} (21)
𝜇𝑜,2 = {𝑏 ↦ {1}, 𝑐 ↦ {2}} (22)

Note that constants 𝑎 and 𝑏 are relevant to server 1, so, to
satisfy Definition 4.1, 𝜇𝑠,1 and 𝜇𝑜,1 must contain mappings
for these two constants. Analogously, 𝜇𝑠,2 and 𝜇𝑜,2 must
cover constants 𝑏 and 𝑐 since these are relevant to server 2.

4.7.1. Rule Matching and Message Flow
We now illustrate the process of rule matching and the

flow of messages in our system. Both servers start match-
ing the rule 𝑟 in their partition element. Server 1 matches
atom ⟨𝑥,𝑅, 𝑦⟩ to fact ⟨𝑎,𝑅, 𝑏⟩ in 𝐺1, which produces a
partial match 𝜎1 = {𝑥 ↦ 𝑎, 𝑦 ↦ 𝑏}. The body is not yet
fully matched, so server 1 identifies the set 𝐷 of candidate
servers that can finish the match (lines 25–26): 𝜇𝑠,1(𝑏) = {2}
identifies server 2 as a viable candidate. Note that server
2 has no information about the occurrences of constant 𝑎,
but this information will be needed once server 2 derives
⟨𝑐, 𝑇 , 𝑎⟩. Thus, server 1 copies its local occurrences for 𝑎
and 𝑏 into partial occurrences 𝜆𝑠 and 𝜆𝑜 (lines 16–17), and
it then sends the 𝖯𝖠𝖱 message to server 2 that contains
the partial match 𝜎1, timestamp 𝜏1 = 0, annotated query
𝑄1 = ⟨𝑦, 𝑆, 𝑧⟩≤, and the following partial occurrences:

𝜆1𝑠 = {𝑎 ↦ {1}, 𝑏 ↦ {2}} (23)
𝜆1𝑜 = {𝑎 ↦ ∅, 𝑏 ↦ {1}}. (24)

Server 2 eventually processes this 𝖯𝖠𝖱 message (line 11)
and attempts to match the partially instantiated second atom
⟨𝑦, 𝑆, 𝑧⟩≤𝜎1 = ⟨𝑏, 𝑆, 𝑧⟩≤ in 𝐺2 (line 13). Fact ⟨𝑏, 𝑆, 𝑐⟩ is a
match since its timestamp is equal to zero, which is less or
equal to 𝜏1. This produces 𝜎2 = 𝜎1 ∪ {𝑧 ↦ 𝑐}, and server 2
extends the partial occurrences as follows (lines 16–17):

𝜆2𝑠 = {𝑎 ↦ {1}, 𝑏 ↦ {2}, 𝑐 ↦ ∅} (25)
𝜆2𝑜 = {𝑎 ↦ ∅, 𝑏 ↦ {1}, 𝑐 ↦ {2}}. (26)

The match is now complete (lines 19–20), so server 2 must
determine where to store the derived fact ⟨𝑐, 𝑇 , 𝑎⟩. Since
𝜆2𝑠(𝑐) = ∅, the server knows that no server in the system
contains constant 𝑐 in subject position, so it hashes the
subject (line 21). Let us assume that this results in 𝑘ℎ = 2—
that is, the fact should be stored on server 2. Server 2 thus
forwards the 𝖥𝖢𝖳 message to itself containing fact ⟨𝑐, 𝑇 , 𝑎⟩
timestamp 𝜏1, and partial occurrences 𝜆𝜆𝜆2 (line 23).

Adding this fact to 𝐺2 will change the occurrences as
constants 𝑎 and 𝑐 will appear on server 2 in object and
subject positions, respectively. To maintain the correctness
property of Definition 4.1, server 2 must disseminate the new
occurrences to the relevant servers before the fact can be
added to 𝐺2. The server updates the partial occurrence to
reflect that the fact will be added to server 2 (line 32), thus
producing the following partial occurrences:

𝜆3𝑠 = {𝑎 ↦ {1}, 𝑏 ↦ {2}, 𝑐 ↦ {2}} (27)
𝜆3𝑜 = {𝑎 ↦ {2}, 𝑏 ↦ {1}, 𝑐 ↦ {2}}. (28)

Moreover, server 2 identifies which servers need to be in-
formed of the change by combining the partial and local
occurrences of all constants occurring in the derived fact
(lines 31–36). This produces 𝐷 = {1, 2}, so server 2 sends
an 𝖮𝖢𝖢 message to server 1 (line 38) containing the derived
fact and the updated partial occurrences 𝜆3𝑠 and 𝜆3𝑜 .

This message informs server 1 that fact ⟨𝑐, 𝑇 , 𝑎⟩ is about
to be added to 𝐺2, so server 1 updates its local occurrences

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 11 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

for each position and each constant in the fact (lines 41–43).
The resulting occurrences on server 1 are as follows:

𝜇𝑠,1 = {𝑎 ↦ {1}, 𝑏 ↦ {2}, 𝑐 ↦ {2}} (29)
𝜇𝑜,1 = {𝑎 ↦ {2}, 𝑏 ↦ {1}, 𝑐 ↦ {2}}. (30)

Server 1 then forwards the 𝖮𝖢𝖢 message further to server 2
(line 47), which eventually adds ⟨𝑐, 𝑇 , 𝑎⟩ to 𝐺2 (line 44).
4.7.2. Nonrepetition of Derivations

In addition to the steps outlined in Section 4.7.1, server 2
also matches rule 𝑟 in partition element 𝐺2, which produces
the partial match 𝜎3 = {𝑦 ↦ 𝑏, 𝑧 ↦ 𝑐}. Thus, server 2 will
sent a 𝖯𝖠𝖱 message to server 1 containing 𝜎3, timestamp
𝜏2 = 0, and annotated query 𝑄2 = ⟨𝑥,𝑅, 𝑦⟩<. When server
1 processes this message, the partially instantiated atom
⟨𝑎,𝑅, 𝑦⟩< matches to ⟨𝑎,𝑅, 𝑏⟩ in terms of its structure, but
not in terms of the timestamp. Therefore, the EVALUATE
function returns no substitutions and consequently matching
stops at this point. As a result of this, server 1 does not derive
fact ⟨𝑐, 𝑇 , 𝑎⟩—that is, this fact is derived only on server 2.

5. Streaming Partitioning of RDF Data
We now consider how to partition To this end, in Sec-

tion 5.1 we review the drawbacks of the existing partition-
ing schemes and discuss our technical challenges. Then, in
Sections 5.2 and 5.3, we present two new techniques that
partition RDF data in a streaming fashion—that is, without
loading the entire dataset in memory.
5.1. Motivation

Approaches to partitioning RDF data are often based
on subject hashing. The main benefit of such approaches
is its simplicity: just one pass over the dataset is needed,
and just one fact must be kept in memory at any point in
time. However, subject hashing does not take into account
the structure of an RDF dataset, so there is no attempt to
ensure locality of subject–object or object–object joins.

A number of partitioning approaches are based on vari-
ants of min-cut graph partitioning. Such approaches take the
structural properties of an RDF dataset into account and are
thus more likely to partition a dataset into tightly connected
subsets. However, the time and memory requirements of
such methods are often prohibitive. Typically, an entire
dataset is loaded into a single server so that one can apply
a graph partitioner such as METIS;2 however, this defeats
the main objective of distributing the data, which is to pro-
cess large datasets using commodity servers. This drawback
can, at least in principle, be addressed by using distributed
partitioner such as ParMETIS. Nevertheless, min-cut graph
partitioning is NP-hard [9] so, while implementations rarely
solve this problem exactly, partitioning often takes a con-
siderable amount of time and memory in practice. Thus, the
questions of how to partition RDF data effectively, and how
this affects distributed reasoning, are still largely open.

2http://glaros.dtc.umn.edu/gkhome/home-of-metis

To answer the former question, we draw inspiration the
literature on streaming graph partitioning [51, 43, 60, 52, 36,
37, 42] methods, where the aim is to produce good partitions
while iterating over the graph edges a fixed number of
times. The memory usage of these approaches is typically
determined by the number of vertices in the graph, which
is usually at least an order of magnitude smaller than the
number of edges. This results in a much smaller memory
footprint for partitioning than with, say, METIS. The HDRF
[43] algorithm was recommended as particularly suitable for
graphs with power-law degree distribution [42], which is
often present in RDF datasets. Moreover, the 2PS [37] al-
gorithm was shown to sometimes outperform HDRF. Thus,
we use HDRF and 2PS as the basis for our work.

Streaming partitioning algorithms, however, were de-
signed for general (directed or undirected) graphs, so ap-
plying them straightforwardly to RDF is unlikely to produce
good results: facts with the same subject would not neces-
sarily be placed on the same server, which, as we explained
in Section 3, is critical. To remedy this, we adapt HDRF and
2PS to take the specifics of RDF into account, but without
compromising the quality of the produced partitions.
5.2. The HDRF3 Algorithm

We now present our HDRF3 algorithm for streaming par-
titioning of RDF data. We follow the ‘high degree replicated
first’ principle from the HDRF algorithm for general graphs
[43]. In Section 5.2.1 we briefly discuss the original idea,
and in Section 5.2.2 we adapt these principles to RDF.
5.2.1. The Original HDRF Algorithm

The HDRF algorithm was developed for scale-free undi-
rected graphs, where the distribution of vertex degrees ex-
hibits (or is close to) the power-law distribution. Such graphs
contain few high-degree vertices, and many low-degree ver-
tices. HDRF aims to replicate (i.e., assign to more than one
server) vertices with higher degrees so that a smaller number
of vertices has to be replicated overall. The algorithm pro-
cesses sequentially the edges of the input graph and assigns
them to servers. For each server 𝑘 ∈ {1,… ,𝓁}, the algo-
rithm maintains the number 𝑁𝑘 of edges currently assigned
to server 𝑘; all of 𝑁𝑘 are initialised to zero. Moreover, for
each vertex 𝑣, the algorithm maintains the partial degree
𝑑𝑒𝑔(𝑣) and the partial replication set 𝐴(𝑣) in the subgraph
processed thus far. For each vertex 𝑣, the degree 𝑑𝑒𝑔(𝑣) is
initialised to zero, and 𝐴(𝑣) is initialised to the empty set. To
assign an undirected edge {𝑣,𝑤}, the algorithm first incre-
ments 𝑑𝑒𝑔(𝑣) and 𝑑𝑒𝑔(𝑤), and then for each candidate server
𝑘 ∈ {1,… ,𝓁} it computes the score 𝐶(𝑣,𝑤, 𝑘). Finally, the
algorithm sends the edge {𝑣,𝑤} to the server 𝑘 with the
highest score 𝐶(𝑣,𝑤, 𝑘), increments 𝑁𝑘, and updates sets
𝐴(𝑣) and 𝐴(𝑤) to contain 𝑘.

The score𝐶(𝑣,𝑤, 𝑘) consists of two parts,𝐶𝑅𝐸𝑃 (𝑣,𝑤, 𝑘)
and 𝐶𝐵𝐴𝐿(𝑘). The former estimates the impact that placing
{𝑣,𝑤} on server 𝑘 has on replication and is computed as

𝐶𝑅𝐸𝑃 (𝑣,𝑤, 𝑘) = 𝑔(𝑣,𝑤, 𝑘) + 𝑔(𝑤, 𝑣, 𝑘),

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 12 of 29

http://glaros.dtc.umn.edu/gkhome/home-of-metis

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

where

𝑔(𝑣,𝑤, 𝑘) =

{

1 + 𝑑𝑒𝑔(𝑤)
𝑑𝑒𝑔(𝑣)+𝑑𝑒𝑔(𝑤) if 𝑘 ∈ 𝐴(𝑣),

0 otherwise.
To understand the intuition behind this formula, assume
that vertex 𝑣 occurs only on server 𝑘, vertex 𝑤 occurs
only on server 𝑘′, and 𝑑𝑒𝑔(𝑣) > 𝑑𝑒𝑔(𝑤). We then have
𝑔(𝑣,𝑤, 𝑘) < 𝑔(𝑤, 𝑣, 𝑘′), which ensures that edge {𝑣,𝑤} is
sent to server 𝑘′—that is, vertex 𝑣 is replicated to server 𝑘′, in
line with our desire to replicate higher-degree vertices. The
sum 𝑑𝑒𝑔(𝑣) + 𝑑𝑒𝑔(𝑤) in the denominator of the formula for
𝑔(𝑣,𝑤, 𝑘) normalises the degrees of 𝑣 and 𝑤.

Considering 𝐶𝑅𝐸𝑃 (𝑣,𝑤, 𝑘) only would risk producing
partitions of unbalanced sizes. Therefore, the second part
of the score is used to favour assigning edge {𝑣,𝑤} to the
currently least loaded server using formula

𝐶𝐵𝐴𝐿(𝑘) =
𝑚𝑎𝑥𝑠𝑖𝑧𝑒 −𝑁𝑘

𝜖 + 𝑚𝑎𝑥𝑠𝑖𝑧𝑒 − 𝑚𝑖𝑛𝑠𝑖𝑧𝑒
,

where 𝑚𝑎𝑥𝑠𝑖𝑧𝑒 and 𝑚𝑖𝑛𝑠𝑖𝑧𝑒 are the maximal and minimal,
respectively, possible partition sizes.

Scores 𝐶𝑅𝐸𝑃 (𝑣,𝑤, 𝑘) and 𝐶𝐵𝐴𝐿(𝑘) are finally combined
using a fixed weighting factor 𝜆 as

𝐶(𝑣,𝑤, 𝑘) = 𝐶𝑅𝐸𝑃 (𝑣,𝑤, 𝑘) + 𝜆 ⋅ 𝐶𝐵𝐴𝐿(𝑘)

Thus, 𝜆 allows us to control how important is balancing
partition sizes versus achieving low replication factors.

The version of the algorithm presented above makes just
one pass over the graph edges, and 𝑔(𝑣,𝑤, 𝑘) and 𝑔(𝑤, 𝑣, 𝑘)
are computed using the partial vertex degrees (i.e., degrees
in the subset of the graph processed thus far). The authors
of HDRF also discuss a variant where exact degrees are
computed in a preprocessing pass, and they show empirically
that this does not substantially affect the partition quality.
5.2.2. Adapting the Algorithm to RDF Graphs

Several problems need to be addressed to adapt HDRF to
RDF. A minor issue is that RDF facts correspond to labelled
directed edges, which we address by ignoring the predicate
component of facts. A more important problem is to ensure
that all facts with the same subject are placed on the same
server. To achieve this, we compute the destination for all
facts with subject 𝑠 the first time we see such a fact.

The pseudo-code of HDRF3 is shown in Algorithm 2.
It takes as input a parameter 𝛼 determining the maximal
acceptable imbalance in partition element sizes, the balance
parameter 𝜆 as in HDRF, and another parameter 𝛿 that we
describe shortly. The algorithm uses a preprocessing pass
over 𝐺 (not shown in the pseudo-code), where it determines
the size of the dataset |𝐺|, and the out-degree |𝐺+(𝑐)| and
the degree |𝐺(𝑐)| of each constant 𝑐 in 𝐺. The algorithm also
maintains (i) the replication set𝐴(𝑐) for each constant, which
is initially empty, (ii) a mapping 𝑇 of constants occurring in
subject position to servers, which is initially undefined on all
constants, and (iii) the numbers 𝑁1,… , 𝑁𝓁 and 𝐶1,… , 𝐶𝓁of facts and constants, respectively, assigned to servers thus
far, all of which are initially set to zero.

Our algorithm uses the PROCESSFACT function to assign
each fact ⟨𝑠, 𝑝, 𝑜⟩ ∈ 𝐺 to a server. Mapping 𝑇 keeps track
of the server that will receive facts with a particular subject.
Thus, if 𝑇 (𝑠) is undefined (line 53), the algorithm sets 𝑇 (𝑠) to
the server with the highest score (line 54) in a way analogous
to HDRF. All facts with the same subject encountered later
will be assigned to server 𝑇 (𝑠), so counter 𝑁𝑇 (𝑠) is updated
with the out-degree of 𝑠 (line 55). Finally, the fact is sent to
server 𝑇 (𝑠) (line 56), and the replication sets of 𝑠 and 𝑜 and
the number of constants 𝐶𝑇 (𝑠) on server 𝑇 (𝑠) are updated if
needed (lines 57 and 58).

The score of sending fact ⟨𝑠, 𝑝, 𝑜⟩ to server 𝑘 is calculated
as in HDRF. The replication part 𝐶𝑅𝐸𝑃 of the score is
computed in lines 61 and 62. Unlike the original HDRF
algorithm, the first time we encounter a constant 𝑠, we
determine the target server for all facts with subject 𝑠 in the
rest of the input; thus, knowing the degree of 𝑠 in advance
allows us to take into account the impact of all future allo-
cations of facts with subject 𝑠 to server 𝑇 (𝑠). Moreover, we
observed empirically that reasoning tends to be faster when
partition elements have roughly similar average constant
degrees. Function DEG estimates the current average degree
of constants in server 𝑘 as a quotient of the currently numbers
of facts (𝑁𝑘) and constants (𝐶𝑘) assigned to server 𝑘. Then,
in lines 61 and 62, 𝐶𝑅𝐸𝑃 is updated only if the average
degree of server 𝑘 is close (i.e., within the range defined by
the parameter 𝛿) to the minimal average degree.

Line 63 computes the balance factor by observing that a
partition element can have at most 𝛼|𝐺|∕𝓁 facts.

Finally,𝐶𝑅𝐸𝑃 and𝐶𝐵𝐴𝐿 are combined using 𝜆 in line 64.
Unlike in the original HDRF algorithm, factor ∑𝑘𝑁𝑘∕|𝐺|

ensures that partition balance grows in importance towards
the end of partitioning.

As we mentioned in Section 2, balancing partition sizes
while minimising the replication factor is computationally
hard, so the minimality requirement is typically dropped.
The following result shows that Algorithm 2 honours the
balance requirements, provided that 𝛼 and 𝜆 are chosen in
a particular way. The proof is given in Appendix B.
Proposition 5.1. Algorithm 2 produces a partition that
satisfies |𝐺𝑘| ≤ 𝛼 |𝐺|

𝓁
for each 1 ≤ 𝑘 ≤ 𝓁 whenever 𝛼 and 𝜆

are selected such that

𝛼 > 1+𝓁
max𝑐 |𝐺+(𝑐)|

|𝐺|

and 𝜆 ≥ 4𝛼

𝓁
(

𝛼−1
𝓁

− max𝑐 |𝐺+(𝑐)|
|𝐺|

)2
.

5.3. The 2PS3 Algorithm
We now present our 2PS3 algorithm for RDF, which

adapts the two-phase streaming algorithm 2PS [37]. In Sec-
tion 5.3.1 we discuss the original idea, and in Section 5.3.2
we discuss how we apply these principles to RDF.
5.3.1. The Original 2PS Algorithm

The 2PS algorithm processes undirected graphs in two
phases. In the first phase, the algorithm clusters vertices into
communities aiming to place highly connected vertices into
a single community. This is achieved by initially assigning

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 13 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

Algorithm 2 HDRF3
Require: ∙ the tolerance parameter 𝛼 > 1 ∙ |𝐺|, |𝐺+(𝑐)|, and |𝐺(𝑐)| for each constant 𝑐 in 𝐺 are known

∙ the balance parameter 𝜆 ∙ 𝐴(𝑐) ∶= ∅ for each constant 𝑐 in 𝐺
∙ the degree imbalance parameter 𝛿 ∙ Mapping 𝑇 of constants to servers, initially undefined on all constants
∙ the target number of servers 𝓁 ∙ 𝑁𝑘 ∶= 𝐶𝑘 ∶= 0 for each server 𝑘 ∈ {1,… ,𝓁}

52: function PROCESSFACT(𝑠, 𝑝, 𝑜)
53: if 𝑇 (𝑠) is undefined then
54: 𝑇 (𝑠) ∶= argmax𝑘∈{1,…,𝓁} SCORE(𝑠, 𝑜, 𝑘)
55: 𝑁𝑇 (𝑠) ∶= 𝑁𝑇 (𝑠) + |𝐺+(𝑠)|
56: Add (𝑠, 𝑝, 𝑜) to 𝐺𝑇 (𝑠)
57: if 𝑇 (𝑠) ∉ 𝐴(𝑠) then Add 𝑇 (𝑠) to 𝐴(𝑠) and increment 𝐶𝑇 (𝑠)

58: if 𝑇 (𝑠) ∉ 𝐴(𝑜) then Add 𝑇 (𝑠) to 𝐴(𝑜) and increment 𝐶𝑇 (𝑠)

59: function SCORE(𝑠, 𝑜, 𝑘)
60: 𝐶𝑅𝐸𝑃 ∶= 0
61: if 𝑘 ∈ 𝐴(𝑠) and DEG(𝑘) ≤ min𝓁∈{1,…,𝓁} DEG(𝓁) + 𝛿 then 𝐶𝑅𝐸𝑃 ∶= 𝐶𝑅𝐸𝑃 + 1 + |𝐺(𝑜)|

|𝐺(𝑠)|+|𝐺(𝑜)|

62: if 𝑘 ∈ 𝐴(𝑜) and DEG(𝑘) ≤ min𝓁∈{1,…,𝓁} DEG(𝓁) + 𝛿 then 𝐶𝑅𝐸𝑃 ∶= 𝐶𝑅𝐸𝑃 + 1 + |𝐺(𝑠)|
|𝐺(𝑠)|+|𝐺(𝑜)|

63: 𝐶𝐵𝐴𝐿 ∶= 1 − 𝓁 𝑁𝑘′+|𝐺
+(𝑠)|

𝛼|𝐺|

64: return 𝐶𝑅𝐸𝑃 + 𝜆
∑

𝑘 𝑁𝑘
|𝐺|

𝐶𝐵𝐴𝐿

65: function DEG(𝑘)
66: return 𝐶𝑘 = 0 ? 0 ∶ 𝑁𝑘∕𝐶𝑘

each vertex in the graph to a separate community. Then,
when processing an edge {𝑣,𝑤} in the first phase, the sizes
of the current communities of 𝑣 and 𝑤 are compared, and
the vertex belonging to the smaller community is merged
into the larger community. Thus, communities are iteratively
coarsened as edges of the input graph are processed in the
first phase. The entire first phase can be repeated several
times to improve community detection.

After all edges are processed in the first phase, the iden-
tified communities are greedily assigned to servers. Then,
the graph is processed in the second phase, and edges are
assigned to the communities of their vertices.
5.3.2. The Algorithm

Just like in the case of HDRF, the main challenge in
extending 2PS to RDF is to deal with the directed nature of
RDF facts, and to ensure that facts with the same subject are
assigned to the same server.

The pseudo-code of 2PS3 is shown in Algorithm 3. As
in HDRF3, the algorithm uses a preprocessing phase to
determine the size of dataset |𝐺| and the out-degree |𝐺+(𝑐)|
of each constant 𝑐. Thus, our 2PS3 algorithm actually uses
three phases; however, to stress the relationship with the 2PS
algorithm, we call the algorithm 2PS3.

The algorithm maintains a global mapping 𝑀 of con-
stants to communities—that is, 𝑀(𝑐) is the community of
each constant 𝑐. Thus, two constants 𝑐1 and 𝑐2 are in the
same community if 𝑀(𝑐1) = 𝑀(𝑐2). Initially, each constant
𝑐 is assigned to its own community 𝑚𝑐 . As the algorithm
progresses, the image of 𝑀 contains fewer and fewer com-
munities. Once communities are assigned to servers, a fact

⟨𝑠, 𝑝, 𝑜⟩ is assigned to the server of community 𝑀(𝑠); thus,
facts with the same subject are assigned to one server.

The algorithm also maintains a global function that, for
each community 𝑚, keeps track of the number 𝑆(𝑚) of facts
whose subject is assigned to community 𝑚. Thus, 𝑆(𝑚𝑐) is
initialised as |𝐺+(𝑐)| for each constant 𝑐.

After initialisation, each fact ⟨𝑠, 𝑝, 𝑜⟩ ∈ 𝐺 is processed
using function PROCESSFACT-PHASE-I. In line 68, the al-
gorithm compares the sizes 𝑆(𝑀(𝑠)) and 𝑆(𝑀(𝑜)) of the
communities to which 𝑠 and 𝑜, respectively, are currently
assigned. It identifies 𝑐𝑚𝑎𝑥 as the constant whose current
community size is larger, and 𝑐𝑚𝑖𝑛 as the constant whose
current community size is smaller (ties are broken arbitrar-
ily). The aim of this is to move 𝑐𝑚𝑖𝑛 into the community
of 𝑐𝑚𝑎𝑥, but this is done only if, after the move, we can
satisfy the requirement on the sizes of partition elements:
if each community contains no more than (𝛼 − 1) |𝐺|

𝓁
facts,

we can later assign communities to servers greedily and the
resulting partition elements will contain fewer than 𝛼 |𝐺|

𝓁facts. This is reflected in the condition in line 68: if satisfied,
the algorithm updates the sizes of the communities of 𝑐𝑚𝑎𝑥and 𝑐𝑚𝑖𝑛 (lines 70–71), and it moves 𝑐𝑚𝑖𝑛 into the community
of 𝑐𝑚𝑎𝑥 (line 72). If desired, 𝐺 can be processed several
times using function PROCESSFACT-PHASE-I to improve the
community structure.

After 𝐺 is processed, function ASSIGNCOMMUNITIES
assigns communities to servers. To this end, for each server
𝑘, the algorithm maintains the number 𝑁𝑘 of facts currently
assigned to partition element 𝑘. Then, the communities from
the image of 𝑀 (i.e., the communities that have ‘survived’
after shuffling the constants in the first phase) are assigned

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 14 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

Algorithm 3 2PS3
Require: ∙ the tolerance parameter 𝛼 > 1

∙ the target number of servers 𝓁
∙ |𝐺| and |𝐺+(𝑐)| for each constant 𝑐 in 𝐺 are known
∙ 𝑀(𝑐) ∶= 𝑚𝑐 and 𝑆(𝑚𝑐) ∶= |𝐺+(𝑐)| for each constant 𝑟 in 𝐺, where 𝑚𝑐 is a community unique for 𝑐

67: function PROCESSFACT-PHASE-I(𝑠, 𝑝, 𝑜)
68: Let 𝑐𝑚𝑎𝑥 ∶= argmax𝑐∈{𝑠,𝑜} 𝑆(𝑀(𝑐)), and let 𝑐𝑚𝑖𝑛 be the other constant
69: if 𝑆(𝑀(𝑐𝑚𝑎𝑥)) + |𝐺+(𝑐𝑚𝑖𝑛)| < (𝛼 − 1)|𝐺|∕𝓁 then
70: 𝑆(𝑀(𝑐𝑚𝑎𝑥)) ∶= 𝑆(𝑀(𝑐𝑚𝑎𝑥)) + |𝐺+(𝑐𝑚𝑖𝑛)|
71: 𝑆(𝑀(𝑐𝑚𝑖𝑛)) ∶= 𝑆(𝑀(𝑐𝑚𝑖𝑛)) − |𝐺+(𝑐𝑚𝑖𝑛)|
72: 𝑀(𝑐𝑚𝑖𝑛) ∶= 𝑀(𝑐𝑚𝑎𝑥)

73: function ASSIGNCOMMUNITIES
74: 𝑁𝑘 ∶= 0 for each server 𝑘 ∈ {1,… ,𝓁}
75: for each community 𝑚 occurring in the image of the mapping 𝑀 do
76: 𝑇 (𝑚) ∶= argmin𝑘∈{1,…,𝓁} |𝑁𝑘|

77: 𝑁𝑇 (𝑚) ∶= 𝑁𝑇 (𝑚) + 𝑆(𝑚)

78: function PROCESSFACT-PHASE-II(𝑠, 𝑝, 𝑜)
79: Add (𝑠, 𝑝, 𝑜) to server 𝑇 (𝑀(𝑠))

by greedily preferring the least loaded server. Finally, using
function PROCESSFACT-PHASE-II, each fact ⟨𝑠, 𝑝, 𝑜⟩ ∈ 𝐺 is
assigned to the server of community 𝑀(𝑠).

As in HDRF3, our algorithm is not guaranteed to min-
imise the replication factor. However, the following result
shows that the algorithm will honour the restriction on the
sizes of partition elements for a suitable choice of 𝛼. The
proof is given in Appendix C.
Proposition 5.2. Algorithm 3 produces a partition that
satisfies |𝐺𝑘| ≤ 𝛼 |𝐺|

𝓁
for each 1 ≤ 𝑘 ≤ 𝓁 whenever

𝛼 > 1 +
max𝑐 |𝐺+(𝑐)|

|𝐺|

.

6. Evaluation
To empirically evaluate the techniques we presented in

this paper, we implemented a prototype distributed Datalog
reasoner called DMAT. To store and manage triples in RAM,
we have reused the storage subsystem of RDFox [40], a state-
of-the-art centralised RDF system. The storage subsystem
of RDFox maintains exhaustive hash-based indexes as de-
scribed by Motik et al. [40] to support efficient enumeration
of triples matching a single atom; for example, given an
atom ⟨𝑥,𝑅, 𝑥⟩, it can efficiently provide all values for 𝑥 that
instantiate the atom to a triple in the locally stored dataset.
On top of this basic data storage facility, we implemented
a mechanism for associating triples with timestamp and the
EVALUATE function by first identifying candidate matches
using the functionality provided by RDFox and then filtering
the matches according to timestamps. Finally, we imple-
mented our algorithms from scratch (i.e., without reusing
any algorithms from RDFox). Our prototype is written in
C++. At the moment, DMAT can run our materialisation
algorithm on just one thread: the need to synchronise threads

on one server introduced considerable complexity to our
implementation, so we decided to leave this aspect for future
work. DMAT can partition the data using subject hashing, a
variant of min-cut partitioning by Potter et al. [45] that we
call METIS, and the HDRF3 and 2PS3 algorithms described
in Sections 5.2 and 5.3, respectively.

We evaluated DMAT by conducting four sets of ex-
periments. First, we investigated how using different par-
titioning schemes, including HDRF3 and 2PS3, affects the
performance of materialisation. Second, we investigated the
extent to which the performance of our algorithm depends
on network speed. Third, we studied how the performance
of materialisation changes when the input data and the
number of servers increase. Fourth, we compared DMAT
with BigDatalog and Cog, two state-of-the-art systems that
use static data exchange strategies.

We next present our experimental setting and discuss
the results. In particular, we introduce our datasets in Sec-
tion 6.1, we discuss our test setting in Section 6.2, and then
we present the data partitioning tests in Section 6.3, the
network speed tests in Section 6.4, the scalability tests in
Section 6.5, and the system comparison tests in Section 6.6.
Considering data partitioning first will allow us to identify
2PS3 as the partitioning strategy that seems to offer the best
performance on average, so we use 2PS3 in the remaining
two tests. The DMAT system and all datasets and programs
used in our experiments are available online.3

6.1. Datasets
In this section we discuss the datasets we used in our

experiments. Table 2 summarises some basic information
about the programs used. The sizes of the input datasets
varied in each test, so we report the data sizes when dis-
cussing the relevant experiments. All programs and datasets
are available from the mentioned Web page.

3https://krr-nas.cs.ox.ac.uk/2021/DMAT/

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 15 of 29

https://krr-nas.cs.ox.ac.uk/2021/DMAT/

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

Table 2
Program Statistics

Dataset # rules # recursive avg. # of
rules body atoms

LUBM 103 3 1.20
WatDiv 32 2 2.10
MAKG∗ 15 2 2.20

The LUBM [20] benchmark has been extensively used to
test the performance of RDF systems. We generated datasets
of varying sizes using LUBM’s data generator, and we used
the extended lower bound Datalog program by Motik et al.
[40] designed to stress-test reasoning systems. The program
was obtained by translating the OWL 2 RL portion of the
LUBM ontology into Datalog and manually adding several
recursive rules that produce many redundant derivations. To
the best of our knowledge, this program has not yet been
used in the literature to test the performance of distributed
RDF reasoners, and it provides us with more insights than
the standard, relatively ‘easy’ lower bound program.

The WatDiv [6] benchmark was developed for testing the
performance of query answering in RDF systems. It comes
with a data generator that can produce datasets in which the
degrees of resources follow a power law distribution. Such
datasets are challenging to both query answering and parti-
tioning algorithms, which makes WatDiv highly relevant to
our setting. However, WatDiv does not include an ontology
or a Datalog program, so we manually created a program
consisting of 32 chain, cyclical, and recursive rules.

The Microsoft Academic Knowledge Graph [13] is an
RDF translation of the Microsoft Academic Graph—a het-
erogeneous dataset of scientific publication records, cita-
tions, authors, institutions, journals, conferences, and fields
of study. The original MAKG dataset contains 8 billion
triples and includes links to datasets in the Linked Open Data
Cloud. A significant portion of the dataset consists of triples
with datatype properties providing annotations such names,
publication dates, various counts, and so on. Such triples
are not interesting for reasoning as they do not define the
graph structure, but they increase the memory requirements
on servers and data loading times. Thus, to make experimen-
tation practical, we selected 3.67 billion triples with ‘struc-
tural’ properties such as 𝑎𝑝𝑝𝑒𝑎𝑟𝑠𝐼𝑛𝐽𝑜𝑢𝑛𝑎𝑙, ℎ𝑎𝑠𝐷𝑖𝑠𝑐𝑖𝑝𝑙𝑖𝑛𝑒,
and so on; the list of all selected properties is available on
the aforementioned Web page. We call the resulting dataset
MAKG∗. The dataset does not come with an ontology or
a Datalog program, so we manually created a program
consisting of 15 chain, cyclical, and recursive rules.

As far as we know, this is the first time that WatDiv and
MAKG were used to benchmark Datalog reasoning.
6.2. Test Setting

We ran our experiments on the Amazon EC2 cloud. For
each server in the cluster, we used one r5.4xlarge instance
equipped with a 3.1 GHz Intel Xeon Platinum 8000 series
(Skylake-SP or Cascade Lake) processor, two virtual CPUs,

128 GB of RAM, and running Linux kernel 4.14. The servers
were connected by Ethernet that, according to Amazon, can
support speeds up to 10 Gbps. For the experiments with
DMAT, the disk space was irrelevant since our system stores
data in RAM. For the experiments with BigDatalog and Cog,
we equipped each server with 1 TB of Amazon Elastic Block
Storage (EBS) to be able to run Spark and Flink. Finally,
METIS requires loading the entire dataset into memory, so
we used one r5.24xlarge server with 784 GB of RAM to
partition the data in the experiments with METIS.

Two virtual CPUs per server were sufficient for our
experiments: as we already mentioned, DMAT can currently
run our algorithm only on one thread; thus, to ensure a fair
comparison, we configured BigDatalog and Cog to use just
one worker thread per server. In our data partitioning and
system comparison experiments, we computed the material-
isation using DMAT, BigDatalog, and Cog on ten servers.
In our scalability experiments, we scaled the number of
servers proportional to the input size. In all experiments with
DMAT, we used one additional ‘master’ server whose role
was to distribute the facts and the program to the servers
and initiate materialisation. We used the ‘master’ server
mainly for convenience: this server never participated in
materialisation, so its use in the initialisation phase does not
affect our results in any substantial way.
6.3. Data Partitioning Experiments

The objective of our partitioning experiment was to see
how different data partitioning strategies affect the perfor-
mance of materialisation. To this end, we compared the
HDRF3 and 2PS3 algorithms from Section 5 with subject
hashing and theMETIS variant of min-cut partitioning by
Potter et al. [45]. The latter approach uses weighted graph
partitioning to balance the number of triples, rather than the
number of resources on different servers.

As we mentioned in Section 3.3, several approaches
have been proposed in the literature that replicate facts to
more than one server [27, 21, 33, 5]. However, the main
objective of our work was to avoid repetition of derivations
in a distributed setting, which seems incompatible with data
replication. As a result, our reasoning algorithm requires
all partition elements to be pairwise disjoint, and so we
cannot include any data partitioning strategy that involves
data replication in our evaluation.
Test Setting. We used the LUBM dataset for 10K univer-
sities, the WatDiv-1G dataset provided by the authors of
WatDiv, and the MAKG∗ dataset in this test; for each dataset,
Table 3 shows the number of resources, the numbers of input
and output triples, and the number of derivations (i.e., the
number of facts derived in line 23 before duplicate elimina-
tion). To speed up loading, we preprocessed all datasets by
replacing all resources with integers. With Hash, HDRF3, or
2PS3, the ‘master’ server processed the data in a streaming
fashion and distributed the triples to the ten materialisation
servers, and then it started the materialisation by distributing
the Datalog program. With METIS, the precomputed parti-
tion elements were loaded directly into the materialisation

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 16 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

servers, and the ‘master’ just distributed the Datalog pro-
gram. To hash the triples’ subjects, we simply multiplied the
integer subject value by a large prime in order to randomise
the distribution. In HDRF3 and 2PS3, we used 𝛼 = 1.25.
Also, in HDRF3, we used 𝛿 = 0.25 and 𝜆 was set to the
lowest value satisfying Proposition 5.1; the values of 𝜆 thus
vary for each dataset and are shown in Table 3. We processed
the datasets twice in the first phase of 2PS3. We recorded
the wall-clock time and the number of 𝖯𝖠𝖱 messages sent
on each server during materialisation. For each test, Table 3
shows the minimum, maximum, and median numbers of
triples in partition elements (given as percentages of the
number of input triples), the replication factor (see Section 2
for a definition), the partitioning and reasoning times, and
the number of nonlocal 𝖯𝖠𝖱 messages (i.e., the number of
messages that were sent over the network).
Partition Times and Balance. All partitioning schemes
produced partition elements with sizes within the tolerance
parameters: Hash achieves perfect balance if the hash func-
tion is uniform; METIS explicitly aims to equalise partition
sizes; and our algorithms do so by design and the choice
of parameters. For all streaming methods, the partition-
ing times were not much higher than the time required to
read the datasets from disk and send triples to their desig-
nated servers. In contrast, METIS partitioning took longer
than materialisation on LUBM-10K and WatDiv-1G, and on
MAKG∗ it ran out of memory even though we used a very
large server equipped with 784 GB of RAM.
Replication, Communication, and Reasoning. Generally
lowest replication factors were achieved with 2PS3: only
METIS achieved a lower value on WatDiv-1G, and HDRF3achieved a comparable value on MAKG∗. The replication
factor of Hash was highest in all cases, closely followed by
HDRF3. Moreover, lower replication factors seem to cor-
relate closely with decreased communication overhead; for
example, the number of messages was significantly smaller
on LUBM-10K and MAKG∗ with 2PS3 than with other
schemes. This reduction seems to generally lead to shorter
reasoning times: 2PS3 was faster than all other schemes on
LUBM-10K and MAKG∗; for the former, the improvement
over Hash is by a factor of 2.25. However, the reasoning
times do not always correlate with the replication factor: on
WatDiv-1G, METIS and 2PS3 were slower than Hash and
HDRF3, despite exhibiting smaller replication factors.
Workload Imbalance. To further analyse the results of our
experiments, we show in Figure 1 the numbers of derivations
and the total size of partial messages processed by each of
the ten servers in the cluster. As one can see, the numbers
of derivations and messages per server are quite uniform for
Hash and, to an extent, for HDRF3; in contrast, with 2PS3and METIS, certain servers seem to be doing much more
work than others, particularly on WatDiv-1G and MAKG∗.
Thus, reducing communication seems to matter only up to a
point. For example, 2PS3 reduces communication by about
an order of magnitude on LUBM-10K, which, combined
with a uniform workload distribution, seems to ‘pay off’ in

terms of reasoning times. On MAKG∗, 2PS3 reduces com-
munication by about a factor of two, while HDRF3 seems
to distribute the workload more evenly. Combined, these
factors lead to more modest (yet still significant) improve-
ments in reasoning times for 2PS3. Finally, on WatDiv-1G,
communication overhead does not appear to be significant
with any partitioning strategy, so the reasoning times seem
to be determined mainly by the workload imbalance.
Graph Structure. LUBM-10K data is organised into uni-
versities, where most triples connect entities within one
university; thus, the data seems to naturally decompose into
modules of roughly the same sizes. The 2PS3 algorithm
seems to exploit this modular structure very well, allowing it
to reduce the communication overhead by an order of mag-
nitude. In contrast, WatDiv-1G and MAKG∗ do not seem
to decompose into modules as easily. In fact, WatDiv-1G
was specifically designed to produce RDF graphs where
the vertex degrees follow a power-law distribution; such
datasets have irregular structure and highly variable constant
degrees, which makes partitioning difficult. The original
HDRF algorithm was identified as particularly suitable for
such graphs [42]. Our results seem to agree: HDRF3 offers
the best materialisation times on WatDiv-1G.
Overall Performance. In general, 2PS3 seems to provide
a good performance mix: unlike METIS, it can be im-
plemented without placing unrealistic requirements on the
servers used for partitioning; it can significantly reduce
communication, particularly on highly modular graphs; and
the resulting partition can lead to workload imbalances, but
these do not appear to be excessive. Thus, 2PS3 seems like a
good alternative to the thus far dominant hash partitioning,
and therefore we use it in our scalability (Section 6.5) and
system comparison experiments (Section 6.6). The HDRF3algorithm seems to be worth considering on graphs with a
power-law vertex degree distribution.
6.4. Effects of Network Speed

Although 10 Gbps network speeds are often found in
modern data centres, it is nevertheless interesting to see
how our techniques perform on older and slower networks.
Since our main objective is to reduce network communica-
tion, one can expect performance gains from locality-aware
processing to be more pronounced with slower networks.
To answer this question, we artificially slowed down the
network of our servers using the tc Linux command and
then materialised the WatDiv-1G dataset partitioned using
the 2PS3 algorithm. We chose WatDiv-1G-1G because, as
we discuss in Section 6.3, the number of local 𝖯𝖠𝖱 messages
during materialisation is lowest on this dataset, so a slower
network is more likely to affect reasoning times. Table 4
shows the materialisation times for four network speeds.

As one can see, materialisation times grow as network
speed decreases, but the increase is sublinear: if we slow
down the network by a factor of 19.5, the materialisa-
tion time increases only by a factor of two. This suggests
that network communication is an important, but not the
only factor determining the performance of our algorithm.

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 17 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

Table 3
Data Partitioning Experiments

Method Partitioning Stats [n=10] Reasoning Stats
Min (%) Max (%) Med (%) RF Time (s) Time (s) Nonlocal 𝖯𝖠𝖱 Messages (G)

LUBM-10K
[328 M resources, 1.34 G input and 3.32 G output triples, 79.30 G derivations, 𝜆 = 819]

Hash 10.00 10.00 10.00 1.60 530 16 990 72.93
METIS 9.24 10.66 9.98 1.19 15 300 9 950 5.75
HDRF3 9.35 10.47 10.00 1.43 590 12 940 44.62

2PS3 9.06 10.35 10.00 1.04 700 5 190 0.97

WatDiv-1G
[100 M resources, 1.09 G input and 1.75 G output triples, 2.11 G derivations, 𝜆 = 800]

Hash 10.00 10.00 10.00 2.48 520 1 198 7.89
METIS 9.70 10.35 10.00 2.16 15 100 1 620 7.64
HDRF3 10.00 10.00 10.00 2.48 590 1 180 7.73

2PS3 9.92 10.02 10.00 2.40 1 080 1 636 7.61

MAKG∗

[490 M resources, 3.67 G input and 5.63 G output triples, 17.47 G derivations, 𝜆 = 800]
Hash 10.00 10.00 10.00 1.99 2 220 8 200 28.24

METIS — — — — — — —
HDRF3 10.00 10.00 10.00 1.66 3 500 7 050 25.35

2PS3 9.91 10.06 10.00 1.67 3 640 6 450 20.70

Table 4
Materialisation of WatDiv-1G on Networks of Varying Speeds

Network Speed (Mbps) Time (s)
10 000 1 162
2 048 1 288
1 024 1 569

512 2 331

Moreover, materialisation times increases only by 35% on
still relatively common 1 Gbps network, showing that our
techniques are applicable to commodify hardware.
6.5. Scalability Experiments

The main objective of data distribution is scalability—
that is, the ability to process increasing data loads without
a significant increase in processing times by proportionally
extending the cluster. Note, however, that the size of the
input data is not always representative of the work needed
to compute the materialisation. For example, applying the
rule ⟨𝑥,𝑅, 𝑦⟩ ∧ ⟨𝑦, 𝑅, 𝑧⟩ → ⟨𝑥,𝑅, 𝑧⟩ to a dataset consisting
of triples ⟨𝑎1, 𝑅, 𝑎2⟩, ⟨𝑎2, 𝑅, 𝑎3⟩,… , ⟨𝑎𝑛, 𝑅, 𝑎1⟩ derives 𝑛2
triples, and it requires matching the rule body in 𝑛3 ways;
thus, materialisation time is likely to depend cubically on the
input size on this example. We therefore analyse the scala-
bility of DMAT in terms of two natural and complementary
ways to measure the amount of work.
Work Measures. The number of derivations is a good
measure of the amount of work for the following reasons.
First, this number is equal to the number of answers obtained
by evaluating the bodies of all rules as queries over the
materialisation, which is fixed for every dataset—that is, the

number of derivations does not depend on the materialisa-
tion algorithm. Second, duplicate facts can be eliminated
in constant amortised time, so the number of derivations
also estimates the amount of work for duplicate elimination.
Hence, this is a natural measure for seminaïve evaluation,
where each derivation is made exactly once.

In addition, we shall also consider the number of 𝖯𝖠𝖱
messages produced during materialisation. If most partial
answers lead to a derivation (and our experience suggests
that this is frequently the case), the number of 𝖯𝖠𝖱 messages
is much smaller than the number of derivations. However,
this is not necessarily so; for example, in a chain rule,
the join of the initial two atoms can produce many partial
answers that do not ‘survive’ a join with the third atom; thus,
computing the partial answers in the join of the first two atom
then dominates the performance of reasoning and should be
taken into account. The main drawback of measuring the
work in terms of the number of 𝖯𝖠𝖱 messages is that this
number is determined not only by the dataset and the rules,
but also by the order of atoms in rule bodies.
Test Setting LUBM and WatDiv are ideally suited to this
experiment as we can scale the input datasets in a controlled
manner. Thus, we generated LUBM datasets for 2K, 4K,
8K, and 10K universities, and WatDiv datasets with roughly
200 M, 400 M, 800 M, and 1 G triples. In contrast, MAKG∗

is a real-world dataset that cannot be scaled easily, so we
did not consider it in this experiment. We used test setting
described in Section 6.3, but we scaled the number of
servers proportionally to the input size. We conducted all
experiments using the 2PS3 partitioning strategy.
Results. The results of our scalability experiments are sum-
marised in Table 5. For each dataset, we report the cluster

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 18 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

Figure 1: Input Partitioning Experiments

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80
LUBM-10K Partial Messages (GB)

1 2 3 4 5 6 7 8 9 10
0

5

10

LUBM-10K Derivations (G)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20
WatDiv-1G Partial Messages (GB)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2
WatDiv-1G Derivations (G)

Hash
METIS
HDRF3
2PS3

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

Server

MAKG∗ Partial Messages (GB)

1 2 3 4 5 6 7 8 9 10
0

2

4

6

Server

MAKG∗ Derivations (G)

size, number of resources in the input, the numbers of
triples in the input and output, the materialisation time, the
number of derivations, the derivation rate (i.e., the number
of derivations per server per second), the number of 𝖯𝖠𝖱
messages, the percentage of 𝖯𝖠𝖱 messages that are local to
a server (i.e., that are not sent over the network), and the total
reasoning rate (i.e., sum of the numbers of derivations and
𝖯𝖠𝖱 messages processed per server per second).
Discussion. In the two benchmarks, the amount of work
scales differently with the input size. On LUBM, the number
of 𝖯𝖠𝖱 messages is an order of magnitude smaller than
the number of derivations; hence, the benchmark is ‘well-
behaved’ in the sense that most partial answers contribute
to a derivation. Also, the overwhelming majority of 𝖯𝖠𝖱
messages are local. This is unsurprising because each univer-
sity in a LUBM dataset contains roughly the same number
of triples, and there are relatively few connections between
universities. Thus, the number of derivations scales roughly
linearly with the input size, which allows DMAT to exhibit
near-constant derivation and reasoning rates.

In contrast, the number of 𝖯𝖠𝖱 messages on WatDiv is
much larger than the number of derivations, it scales super-
linearly with the input size, and the percentage of local
messages decreases steeply as the input grows. We conjec-
ture that this is because WatDiv datasets exhibit a highly
irregular structure, so the difficulty of partition increases

with the dataset size. As a result, the derivation rate drops
significantly as the dataset increases in size: it is about 3.6
lower on the 1 G dataset than on the 200 M dataset. The
reasoning rate also drops, but by a smaller factor of only 2.1.
Nevertheless, note that the overall amount of data increases
by a factor of five, so the decrease in the performance is still
below the increase in overall data size.

To summarise, our reasoning approach seems to scale
well when the overall work scales linearly with input size,
and increasing the input size does not create a highly con-
nected dataset that is difficult to partition. However, even in
the latter case, our approach is still able to materialise large
datasets with complex, recursive rule sets.
6.6. System Comparison Experiments

To see how DMAT compares to the state of the art, we
compared it to BigDatalog [50] and Cog [28], which are
based on Spark and Flink, respectively. We are grateful to
the authors of both systems for their extensive assistance.
Test Systems. We obtained the source code of BigDat-
alog and Cog from public repositories and compiled it
ourselves. Both systems rely on Apache Calcite,4 an open

4https://calcite.apache.org

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 19 of 29

https://calcite.apache.org

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

Table 5
Scalability Experiments

Data Servers Res. Triples (M) Mat. Derivations 𝖯𝖠𝖱 messages Reasoning
Size (M) Input Output Time (s) Total (G) Rate (k/ss) Total (G) Local (%) Rate (k/ss)

LUBM
2K 2 66 267 664 4 803 15.85 1 620 1.43 99 1 800
4K 4 131 534 1 329 4 457 31.73 1 750 2.89 99 1 942
8K 8 262 1 068 2 658 5 275 63.45 1 480 6.90 99 1 667
10K 10 328 1 335 3 322 5 198 79.30 1 500 7.96 99 1 679

WatDiv
200 M 2 20 218 342 470 0.43 468 0.93 75 1 447
400 M 4 40 436 649 810 0.81 250 2.10 46 898
800 M 8 79 873 1 278 1 285 1.66 160 6.35 32 780
1 G 10 97 1 092 1 749 1 636 2.10 128 9.00 28 678

source framework for building databases and data manage-
ment systems, to compile logical plans into SQL and recur-
sion operators. This framework, however, does not seem to
correctly handle arbitrary recursive Datalog programs, and
it also could not process larger programs. After extensive
experimentation and discussion with the systems’ authors,
we were able to compile only small linear programs. To
overcome this setback, in this experiment we selected from
each Datalog program two rules, one of which was recursive.

As we mentioned in Section 3.1, BigDatalog and Cog
are not classical materialisation systems; rather, they take as
input a query and then materialise only a part of the program
relevant to the query. Thus, when running BigDatalog and
Cog, we used ⟨𝑥, 𝑝, 𝑦⟩ as a query, where 𝑝 is the property
computed by the two rules. Moreover, BigDatalog and Cog
are based on the standard relational data model, rather than
the RDF model. We used the well-known vertical partition-
ing technique [1, 8] to transform triples into relations: we
introduced a binary relation 𝑝 for each property 𝑝 occurring
in the input dataset or a rule; we converted each input triple
⟨𝑠, 𝑝, 𝑜⟩ to tuple ⟨𝑠, 𝑜⟩ in relation 𝑝; and we transformed each
rule or query atom ⟨𝑡𝑠, 𝑡𝑝, 𝑡𝑜⟩ into a relational atom 𝑡𝑝(𝑡𝑠, 𝑡𝑜),which was possible because 𝑡𝑝 is never a variable. We also
eliminated from the input datasets all triples of the form
⟨𝑠, 𝑝, 𝑜⟩ where 𝑝 does not occur in the body of the two rules;
such triples cannot be matched by the rules so they do not
contribute to materialisation, and this data reduction made
our experiments more practical. Table 6 shows the numbers
of input and output triples in the reduced datasets.
Test Setting. We conducted our experiments as follows.
For BigDatalog and Cog, we copied the input datasets into
the local directories of all ten materialisation servers, we
instructed the systems to answer the query (which involved
materialising the rules), and we measured the wall-clock
time required. For DMAT, we used the test setting described
in Section 6.3, but modified to use the two-rule program. In
all tests, we measured the total amount of data sent over the
network using the ifconfig command.
Results. Table 6 shows, for each test, the materialisation
time and the total amount of data sent over the network.

For DMAT, the table also shows the number of derivations,
the number of 𝖯𝖠𝖱 messages, and the percentage of 𝖯𝖠𝖱
messages that are local; note that such metrics do not apply
to BigDatalog and Cog. On MAKG∗, BigDatalog ran out of
memory, and Cog could not compile the program.
Discussion. As one can see from the table, DMAT consis-
tently outperformed both systems. The difference is not as
pronounced on WatDiv, but it is by a factor of three or more
on LUBM. Moreover, even the reduced MAKG∗ program
with just two rules was too complex for other systems:
BigDatalog ran out of memory despite each server being
equipped with 1 TB of storage that Spark could use for
scratch data. While it is hard to be absolutely sure about
the cause, we conjecture that this is because Spark evaluates
queries bottom-up and materialises the intermediate results,
which can be costly. In contrast, DMAT uses nested index
loop joins, and it processes local 𝖯𝖠𝖱messages without stor-
ing them: only partial answers that need to be sent to another
server are ‘materialised’ in the sense that they are explicitly
created and stored (e.g., in buffers of the networking stack).
As a result, our rule evaluation strategy can be less memory-
intensive when the rules are complex.

Our technique seems to be most effective when data
can be partitioned well. As we observed in Section 6.3, the
2PS3 algorithm seems to detect the modular structure of
LUBM, which considerably reduce communication. Indeed,
most 𝖯𝖠𝖱 messages are local on LUBM, so materialisation
introduces very little communication. On WatDiv, 2PS3 is
not as effective in reducing communication: only 12% of
𝖯𝖠𝖱 messages are local, which makes reasoning about three
times slower than on LUBM, and leads to an order of magni-
tude more communication than with the other two systems.
On MAKG∗, our techniques also seem to be very effective
at reducing communication. In contrast, data partitioning in
BigDatalog and Cog is not locality-aware, which incurs more
communication and longer reasoning times; moreover, the
difference in performance on LUBM and WatDiv is smaller
because neither dataset is partitioned to explore locality.

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 20 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

Table 6
Systems Comparison Experiments

Dataset Triples (M) BigDatalog Cog DMAT
Input Output Time (s) TX Time (s) TX Time (s) TX Der (G) 𝖯𝖠𝖱 (G) Local (%)

LUBM 281 454 1 107 90 1 441 110 325 0 2.71 7.90 99
WatDiv 339 404 1 114 68 1 050 80 920 965 0.41 10.82 12
MAKG∗ 1 784 2 665 oom — error — 4 081 290 6.37 16.02 84

Note: TX is the total amount of data in GB transmitted over the network in the cluster.

7. Conclusion and Further Work
In this paper we have presented a novel approach to

Datalog reasoning in distributed RDF systems. Our material-
isation algorithm supports arbitrary Datalog rules over RDF
data and arbitrary partitions of the input dataset. To the best
of our knowledge, no other system has these traits. We have
also presented two new streaming partitioning algorithms
that enable our reasoner to process large datasets. We have
shown experimentally that our techniques can considerably
reduce communication, scale well in many cases, and are
competitive with regard to the state of the art.

In our future work, we plan to extend our implementation
with support for multi-threaded processing in the servers to
improve parallelism. We will also aim to further improve
materialisation performance by reducing imbalances in the
workload among servers. One possibility might be to analyse
the Datalog program before partitioning and thus identify
workload hotspots. Furthermore, we aim to support more
advanced features of Datalog, such as stratified negation and
aggregation, which are needed in many practical applica-
tions. Another question that, to the best of our knowledge has
not been considered in the literature thus far, is to efficiently
support distributed incremental reasoning.

Acknowledgments
This work was supported by the SIRIUS Centre for

Scalable Access in the Oil and Gas Domain, and the EPSRC
project AnaLOG.

References
[1] Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K., 2007. Scal-

able Semantic Web Data Management Using Vertical Partitioning, in:
Proc. of the 33rd Int. Conf. on Very Large Data Bases (VLDB 2007),
Vienna, Austria. pp. 411–422.

[2] Abdelaziz, I., Harbi, R., Khayyat, Z., Kalnis, P., 2017. A Survey and
Experimental Comparison of Distributed SPARQL Engines for Very
Large RDF Data. PVLDB 10, 2049–2060.

[3] Abiteboul, S., Hull, R., Vianu, V., 1995. Foundations of Databases.
Addison Wesley.

[4] Aebeloe, C., Montoya, G., Hose, K., 2019. Decentralized Indexing
over a Network of RDF Peers, in: Proc. of the 18th Int. Semantic Web
Conf. (ISWC 2019), Springer, Auckland, New Zealand. pp. 3–20.

[5] Al-Harbi, R., Abdelaziz, I., Kalnis, P., Mamoulis, N., Ebrahim, Y.,
Sahli, M., 2016. Accelerating SPARQL queries by exploiting hash-
based locality and adaptive partitioning. VLDB Journal 25, 355–380.

[6] Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K., 2014. Diversified
Stress Testing of RDF Data Management Systems, in: Proc. of the

13th Int. Semantic Web Conference (ISWC 2014), Springer, Riva del
Garda, Italy. pp. 197–212.

[7] Aluç, G., Özsu, M.T., Daudjee, K., 2019. Building self-clustering
RDF databases using Tunable-LSH. VLDB Journal 28, 173–195.

[8] Álvarez-García, S., Brisaboa, N.R., Fernández, J.D., Martínez-Prieto,
M.A., Navarro, G., 2015. Compressed vertical partitioning for
efficient RDF management. Knowledge and Information Systems 44,
439–474.

[9] Bui, T.N., Jones, C., 1992. Finding Good Approximate Vertex and
Edge Partitions is NP-Hard. Information Processing Letters 42, 153–
159.

[10] Chin, B., von Dincklage, D., Ercegovac, V., Hawkins, P., Miller,
M.S., Och, F.J., Olston, C., Pereira, F., 2015. Yedalog: Exploring
Knowledge at Scale, in: 1st Summit on Advances in Programming
Languages (SNAPL 2015), Asilomar, CA, USA. pp. 63–78.

[11] Dijkstra, E., Feijen, W., van Gasteren, A., 1983. Derivation of
a Termination Detection Algorithm for Distributed Computations.
Information Processing Letters 16, 217–219.

[12] Dijkstra, E.W., Scholten, C., 1980. Termination detection for diffusing
computations. Information Processing Letters 11, 1–4.

[13] Färber, M., 2019. The Microsoft Academic Knowledge Graph: A
Linked Data Source with 8 Billion Triples of Scholarly Data, in: Proc.
of the 18th Int. Semantic Web Conference (ISWC 2019), Auckland,
New Zealand. pp. 113–129.

[14] Galárraga, L., Hose, K., Schenkel, R., 2014. Partout: a distributed
engine for efficient RDF processing, in: Proc. of the 23rd Int. World
Wide Web Conference (WWW 2014), ACM, Seoul, Korea. pp. 267–
268.

[15] Gallego, M.A., Fernández, J.D., Martínez-Prieto, M.A., de la Fuente,
P., 2011. An Empirical Study of Real-World SPARQL Queries. CoRR
abs/1103.5043.

[16] Ganguly, S., Silberschatz, A., Tsur, S., 1992. Parallel Bottom-Up
Processing of Datalog Queries. Journal of Logic Programming 14,
101–126.

[17] Graefe, G., Davison, D.L., 1993. Encapsulation of Parallelism and
Architecture-Independence in Extensible Database Query Execution.
IEEE Transactions on Software Engineering 19, 749–764.

[18] Grosof, B.N., Horrocks, I., Volz, R., Decker, S., 2003. Description
Logic Programs: Combining Logic Programs with Description Logic,
in: Proc. of the 12th Int. World Wide Web Conference (WWW 2003),
ACM, Budapest, Hungary. pp. 48–57.

[19] Gu, R., Wang, S., Wang, F., Yuan, C., Huang, Y., 2015. Cichlid:
Efficient Large Scale RDFS/OWL Reasoning with Spark, in: Proc.
of the 29th IEEE Int. Parallel and Distributed Processing Symposium
(IPDPS 2015), IEEE Computer Society, Hyderabad, India. pp. 700–
709.

[20] Guo, Y., Pan, Z., Heflin, J., 2005. LUBM: A benchmark for OWL
knowledge base systems. Journal of Web Semantics 3, 158–182.

[21] Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M., 2014. TriAD:
A Distributed Shared-Nothing RDF Engine based on Asynchronous
Message Passing, in: Proc. of the ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD 2014), Snowbird, UT, USA. pp. 289–
300.

[22] Hammoud, M., Rabbou, D.A., Nouri, R., Beheshti, S., Sakr, S., 2015.
DREAM: Distributed RDF Engine with Adaptive Query Planner and
Minimal Communication. PVLDB 8, 654–665.

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 21 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

[23] Harris, S., Lamb, N., Shadbol, N., 2009. 4store: The Design and
Implementation of a Clustered RDF Store, in: Proc. of the 5th Int.
Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS 2009), Washington DC, USA. pp. 94–109.

[24] Harth, A., Umbrich, J., Hogan, A., Decker, S., 2007. YARS2: A
Federated Repository for Querying Graph Structured Data from the
Web, in: Proc. of the 6th Int. Semantic Web Conference (ISWC 2007),
Busan, Korea. pp. 211–224.

[25] Hose, K., Schenkel, R., 2013. WARP: Workload-aware replication
and partitioning for RDF, in: Workshops Proceedings of the 29th
IEEE Int. Conf. on Data Engineering (ICDE 2013), Brisbane, Aus-
tralia. pp. 1–6.

[26] Huang, J., Abadi, D.J., Ren, K., 2011a. Scalable SPARQL Querying
of Large RDF Graphs. PVLDB 4, 1123–1134.

[27] Huang, J., Abadi, D.J., Ren, K., 2011b. Scalable SPARQL Querying
of Large RDF Graphs. PVLDB 4, 1123–1134.

[28] Imran, M., Gévay, G.E., Markl, V., 2020. Distributed graph analytics
with datalog queries in flink, in: Proc. of the 4th Int. Workshop
Software on the Foundations for Data Interoperability and Large Scale
Graph Data Analytics (SFDI 2020), Springer, Tokyo, Japan. pp. 70–
83.

[29] Janke, D., Staab, S., Thimm, M., 2018. Impact analysis of data place-
ment strategies on query efforts in distributed RDF stores. Journal of
Web Semantics 50, 21–48.

[30] Kaoudi, Z., Miliaraki, I., Koubarakis, M., . RDFS Reasoning and
Query Answering on Top of DHTs, in: Proc. of the 7th Int. Semantic
Web Conference (ISWC 2008), Springer, Karlsruhe, Germany. pp.
499–516.

[31] Karypis, G., Kumar, V., Comput, S., 1998. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing 20.

[32] Lamport, L., 1978. Time, Clocks, and the Ordering of Events in a
Distributed System. Communications of the ACM 21, 558–565.

[33] Lee, K., Liu, L., 2013. Scaling Queries over Big RDF Graphs with
Semantic Hash Partitioning. PVLDB 6, 1894–1905.

[34] Liu, Y., McBrien, P., 2017. SPOWL: Spark-based OWL 2 Reasoning
Materialisation, in: Proc. of the 4th ACM SIGMOD Workshop on
Algorithms and Systems for MapReduce and Beyond (BeyondMR
2017), Chicago, IL, USA. pp. 3:1–3:10.

[35] Luteberget, B., Johansen, C., 2018. Efficient verification of railway
infrastructure designs against standard regulations. Formal Methods
in System Design 52, 1–32.

[36] Mayer, C., Mayer, R., Tariq, M.A., Geppert, H., Laich, L., Rieger, L.,
Rothermel, K., 2018. ADWISE: Adaptive Window-Based Streaming
Edge Partitioning for High-Speed Graph Processing, in: Proc. of the
38th IEEE Int. Conf. on Distributed Computing Systems (ICDCS
2018), Vienna, Austria. pp. 685–695.

[37] Mayer, R., Orujzade, K., Jacobsen, H., 2020. 2ps: High-quality edge
partitioning with two-phase streaming. CoRR abs/2001.07086.

[38] Meyer, S., Carter, A., Rodriguez, A., . Liquid: The soul of a new graph
database, part 2. URL: https://engineering.linkedin.com/blog/

2020/liquid--the-soul-of-a-new-graph-database--part-2. accessed
on 26/11/2021.

[39] Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.,
2009. OWL 2 Web Ontology Language: Profiles. W3C Recommen-
dation.

[40] Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D., 2014.
Parallel Materialisation of Datalog Programs in Centralised, Main-
Memory RDF Systems, in: Proc. of the 28th AAAI Conf. on Artificial
Intelligence (AAAI 2014), AAAI Press, Québec City, QC, Canada.
pp. 129–137.

[41] Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.,
2015. RDFox: A Highly-Scalable RDF Store, in: Proc. of the 14th
Int. Semantic Web Conference (ISWC 2015), Springer, Bethlehem,
PA, USA. pp. 3–20.

[42] Pacaci, A., Özsu, M.T., 2019. Experimental Analysis of Streaming
Algorithms for Graph Partitioning, in: Proc. of the ACM SIGMOD

Int. Conf. on Management of Data (SIGMOD 2019), ACM, Amster-
dam, The Netherlands. pp. 1375–1392.

[43] Petroni, F., Querzoni, L., Daudjee, K., Kamali, S., Iacoboni, G., 2015.
HDRF: Stream-Based Partitioning for Power-Law Graphs, in: Proc. of
the 24th ACM Int. Conf. on Information and Knowledge Management
(CIKM 2015), ACM, Melbourne, VIC, Australia. pp. 243–252.

[44] Piro, R., Nenov, Y., Motik, B., Horrocks, I., Hendler, P., Kimberly,
S., Rossman, M., 2016. Semantic Technologies for Data Analysis
in Health Care, in: Proc. of the 15th Int. Semantic Web Conference
(ISWC 2016), Springer, Kobe, Japan. pp. 400–417.

[45] Potter, A., Motik, B., Nenov, Y., Horrocks, I., 2018. Dynamic
Data Exchange in Distributed RDF Stores. IEEE Transactions on
Knowledge and Data Engineering 30, 2312–2325.

[46] Rohloff, K., Schantz, R.E., 2011. Clause-Iteration with MapReduce
to Scalably Query Data Graphs in the SHARD Graph-Store, in: Proc.
of the 4th Int. Workshop on Data-Intensive Distributed Computing
(DIDC 2011), ACM, San Jose, CA, USA. pp. 35–44.

[47] Seib, J., Lausen, G., 1991. Parallelizing Datalog Programs by
Generalized Pivoting, in: Proc. of the 10th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS
1991), Denver, CO, USA. pp. 241–251.

[48] Seo, J., Park, J., Shin, J., Lam, M.S., 2013. Distributed SociaLite: A
Datalog-Based Language for Large-Scale Graph Analysis. PVLDB
6, 1906–1917.

[49] Shao, J., Bell, D.A., Hull, M.E.C., 1991. Combining Rule Decompo-
sition and Data Partitioning in Parallel Datalog Program Processing,
in: Proc. of the 1st Int. Conf. on Parallel and Distributed Information
Systems (PDIS 1991), Miami Beach, FL, USA. pp. 106–115.

[50] Shkapsky, A., Yang, M., Interlandi, M., Chiu, H., Condie, T., Zaniolo,
C., 2016. Big Data Analytics with Datalog Queries on Spark, in: Proc.
of the ACM SIGMOD Int. Conf. on Management of Data (SIGMOD
2016), San Francisco, CA, USA. pp. 1135–1149.

[51] Stanton, I., Kliot, G., 2012. Streaming graph partitioning for large
distributed graphs, in: Proc. of the 18th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining (KDD 2012), ACM, Beijing,
China. pp. 1222–1230.

[52] Taimouri, M., Saadatfar, H., 2019. Rbsep: a reassignment and buffer
based streaming edge partitioning approach. Journal of Big Data 6.

[53] ter Horst, H.J., 2005. Completeness, decidability and complexity of
entailment for RDF Schema and a semantic extension involving the
OWL vocabulary. Journal of Web Semantics 3, 79–115.

[54] Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.E.,
2012. WebPIE: A Web-scale Parallel Inference Engine using MapRe-
duce. Journal of Web Semantics 10, 59–75.

[55] Weaver, J., Hendler, J.A., 2009. Parallel Materialization of the Finite
RDFS Closure for Hundreds of Millions of Triples, in: Proc. of the 8th
Int. Semantic Web Conference (ISWC 2009), Chantilly, VA, USA. pp.
682–697.

[56] Wolfson, O., Ozeri, A., 1993. Parallel and Distributed Processing of
Rules by Data-Reduction. IEEE Transactions on Knowledge and Data
Engineering 5, 523–530.

[57] Wu, B., Zhou, Y., Yuan, P., Jin, H., Liu, L., 2014. SemStore: A
Semantic-Preserving Distributed RDF Triple Store, in: Pro. of the
23rd ACM Int. Conf. on Information and Knowledge Management
(CIKM 2014), ACM, Shanghai, China. pp. 509–518.

[58] Wu, H., Liu, J., Wang, T., Ye, D., Wei, J., Zhong, H., 2016. Parallel
Materialization of Datalog Programs with Spark for Scalable Rea-
soning, in: Proc. of the 17th Int. Conf. on Web Information Systems
Engineering (WISE 2016), Shanghai, China. pp. 363–379.

[59] Zeng, K., Yang, J., Wang, H., hao, B., Wang, Z., 2013. A Distributed
Graph Engine for Web Scale RDF Data. PVLDB 6, 265–276.

[60] Zhang, W., Chen, Y., Dai, D., 2018. AKIN: A Streaming Graph
Partitioning Algorithm for Distributed Graph Storage Systems, in:
Proc. of the 18th IEEE/ACM Int. Symposium on Cluster, Cloud and
Grid Computing (CCGRID 2018), IEEE Computer Society. pp. 183–
192.

[61] Zhang, W., Wang, K., Chau, S.C., 1995. Data Partition and Parallel
Evaluation of Datalog Programs. IEEE Transactions on Knowledge

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 22 of 29

https://engineering.linkedin.com/blog/2020/liquid--the-soul-of-a-new-graph-database--part-2
https://engineering.linkedin.com/blog/2020/liquid--the-soul-of-a-new-graph-database--part-2

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

and Data Engineering 7, 163–176.

A. Proofs for Section 4
Theorem 4.1. Let 𝐼 be a dataset, let 𝑃 be a Datalog
program, and let 𝐺1,… , 𝐺𝓁 be the datasets obtained by
applying Algorithm 1 to an arbitrary partition of 𝐼 as
specified in this section. Then, 𝑃∞(𝐼) = 𝐺1 ∪⋯ ∪ 𝐺𝓁 , and
moreover the algorithm exhibits the nonrepetition property.

Throughout this section, we fix an arbitrary Datalog
program 𝑃 , input dataset 𝐼 , partition of 𝐼 , and a run of
Algorithm 1 on as specified in Section 4. We assume
that the result of the algorithm’s execution is equivalent to
a run where all lines on all servers are executed in some
sequential order—that is, we assume that our computation
is sequentially consistent. Thus, each line of the algorithm
is executed at some time instant 𝑖 where 𝑖 ≥ 0, and time
instant zero refers to the algorithm’s start. This allows us to
talk about some data structure (e.g., 𝜇𝑘,𝑠 for some 𝑘) at time
instant 𝑖, which is the state of the data structure just after the
line at time instant 𝑖 was executed. We next introduce several
useful definitions.

We say that a fact 𝑓 occurs at time instant 𝑖 on some
server 𝑘 if server 𝑘 contains 𝑓 at that time instant. A constant
𝑐 occurs at time instant 𝑖 on server 𝑘 at position 𝜋 ∈ Π if
there exists a fact 𝑓 that occurs at time instant 𝑖 on server 𝑘
such that 𝑓 |𝜋 = 𝑐. A constant 𝑐 is relevant at time instant 𝑖
to server 𝑘 if 𝑐 occurs in the head of a rule in 𝑃 or in server 𝑘
at any position at time instant 𝑖. We use ‘occur initially’ and
‘occur eventually’ to refer to the time instant zero and the
time instant at algorithm’s termination, respectively. Fact 𝑓
is derived on server 𝑘 if 𝑓 does not occur initially on server
𝑘, but it occurs eventually on server 𝑘.

For each position 𝜋 ∈ Π and each constant 𝑐 that occurs
eventually on some server, we define the set of servers𝐿𝜋(𝑐).If 𝑐 occurs in the head of some rule in 𝑃 , we let

𝐿𝜋(𝑐) = {1,⋯ ,𝓁} (31)
Otherwise, 𝑐 occurs initially on some server, and we let

𝐿𝜋(𝑐) =
⋂

𝑘∈𝑅(𝑐)
𝜇𝑘,𝜋(𝑐), (32)

where 𝑅(𝑐) is the set of servers for which 𝑐 is initially
relevant, and 𝜇𝑘,𝜋 are the occurrence mappings of server 𝑘 at
time instant zero. Furthermore, we let 𝐿(𝑐) = ⋃

𝜋∈Π 𝐿𝜋(𝑐).Each 𝐿(𝑐) contains the set of servers to which 𝑐 is initially
relevant: this is obvious when 𝑐 occurs in the head of some
rule in 𝑃 ; otherwise, if 𝑐 occurs initially on some server
𝑗 at position 𝜋, then 𝑗 ∈ 𝜇𝑘,𝜋(𝑐) holds for each 𝑘 ∈ 𝑅(𝑐).
Consequently, 𝐿(𝑐) is never empty.

We identify five types of events that are of interest in our
proof, which refer to particular kinds of time instant.

• An event of type 𝗉𝗋𝗈𝖼𝖾𝗌𝗌𝑘(𝑓) occurs after server 𝑘
completes line 8 when processing a fact 𝑓 .

• An event of type 𝗉𝖺𝗋𝑘(𝑓, 𝑟, 𝑝, 𝑖) occurs after server 𝑘
completes line 12 for a partial answer message with
index 𝑖 that originates from matching the 𝑝-th atom in
the body of rule 𝑟 to fact 𝑓 .

• An event of type 𝖿𝖼𝗍𝑘(𝑓) occurs just before server 𝑘
reaches line 37 while processing a 𝖥𝖢𝖳 message for
fact 𝑓 .

• An event of type 𝗈𝖼𝖼𝑘(𝑓, 𝑐, 𝜋, 𝑗) occurs after server 𝑘
completes line 42 for constant 𝑐, position 𝜋 ∈ Π and a
fact 𝑓 derived on server 𝑗. Note that 𝑓 |𝜋 = 𝑐 does not
necessarily hold.

• An event of type 𝖺𝖽𝖽𝑘(𝑓) occurs when fact 𝑓 is not
present in server 𝑘 before the time instant, and 𝑓 is
added to server 𝑘 in line 44.

An event of the same type can occur more than once in the
algorithm’s run; for example, a fact 𝑓 can be derived many
times, and each derivation of 𝑓 gives rise to a distinct event
of type 𝗈𝖼𝖼𝑘(𝑓, 𝑐, 𝜋, 𝑗). Sometimes, we use a time instant
index after the event type name to show both the event’s
instant and type; for example, 𝗈𝖼𝖼𝑘𝑖 (𝑓, 𝑐, 𝜋, 𝑗) means that
event at time instant 𝑖 is of type 𝗈𝖼𝖼𝑘(𝑓, 𝑐, 𝜋, 𝑗).

Note that, for each event 𝖺𝖽𝖽𝑘𝑖 (𝑓) in the algorithm’s run,
each constant 𝑐 in 𝑓 , and each position 𝜋 ∈ Π, the run
contains an event 𝗈𝖼𝖼𝑘𝑖′ (𝑓, 𝑐, 𝜋, 𝑘) such that 𝑖′ < 𝑖.

A fact 𝑓 introduces a constant 𝑐 on server 𝑘 at position
𝜋 ∈ Π if 𝑓 |𝜋 = 𝑐, constant 𝑐 does not occur initially on
server 𝑘 at position 𝜋, fact 𝑓 occurs eventually on server
𝑘, so event 𝗈𝖼𝖼𝑘𝑖 (𝑓, 𝑐, 𝜋, 𝑘) occurs on server 𝑘 for some 𝑖,
and, for each event 𝗈𝖼𝖼𝑘𝑗 (𝑔, 𝑐, 𝜋, 𝑘) with 𝑓 ≠ 𝑔 and 𝑔|𝜋 = 𝑐
occurring on server 𝑘, we have 𝑖 < 𝑗.

We are now ready to proceed with the proof of Theo-
rem 4.1, which we split into several claims for clarity. First,
we establish two properties that relate 𝐿(𝑐) to Algorithm 1.
Lemma A.1. For each server 𝑘, each position 𝜋, each
constant 𝑐 not occurring in the head of a rule in 𝑃 , each
instant in the algorithm’s run at which 𝑐 occurs on server 𝑘,
and for 𝜇𝑘,𝜋 the occurrence mapping for position 𝜋 at that
instant, 𝐿𝜋(𝑐) ⊆ 𝜇𝑘,𝜋(𝑐) holds.

Proof. The proof is by induction on time instants in the
algorithm’s run. For the base case at time instant zero, the
claim follows immediately from the definition of 𝐿𝜋 . For
the induction step, we consider a time instant 𝑖 > 0 such that
claim holds at all instants 𝑖′ with 𝑖′ < 𝑖, and we show that the
claim holds at time instant 𝑖 as well.

If time instant 𝑖 does not add a fresh constant 𝑐 to server
𝑘, then the claim holds vacuously because the occurrence
mappings never become smaller. If there exist a constant 𝑐
and server 𝑘 such that 𝑐 does not occur at instant 𝑖 − 1 but
occurs at instant 𝑖 on server 𝑘, then instant 𝑖 corresponds
to an event of type 𝖺𝖽𝖽𝑘(𝑓), where 𝑓 is a fact that contains
𝑐. Consequently, there exists an event 𝗈𝖼𝖼𝑘𝑖′ (𝑓, 𝑐, 𝜋, 𝑘) in the
run for some instant 𝑖′ with 𝑖′ < 𝑖 and position 𝜋 ∈ Π. Let 𝜆𝜋be the partial occurrence mapping for position 𝜋 attached to

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 23 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

the 𝖮𝖢𝖢 message at instant 𝑖′. The set 𝜆𝜋(𝑐) was initialised
in line 17 as 𝜇𝑗,𝜋(𝑐) on some server 𝑗 at some instant before
𝑖′, and moreover constant 𝑐 was obtained by matching a fact
that occurs on server 𝑗 at instant 𝑖′; thus, 𝑐 occurs on server
𝑗 at time instant 𝑖′. Consequently, the induction assumption
ensures 𝐿𝜋(𝑐) ⊆ 𝜇𝑗,𝜋(𝑐) at instant 𝑖′, which in turn ensures
𝐿𝜋(𝑐) ⊆ 𝜇𝑘,𝜋(𝑐) at instant 𝑖, as required.
Lemma A.2. For all servers 𝑘 and 𝑗, each fact 𝑓 , each
constant 𝑐, and all position 𝜋 and 𝜋′ such that 𝑗 ∈ 𝐿(𝑐) and
𝑓 introduces 𝑐 at position 𝜋 on server 𝑘, an event of type
𝗈𝖼𝖼𝑗(𝑓, 𝑐, 𝜋′, 𝑘) occurs on server 𝑗 during the run.

Proof. Consider arbitrary 𝑘, 𝑗, 𝑓 , 𝑐, 𝜋, and 𝜋′ as specified
in the lemma. By the definition of ‘introduces’, fact 𝑓 does
not occur initially on server 𝑘, so there exists a time instant
𝑖 such that event 𝖺𝖽𝖽𝑘𝑖 (𝑓) occurs on server 𝑘. Because of
the algorithm order, event 𝖿𝖼𝗍𝑘𝑖′ (𝑓) occurs on server 𝑘 at
some time instant 𝑖′ with 𝑖′ < 𝑖. Let 𝜇𝑘,𝜋 be the occurrence
mapping at instant 𝑖′. Then, we have 𝑘 ∉ 𝜇𝑘,𝜋(𝑐) because 𝑓
is the fact that introduces 𝑐 at position 𝜋 on server 𝑘, so the
algorithm executes lines 32-36 for position 𝜋. We have the
following two possibilities.

• If 𝑐 occurs in the head of a rule in 𝑃 , then all the
servers of the cluster are added to the set 𝐷 in line 34,
which ensures 𝐿(𝑐) ⊆ 𝐷.

• If 𝑐 does not occurs in the head of a rule in 𝑃 , then
𝑐 was matched to a variable 𝑥 in a body atom of
some rule in 𝑃 on some server, and 𝑥 also occurs
in the rule head. Let 𝜆𝑠, 𝜆𝑝, and 𝜆𝑜 be the partial
occurrences for the 𝖥𝖢𝖳 message at instant 𝑖′; clearly,
𝐷 includes the sets 𝜆𝑠(𝑐), 𝜆𝑝(𝑐), and 𝜆𝑜(𝑐). These sets
were copied from the occurrence mappings 𝜇𝑘′,𝜋′′ on
some server 𝑘′ at some time instant when 𝑐 occurs in
𝑘′, so Lemma A.1 ensures 𝐿(𝑐) ⊆

⋃

𝜋′′∈Π 𝜇𝑘′,𝜋′′ (𝑐);consequently, 𝐿(𝑐) ⊆
⋃

𝜋′∈Π 𝜆𝜋′ (𝑐) holds. Set 𝐷 is
extended in line 36 with these partial occurrences,
which clearly ensures 𝐿(𝑐) ⊆ 𝐷.

Either way, set 𝐷 includes 𝐿(𝑐); thus, 𝑗 ∈ 𝐿(𝑐) implies
𝑗 ∈ 𝐷. Lines 38 and 47 ensure that an 𝖮𝖢𝖢 message for 𝑓
is sent to every server in 𝐷, so line 42 ensures that an event
of type 𝗈𝖼𝖼𝑗(𝑓, 𝑐, 𝜋′, 𝑘) occurs on server 𝑗.

Second, we show that the consistency of occurrence
mappings is maintained as the computation progresses. We
will later use this to ensure that partial answers are sent to
all relevant servers that can possibly match an atom.
Lemma A.3. At each time instant, the collection of the
occurrence mappings of all servers is consistent with 𝑃 and
the datasets stored in the servers at that instant.

Proof. Let us fix an arbitrary time instant during the run
of Algorithm 1. Let 𝐺𝐺𝐺 = 𝐺1,… , 𝐺𝓁 be the datasets and
let 𝜇𝜇𝜇 = 𝜇1,𝑠, 𝜇1,𝑝, 𝜇1,𝑜,… , 𝜇𝓁,𝑠, 𝜇𝓁,𝑝, 𝜇𝓁,𝑜 be the occurrence
mappings stored in each server at that instant. Moreover, let
us fix arbitrary servers 𝑘 and 𝑗, position 𝜋 ∈ Π, and constant

𝑐 that is relevant for 𝑃 and 𝐺𝑘 and that occurs at position 𝜋
in 𝐺𝑗 . We prove 𝑗 ∈ 𝜇𝑘,𝜋(𝑐) by considering four cases.

Case 1: Constant 𝑐 is initially relevant for 𝑃 and server
𝑘, but 𝑐 does not occur initially on server 𝑗. Let 𝑓 be the fact
that introduces 𝑐 at position 𝜋 on server 𝑗. By the definition
of 𝐿, we have 𝑘 ∈ 𝐿(𝑐), so Lemma A.2 ensures that an event
of type 𝗈𝖼𝖼𝑘(𝑓, 𝑐, 𝜋, 𝑗) occurs on server 𝑘. Let 𝑖 be the time
instant of the first event of that type. Since 𝑐 occurs in 𝐺𝑗and each 𝖮𝖢𝖢 message for 𝑓 is sent to server 𝑗 last, then 𝑖
precedes the current time instant, so 𝑗 ∈ 𝜇𝑘,𝜋(𝑐) holds.

Case 2: Constant 𝑐 is initially relevant for 𝑃 and server
𝑘 and it occurs initially on server 𝑗 at position 𝜋. Occurrence
mappings are correct initially, so 𝑗 ∈ 𝜇𝑘,𝜋(𝑐) holds.

Case 3: Constant 𝑐 is not initially relevant for 𝑃 and
server 𝑘, and 𝑐 does not occur initially on server 𝑗. Clearly,
𝑐 does not occur in the head of a rule in 𝑃 . Let 𝑓 be the
fact that introduces 𝑐 in position 𝜋 on server 𝑗. Now if
𝑘 = 𝑗, then line 42 is executed before line 44 when process-
ing the 𝖮𝖢𝖢 message for fact 𝑓 , so 𝑗 ∈ 𝜇𝑘,𝜋(𝑐) holds. To
complete this case, we assume that 𝑘 ≠ 𝑗 holds. Let 𝑓 ′ be
the fact that introduces 𝑐 in any position on server 𝑘 and
thus causes 𝑐 to become relevant to 𝑘, let 𝜋′ be a position
of 𝑐 in 𝑓 ′ (i.e., we choose one 𝜋′ if 𝑐 occurs in 𝑓 ′ more
than once), and choose arbitrarily some 𝑚 in 𝐿(𝑐) (which
is possible due to 𝐿(𝑐) ≠ ∅). By Lemma A.2, there exist
events 𝗈𝖼𝖼𝑚𝑖1 (𝑓, 𝑐, 𝜋, 𝑗) and 𝗈𝖼𝖼𝑚𝑖2

(𝑓 ′, 𝑐, 𝜋′, 𝑘) both occurring
on server 𝑚. These events are distinct because of 𝑘 ≠ 𝑗, and
we can also assume that they are the first events of their
respective types. Since 𝑐 is relevant to 𝑘 and it occurs in𝐺𝑗 at
position 𝜋 at the current time instant, both 𝑖1 and 𝑖2 precede
the present moment. We now consider two possibilities.

• Assume 𝑖1 < 𝑖2. By our assumption, 𝑐 is relevant to
𝑘 at the current time instant, so there exists an event
𝗈𝖼𝖼𝑘𝑖3

(𝑓 ′, 𝑐, 𝜋′, 𝑘) occurring on server 𝑘 before the
current point in time; clearly, 𝑖2 < 𝑖3. Let 𝜆𝑠, 𝜆𝑝,
and 𝜆𝑜 be the partial occurrence mappings in the 𝖮𝖢𝖢
message for 𝑓 ′ at point 𝑖3. Then, event 𝗈𝖼𝖼𝑚𝑖1 (𝑓, 𝑐, 𝜋, 𝑗)ensures that 𝑗 is present in the occurrence mappings
of server 𝑚 at instant 𝑖1; this occurs before event
𝗈𝖼𝖼𝑚𝑖2

(𝑓 ′, 𝑐, 𝜋′, 𝑘), where line 43 ensures 𝑗 ∈ 𝜆𝜋(𝑐).
Thus, when the 𝖮𝖢𝖢 message for 𝑓 ′ is processed on
server 𝑘 at point 𝑖3, line 42 ensures 𝑗 ∈ 𝜇𝑘,𝜋(𝑐).

• Assume 𝑖2 < 𝑖1. Since 𝑐 occurs at position 𝜋 on server
𝑗 at the current time instant, event 𝗈𝖼𝖼𝑗𝑖3

(𝑓, 𝑐, 𝜋, 𝑗)
occurring on server 𝑗 introduces 𝑐 at position 𝜋 to
server 𝑗 before the current instant; since the 𝖮𝖢𝖢
message for 𝑓 is sent to server 𝑗 last, we have 𝑖1 < 𝑖3.
Event 𝗈𝖼𝖼𝑚𝑖2 (𝑓 ′, 𝑐, 𝜋′, 𝑘) ensures that 𝑘 is present in the
occurrence mappings on server 𝑚 at instant 𝑖2; this
occurs before event 𝗈𝖼𝖼𝑚𝑖1 (𝑓, 𝑐, 𝜋, 𝑗), and so line 43
ensures that 𝑘 is added to the set 𝐷. Thus, an event
of type 𝗈𝖼𝖼𝑘(𝑓, 𝑐, 𝜋, 𝑗) happens on server 𝑘 before 𝑖3because each 𝖮𝖢𝖢 message for 𝑓 is sent to server 𝑗
last. Finally, line 32 ensures 𝑗 ∈ 𝜆𝜋(𝑐) where 𝜆𝜋 is the

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 24 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

partial occurrence mapping from the 𝖮𝖢𝖢 message,
so clearly 𝑗 ∈ 𝜇𝑘,𝜋(𝑐) holds.

Case 4: Constant 𝑐 is not initially relevant for 𝑃 and
server 𝑘, but 𝑐 occurs initially on server 𝑗 at position 𝜋.
Then, 𝑗 ∈ 𝐿𝜋(𝑐) holds. Let 𝑓 be the fact that introduces
𝑐 in any position on server 𝑘. Then, there exist a position
𝜋′ and an instant before the current one such that at which
𝗈𝖼𝖼𝑘𝑖 (𝑓, 𝑐, 𝜋

′, 𝑘) occurs on server 𝑘. Let 𝜆𝜋 be the partial
occurrence mapping for position 𝜋 in the 𝖮𝖢𝖢 message at
instant 𝑖′. Set 𝜆𝜋(𝑐) was read from some server 𝑘′ at some
time instant when 𝑐 occurs in 𝑘′, so Lemma A.1 ensures that
𝜆𝜋(𝑐) includes 𝐿𝜋(𝑐); thus, line 42 ensures that 𝑗 present
in the occurrence mappings on server 𝑘 at instant 𝑖, and so
𝑗 ∈ 𝜇𝑘,𝜋(𝑐) holds.

Third, we show that the occurrence mappings for the
subject position are maintained in a way that ensures that
all facts with the same subject are stored on the same server.
Lemma A.4. For each constant 𝑐, at each time instant set
⋃

1≤𝑘≤𝓁 𝜇𝑠,𝑘(𝑐) contains at most one element; moreover, if
this set contains a server 𝑗, then either 𝑗 ∈

⋃

1≤𝑘≤𝓁 𝜇𝑠,𝑘(𝑐)
holds at time instant zero, or 𝑐 mod 𝓁 = 𝑗.

Proof. The proof is by induction on the time instants in the
algorithm’s run. The base case at time instant zero holds
because the occurrence mappings are initially correct. For
the induction step, we consider a time instant 𝑖 > 0 such that
claim holds at all instants 𝑖′ with 𝑖′ < 𝑖, and we show that the
claim holds at time instant 𝑖 as well.

The claim holds vacuously if no occurrence mapping
changes at time instant 𝑖. Thus, we assume that there exist
servers 𝑘 and 𝑗, constant 𝑐, and fact 𝑓 such that 𝑓 is derived
on server 𝑗 and contains 𝑐, and event 𝗈𝖼𝖼𝑘𝑖 (𝑓, 𝑐, 𝑠, 𝑗) occurs at
time instant 𝑖. Let 𝜇𝑘,𝑠 be the occurrence mapping on server
𝑘 at instant 𝑖−1, and let 𝜆𝑠 be the partial occurrence mapping
from the 𝖮𝖢𝖢 message being processed at instant 𝑖. There
exist a server 𝑘′ and time instant 𝑚 such that 𝜆𝑠(𝑐) is initially
set to 𝜇𝑘′,𝑠(𝑐) at instant 𝑚 < 𝑖. Note that, after initialisation,
𝜆𝑠(𝑐) can later change only in line 32 or 43.

We assumed that the subject occurrence mappings of
server 𝑘 change at instant 𝑖, so 𝜆𝑠(𝑐) ≠ ∅ holds. We next
show that 𝜆𝑠(𝑐) has exactly one element. For the sake of
a contradiction, assume that 𝜆𝑠(𝑐) contains two or more
elements. Now consider an arbitrary 𝑗′ ∈ 𝜆𝑠(𝑐) such that
𝑗′ ≠ 𝑐 mod 𝓁. Then, 𝑗′ is not added to 𝜆𝑠 via lines 21
and 32, so server 𝑗′ must be present in some subject oc-
currence mapping for 𝑐 at time instant zero. Since oc-
currence mappings are correct at that instant, constant 𝑐
occurs initially in subject position on some server 𝑗′, and
moreover 𝐿𝑠(𝑐) = {𝑗′}. Since this holds for arbitrary 𝑗′ and
𝐿𝑠(𝑐) is uniquely defined, 𝜆𝑠(𝑐) can contain at most two
elements: one with value 𝑗′ ≠ 𝑐 mod 𝓁, and another one
with value 𝑗′′ = 𝑐 mod 𝓁; note that 𝐿𝑠(𝑐) = {𝑗′} holds, so
𝑗′′ ∉ 𝐿𝑠(𝑐)—that is, constant 𝑐 does not occur initially on
server 𝑗′′ in subject position. Now Lemma A.1 ensures
that 𝐿𝑠(𝑐) ⊆ 𝜇𝑘′,𝑠(𝑐) holds at instant 𝑚, and the induction
assumption holds for 𝜇𝑘′,𝑠 at instant 𝑚, so 𝜇𝑘′,𝑠(𝑐) = {𝑗′}

holds at instant 𝑚. Thus, when the destination server for fact
𝑓 is determined in lines 21–22, the partial occurrence for the
subject position for 𝑐 contains exactly 𝑗′, so the destination
server is selected in line 22 as 𝑗′. In other words, no new
server added to 𝜆𝑠(𝑐) in line 32 when a 𝖥𝖢𝖳 message for 𝑓
is processed. If 𝑗′′ were added at line 43, then there exist
an instant 𝑖′′ < 𝑖 and server 𝑘′′ such that 𝑗′′ ∈ 𝜇𝑘′′,𝑠(𝑐) at
that instant. The induction assumption holds for instant 𝑖′′,
so the set ⋃1≤𝑘≤𝓁 𝜇𝑠,𝑘(𝑐) at instant 𝑖′′ contains at most one
element; thus, 𝑗′′ = 𝑗′, which contradicts our assumption
that 𝜆𝑠(𝑐) has two or more elements.

Now if 𝜇𝑘,𝑠(𝑐) = ∅ holds, then adding 𝜆𝑠(𝑐) to 𝜇𝑘,𝑠(𝑐)clearly does not violate the inductive claim. Thus, assume
that 𝜇𝑘,𝑠(𝑐) ≠ ∅. By the induction assumption, 𝜇𝑘,𝑠(𝑐) con-
tains just one server 𝑗′′. The inductive claim clearly holds if
𝑗′ = 𝑗′′. For the sake of a contradiction, assume that 𝑗′ ≠ 𝑗′′.
Then either 𝑗′ or 𝑗′′ must be different from 𝑐 mod 𝓁. In the
same way as in the previous paragraph, we can conclude
that 𝑐 then occurs initially in subject position in both 𝑗′ and
𝑗′′, which contradicts our assumption that occurrences are
correct at time instant zero.

Lemma A.4 straightforwardly ensures that 𝜆𝑠(ℎ𝜎|𝑠) in
line 21 contains at most one server, and therefore all facts
with the same subject are stored on the same server. Thus,
each fact is stored on precisely one server, which ensures
that the algorithm’s run contains at most one event of the
following types for each fact 𝑓 .

• An event of type 𝖺𝖽𝖽𝑘(𝑓) can occur at most once
because 𝑓 is derived on a server uniquely identified
by its subject and duplicates are eliminated.

• An event of type 𝗉𝗋𝗈𝖼𝖾𝗌𝗌𝑘(𝑓) can occur at most once
because of the observation in the previous item, and
moreover each fact in a server is processed once by
the function PROCESSFACT.

For 𝑓 a fact, we define 𝑇 (𝑓) as the value of 𝑇𝑘(𝑓) upon
the algorithm’s termination where 𝑘 is the server whose
partition element contains fact 𝑓 at that instant; since each
fact is stored and assigned a timestamp on just one server,
there is precisely one such 𝑘 for each fact 𝑓 .

Fourth, we show that the chronological ‘happens-before’
relationship on the events agrees with the timestamps as-
signed to the facts involved in the events.
Lemma A.5. Relationship 𝑇 (𝑓1) < 𝑇 (𝑓2) holds for events

• 𝗉𝖺𝗋𝑘𝑖1
(𝑓1, 𝑟, 𝑝, 𝑗) and 𝖺𝖽𝖽𝑘𝑖2

(𝑓2) such that 𝑖1 < 𝑖2,

• 𝗉𝗋𝗈𝖼𝖾𝗌𝗌𝑘𝑖1
(𝑓1) and 𝗈𝖼𝖼𝑘𝑖2

(𝑓2, 𝑐, 𝜋, 𝑗) such that 𝑖1 < 𝑖2
and there exists no event 𝗈𝖼𝖼𝑘𝑖3 (𝑓2, 𝑐, 𝜋, 𝑗) with 𝑖3 < 𝑖2,
and

• 𝗉𝖺𝗋𝑘𝑖1
(𝑓1, 𝑟, 𝑝, 𝑖) and 𝗈𝖼𝖼𝑘𝑖2

(𝑓2, 𝜋, 𝑗) such that 𝑖1 < 𝑖2
and there exists no event 𝗈𝖼𝖼𝑘𝑖3 (𝑓2, 𝑐, 𝜋, 𝑗) with 𝑖3 < 𝑖2.

Proof. Consider events 𝗉𝖺𝗋𝑘𝑖1
(𝑓1, 𝑟, 𝑝, 𝑗) and 𝖺𝖽𝖽𝑘𝑖2

(𝑓2) with
𝑖1 < 𝑖2. The 𝖯𝖠𝖱 message from the first event contains a

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 25 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

timestamp 𝜏 = 𝑇 (𝑓1). Thus, after the call to SYNCHRONISE
in line 12, the value of the local clock𝐶𝑘 is strictly larger than
𝑇 (𝑓1). Given that events of type 𝖺𝖽𝖽𝑘(𝑓2) do not repeat, fact
𝑓2 cannot be added before instant 𝑖2. Thus, when fact 𝑓2 is
later assigned a timestamp, we have 𝑇 (𝑓1) < 𝑇 (𝑓2).Consider events 𝗉𝗋𝗈𝖼𝖾𝗌𝗌𝑘𝑖1 (𝑓1) and 𝗈𝖼𝖼𝑘𝑖2

(𝑓2, 𝑐, 𝜋, 𝑗) such
that 𝑖1 < 𝑖2 and there exists no event 𝗈𝖼𝖼𝑘𝑖3 (𝑓2, 𝑐, 𝜋, 𝑗) with
𝑖3 < 𝑖2. Clearly, the timestamp 𝜏 in first event has the value of
𝑇𝑘(𝑓1), so, after the call to SYNCHRONISE in line 8, the value
of the local clock 𝐶𝑘 is strictly larger than 𝑇 (𝑓1). If the set of
servers that need to be updated by the 𝖮𝖢𝖢 message for 𝑓2is empty, then 𝑓2 is added to the partition element of server
𝑘 and the timestamp of 𝑓2 is set to the current value of 𝐶𝑘in line 44, which ensures 𝑇 (𝑓1) < 𝑇 (𝑓2). Otherwise, server
𝑘 attaches the current value of 𝐶𝑘 to the new 𝖮𝖢𝖢 message
produced for 𝑓2 in line 47. Before 𝑓2 is added to some server
𝑘′, server 𝑘′ calls SYNCHRONISE in line 40, which ensures
𝑇 (𝑓1) < 𝑇 (𝑓2), as required.

The case of events 𝗉𝖺𝗋𝑘𝑖1
(𝑓1, 𝑟, 𝑝, 𝑖) and 𝗈𝖼𝖼𝑘𝑖2

(𝑓2, 𝜋, 𝑗)
such that 𝑖1 < 𝑖2 and there exists no event 𝗈𝖼𝖼𝑘𝑖3 (𝑓2, 𝑐, 𝜋, 𝑗)with 𝑖3 < 𝑖2 is analogous to above, but uses line 12 instead
of line 8.

For the rest of this section, we fix 𝐺1,… , 𝐺𝓁 as the
datasets computed in each server after the algorithm ter-
minates. We now complete the proof of Theorem 4.1 by
considering the soundness, completeness, and nonrepetition
properties of the algorithm.
Lemma A.6. It is the case that 𝐺1 ∪⋯ ∪ 𝐺𝓁 ⊆ 𝑃∞(𝐼).

Proof. The proof is by induction on the construction of
sets 𝐺𝑖. The argument is straightforward so we just present
a sketch: when (𝜎, 𝑎,𝑄, ℎ) is returned on some server 𝑘
in line 9, substitution 𝜎 satisfies 𝑎𝜎 ∈ 𝐺𝑘; moreover, as
matching of 𝑄 progresses, each substitution 𝜎′ returned in
line 13 satisfies 𝑎𝑖𝜎′ ∈ 𝐺𝑘′ ; consequently, each substitution
𝜎 in line 23 is an answer to the annotated query 𝑄. Thus,
each such 𝜎 matches all body atoms of the rule corre-
sponding to (𝜎, 𝑎,𝑄, ℎ) in 𝑃∞(𝐼), and so we clearly have
ℎ𝜎 ∈ 𝑃∞(𝐼).
Lemma A.7. It is the case that 𝑃∞(𝐼) ⊆ 𝐺1 ∪⋯ ∪ 𝐺𝓁 .

Proof. Let 𝑃 𝑖(𝐼) be the sets from the construction of 𝑃∞(𝐼)
as defined in Section 2. The claim follows from the following
property:

(∗) for each 𝑖 and each fact 𝑓 ∈ 𝑃 𝑖(𝐼), there
exists 𝑘 such that 𝑓 ∈ 𝐺𝑘.

The proof is by induction on 𝑖. The base case holds trivially,
so we assume that (∗) holds for some 𝑖 ≥ 0 and show
that it also holds for 𝑖 + 1. To this end, we consider an
arbitrary fact 𝑓 ∈ 𝑃 𝑖+1(𝐼) ⧵ 𝑃 𝑖(𝐼). This fact is derived by a
rule 𝑟 ∶= ℎ ← 𝑏0 ∧⋯ ∧ 𝑏𝑛 ∈ 𝑃 and substitution 𝜎 such that
ℎ𝜎 = 𝑓 and 𝑏𝑗𝜎 ∈ 𝑃 𝑖(𝐼) for 0 ≤ 𝑗 ≤ 𝑛. Now choose 𝑝 as the
smallest integer between 0 and 𝑛 such that 𝑇 (𝑏𝑝′𝜎) ≤ 𝑇 (𝑏𝑝𝜎)holds for each 0 ≤ 𝑝′ ≤ 𝑛. Let 𝑎0,… , 𝑎𝑛 be the body atoms

of the rule rearranged so that 𝑎0 = 𝑏𝑝 is the pivot atom,
and the remaining atoms correspond to the annotated query
𝑄 = 𝑎⋈1

1 ∧⋯ ∧ 𝑎⋈𝑛
𝑛 returned by MATCHRULES(𝑏𝑝𝜎, 𝑃) in

line 9 on fact 𝑏𝑝𝜎. Finally, for each 0 ≤ 𝑗 ≤ 𝑛, let 𝜎𝑗 be the
substitution 𝜎 restricted to all variables occurring in atoms
𝑎0,… , 𝑎𝑗 and let 𝜏𝑗 = 𝑇 (𝑎𝑗𝜎); moreover, (∗) holds for 𝑖 by
the induction assumption, so there exists a server 𝑘𝑗 such
that 𝑎𝑗𝜎 ∈ 𝐺𝑘𝑗 holds. We next prove the following:

(◊) for each 𝑗 with 0 ≤ 𝑗 ≤ 𝑛, a time instant ex-
ists when FINISHMATCH(𝑗, 𝜎𝑗 , 𝑎𝑗 , 𝑄, ℎ, 𝜏0, 𝜆𝜆𝜆𝑗)is called for some mapping 𝜆𝜆𝜆𝑗 .

Property (◊) implies our claim because, in lines 18–23,
the algorithm then constructs a 𝖥𝖢𝖳 message for ℎ𝜎 and
dispatches it to some server 𝑘ℎ, so ℎ𝜎 is later added to server
𝑘ℎ in line 44, as required for (∗).

We prove (◊) by induction on 0 ≤ 𝑗 ≤ 𝑛. For the base
case, fact 𝑎0𝜎 occurs initially in server 𝑘0. Consequently,
PROCESSFACT(𝑎0𝜎, 𝑇𝑘(𝑎0𝜎)) is called on server 𝑘0, so a call
to MATCHRULES(𝑎0𝜎, 𝑃) returns (𝜎0, 𝑎0, 𝑄, ℎ), after which
FINISHMATCH(0, 𝜎0, 𝑎0, 𝑄, ℎ, 𝜏0,∅∅∅) is called in line 10, as
required. For the induction step, we assume that (◊) holds
for some 0 ≤ 𝑗 < 𝑛, and we show that it holds for 𝑗 + 1
as well. By the induction assumption, fact 𝑎𝑗+1𝜎 occurs
eventually in some server 𝑘𝑗+1.

Assume now that event 𝗉𝖺𝗋𝑘𝑗+1𝑚 (𝑎0𝜎, 𝑟, 𝑝, 𝑗 + 1) occurs at
some time instant 𝑚. Server 𝑘𝑗+1 then calls EVALUATE at
line 13 for 𝑎⋈𝑗+1

𝑗+1 . We next show that server 𝑘𝑗+1 contains
𝑎𝑗+1𝜎 at the time instant when line 13 is executed. We have
the following possibilities.

• If no event of type 𝖺𝖽𝖽𝑘𝑗+1 (𝑎𝑗+1𝜎) ever happens, then
fact 𝑎𝑗+1𝜎 occurs initially on server 𝑘𝑗+1.

• If an event 𝖺𝖽𝖽𝑘𝑗+1𝑚′ (𝑎𝑗+1𝜎) occurs at time instant 𝑚′

such that 𝑚′ < 𝑚, then server 𝑘𝑗+1 clearly contains
fact 𝑎𝑗+1𝜎 when line 13 is executed.

• Assume now that event 𝖺𝖽𝖽
𝑘𝑗+1
𝑚′ (𝑎𝑗+1𝜎) happens at

time instant 𝑚′ with 𝑚′ > 𝑚. Then, Lemma A.5 im-
plies 𝑇 (𝑎0𝜎) < 𝑇 (𝑎𝑗+1𝜎), which contradicts our as-
sumption that 𝑇 (𝑎𝑗+1𝜎) ≤ 𝑇 (𝑎0𝜎).

Moreover, if 𝑇 (𝑎𝑗+1𝜎) = 𝑇 (𝑎0𝜎), since 𝑎0 = 𝑏𝑝 was chosen
so that 𝑝 is the least index of a body atom matched to a fact
with timestamp 𝑇 (𝑎0𝜎), the shape of 𝑄 from (12) ensures
that ⋈𝑗+1= ≤. Thus, the call to EVALUATE in line 13 on
server 𝑘𝑗+1 returns 𝜎𝑗+1, so the call in line 14 ensures (◊).

To complete the proof, we assume that no event of type
𝗉𝖺𝗋𝑘𝑗+1 (𝑎0𝜎, 𝑟, 𝑝, 𝑗 + 1) occurs during the algorithm’s run
(i.e., server 𝑘𝑗 never forwards a 𝖯𝖠𝖱 message to server
𝑘𝑗+1) and show that this leads to a contradiction. Under
this assumption, there exists a position 𝜋 ∈ Π such that, for
𝑐 = 𝑎𝑗+1𝜎𝑗|𝜋 , we have 𝑘𝑗+1 ∉ 𝜆𝜋(𝑐) at the time instant when
line 26 is executed on server 𝑘𝑗 , and so 𝑘𝑗+1 is removed from
𝐷. However, this 𝜆𝜋(𝑐) is populated in line 17 when, for
some index 0 ≤ 𝑠 ≤ 𝑗 of an atom 𝑎𝑠, constant 𝑐 is matched

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 26 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

on server 𝑘𝑠 at some position 𝜋𝑠; hence, at that instant we
have 𝑘𝑗+1 ∉ 𝜇𝑘𝑠,𝜋(𝑐). Now if no event of type 𝖺𝖽𝖽𝑘𝑗+1 (𝑎𝑗+1𝜎)ever happens, then 𝑎𝑗+1𝜎 would occur initially on server
𝑘𝑗+1; but then, since 𝑐 is relevant to 𝑘𝑠, Lemma A.3 implies
𝑘𝑗+1 ∈ 𝜇𝑘𝑠,𝜋(𝑐), which is a contradiction. Consequently, an
event of type 𝖺𝖽𝖽𝑘𝑗+1 (𝑎𝑗+1𝜎) occurs on server 𝑘𝑗+1. More-
over, let 𝛼 be the event type 𝗉𝗋𝗈𝖼𝖾𝗌𝗌𝑘𝑠 (𝑎0𝜎) if 𝑠 = 0, and
the event type 𝗉𝖺𝗋𝑘𝑠 (𝑎0𝜎, 𝑟, 𝑝, 𝑠) otherwise. By the induction
assumption, property (◊) holds for 𝑠, so an event of type
𝛼 occurs on server 𝑘𝑠. Clearly, an event of type 𝛼 can
occur only once during the algorithm’s run, so let 𝑚1 be the
corresponding time instant.

Let 𝑔 be the fact that introduces 𝑐 in position 𝜋 on server
𝑘𝑗+1; such a fact exists because 𝑎𝑗+1𝜎 contains 𝑐 in position
𝜋 and it is added to server 𝑘𝑗+1. Let 𝑔′ be the fact that
introduces 𝑐 in any position in 𝑘𝑠, and let 𝜋′ be the position
of 𝑐 in 𝑔′. Such a fact exists because 𝑐 is matched on 𝑘𝑠.Choose an arbitrary server 𝑘′ ∈ 𝐿(𝑐). By Lemma A.2, there
exist time instants 𝑚2 and 𝑚3 such that 𝗈𝖼𝖼𝑘′𝑚2

(𝑔′, 𝑐, 𝜋′, 𝑘𝑠)
and 𝗈𝖼𝖼𝑘

′
𝑚3
(𝑔, 𝑐, 𝜋, 𝑘𝑗+1) occur on server 𝑘′. If 𝑚3 < 𝑚2, then

𝑘𝑗+1 would be added to the occurrence mappings of 𝑘′ at
instant 𝑚3 when the 𝖮𝖢𝖢 message for 𝑔 is processed, and
then to the partial occurrence mappings in the 𝖮𝖢𝖢 message
for 𝑔′ at instant 𝑚2. Thus, 𝑘𝑗+1 ∈ 𝜇𝑘𝑠,𝜋 would hold at instant
𝑚1, which contradicts our assumption that 𝑘𝑗+1 ∉ 𝜇𝑘𝑠,𝜋(𝑐) at
that instant.

Therefore, we have 𝑚2 < 𝑚3. Event 𝗈𝖼𝖼𝑘′𝑚2
(𝑔′, 𝑐, 𝜋′, 𝑘𝑠)

then ensures that 𝑘𝑠 ∈ 𝜇𝑘′,𝜋 holds at instant 𝑚2, and event
𝗈𝖼𝖼𝑘

′
𝑚3
(𝑔, 𝑐, 𝜋, 𝑘𝑗+1) ensures that 𝑘𝑠 ∈ 𝐷 holds after line 36 at

instant 𝑚3; thus, an event of type 𝗈𝖼𝖼𝑘𝑠 (𝑔, 𝑐, 𝜋, 𝑘𝑗+1) occurs
and adds 𝑘𝑗+1 to 𝜇𝑘𝑠,𝜋(𝑐). We know that 𝑘𝑗+1 ∉ 𝜇𝑘𝑠,𝜋(𝑐)holds when 𝑐 is matched by 𝜎, so the event of type 𝛼 must
happen before all events of type 𝗈𝖼𝖼𝑘𝑠 (𝑔, 𝑐, 𝜋, 𝑘𝑗+1). Conse-
quently, any 𝖮𝖢𝖢 message for 𝑔 that is forwarded to server
𝑘𝑗+1 ensures that 𝐶𝑘𝑗+1 is set to a value higher than 𝑇 (𝑎0𝜎)
with the call to SYNCHRONISE in line 40. Because of how 𝑔
is defined, there exists an event of type 𝗈𝖼𝖼𝑘𝑗+1 (𝑔, 𝑐, 𝜋, 𝑘𝑗+1)
that precedes all events of type 𝗈𝖼𝖼𝑘𝑗+1 (𝑎𝑗+1𝜎, 𝑐, 𝜋, 𝑘𝑗+1),and therefore, when 𝑎𝑗+1𝜎 is added to server 𝑘𝑗+1, we have
𝑇 (𝑎0𝜎) < 𝑇 (𝑎𝑗+1𝜎), which contradicts our assumption that
𝑇 (𝑎𝑗+1𝜎) ≤ 𝑇 (𝑎0𝜎) holds.
Lemma A.8. No derivations are repeated in the run.
Proof. Assume that PROCESSFACT considers two facts 𝑓1and 𝑓2, both of which matched the same rule and produce
the same substitution 𝜎. Let 𝑏1 and 𝑄1 be the pivot atom and
the annotated query returned in line 9 when 𝑓1 is processed,
and let 𝑏2 and 𝑄2 be defined analogously. Thus, 𝑏1𝜎 = 𝑓1and 𝑏2𝜎 = 𝑓2. Since each fact is processed only once, atoms
𝑏1 and 𝑏2 are distinct. Now w.l.o.g. let us assume that 𝑏1occurs before 𝑏2 in the body of the rule; thus, the atom
corresponding to 𝑏2 in 𝑄1 is annotated with ≤, and the atom
corresponding to 𝑏1 in 𝑄2 is annotated with <. But then, 𝑓2is not matched by 𝑄1 if 𝑇 (𝑓1) < 𝑇 (𝑓2) holds, and 𝑓1 is not
matched by 𝑄2 if 𝑇 (𝑓1) ≥ 𝑇 (𝑓2) holds, which contradicts
our assumption that the algorithm repeats inferences.

B. Proofs for Section 5.2
To prove Proposition 5.1, we need to reason about the

state of the counters 𝑁𝑘 from the HDRF3 algorithm. Thus,
in the rest of this appendix, we use 𝑁 𝑖

𝑘 to refer to the value
of 𝑁𝑘 from Algorithm 2 after processing the 𝑖-th fact of 𝐺.
Lemma B.1. For 𝛼 > 1 and 𝜆 > 0, in each run of Algo-
rithm 2 on a dataset 𝐺,

max
𝑘

𝑁 𝑖
𝑘 − min

𝑘
𝑁 𝑖

𝑘 < 𝑀𝜆 (33)
holds after processing the 𝑖-th fact of 𝐺, where

𝑀𝜆 = |𝐺|

√

4𝛼
𝓁𝜆

+ max
𝑐

|𝐺+(𝑐)|.

Proof. We prove the claim by induction on the index 𝑖 of
the fact being processed. For the induction base, the claim
is clearly true for 𝑖 = 0. For the induction step, assume that
property (33) holds after the 𝑖-th fact has been processed,
and consider processing fact ⟨𝑠𝑖+1, 𝑝𝑖+1, 𝑜𝑖+1⟩. If 𝑇 (𝑠𝑖+1) is
defined, then 𝑁 𝑖+1

𝑘 = 𝑁 𝑖
𝑘 for each server 𝑘, so (33) clearly

holds. Otherwise, let 𝑘1 and 𝑘2 be the servers such that 𝑁 𝑖+1
𝑘1

and 𝑁 𝑖+1
𝑘2

are minimal and maximal, respectively, among all
𝑁 𝑖+1

𝑘 at step 𝑖 + 1. If 𝑁 𝑖
𝑘2

is also maximal among all 𝑁 𝑖
𝑘 at

step 𝑖 and fact ⟨𝑠𝑖+1, 𝑝𝑖+1, 𝑜𝑖+1⟩ is sent to a server different
from 𝑘2, then property (33) clearly holds at step 𝑖+ 1. Thus,
the only remaining case is when the fact is sent to server 𝑘2.
The scores for 𝑘1 and 𝑘2 are as follows, for 𝑗 ∈ {1, 2}:

SCORE𝑗 = 𝐶𝑅𝐸𝑃 ,𝑗 + 𝜆
∑

𝑘𝑁
𝑖
𝑘

|𝐺|

𝐶𝐵𝐴𝐿,𝑗

For convenience, let 𝑆 =
∑

𝑘𝑁
𝑖
𝑘. We can bound SCORE1 as

follows:
SCORE1 = 𝐶𝑅𝐸𝑃 ,1 + 𝜆 𝑆

|𝐺|

𝐶𝐵𝐴𝐿,1

≥ 𝜆 𝑆
|𝐺|

𝐶𝐵𝐴𝐿,1

= 𝜆𝑆
|𝐺|

(

1 − 𝓁
𝑁 𝑖

𝑘1
+ |𝐺+(𝑠𝑖+1)|

𝛼|𝐺|

)

Moreover, we can bound SCORE2 as follows using the fact
that the definition of 𝐶𝑅𝐸𝑃 ,2 clearly ensures 𝐶𝑅𝐸𝑃 ,2 < 4:

SCORE2 = 𝐶𝑅𝐸𝑃 ,2 +
𝜆𝑆
|𝐺|

𝐶𝐵𝐴𝐿,2

< 4 + 𝜆𝑆
|𝐺|

(

1 − 𝓁
𝑁 𝑖

𝑘2
+ |𝐺+(𝑠𝑖+1)|

𝛼|𝐺|

)

Fact ⟨𝑠𝑖+1, 𝑝𝑖+1, 𝑜𝑖+1⟩ is sent to 𝑘2, so SCORE1 ≤ SCORE2.
Combined with the above bounds for SCORE1 and SCORE2,
we make the following observation.

𝜆𝑆
|𝐺|

(

1 − 𝓁
𝑁 𝑖

𝑘1
+|𝐺+(𝑠𝑖+1)|

𝛼|𝐺|

)

<

4 + 𝜆𝑆
|𝐺|

(

1 − 𝓁
𝑁 𝑖

𝑘2
+|𝐺+(𝑠𝑖+1)|

𝛼|𝐺|

)

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 27 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

This can be rewritten as
𝜆𝑆
|𝐺|

(

−𝓁
𝑁 𝑖

𝑘1
𝛼|𝐺|

)

< 4 + 𝜆𝑆
|𝐺|

(

−𝓁
𝑁 𝑖

𝑘2
𝛼|𝐺|

)

,

which can further be rewritten as
𝑁 𝑖

𝑘2
−𝑁 𝑖

𝑘1
< 4

𝛼|𝐺|

𝓁𝜆
|𝐺|

𝑆
.

Now 𝑁 𝑖
𝑘2

−𝑁 𝑖
𝑘1

< 𝑆 clearly holds at each step 𝑖, so

𝑁 𝑖
𝑘2

−𝑁 𝑖
𝑘1

< 4
𝛼|𝐺|

𝓁𝜆
|𝐺|

𝑁 𝑖
𝑘2

−𝑁 𝑖
𝑘1

.

This can be rewritten as follows.

(𝑁 𝑖
𝑘2

−𝑁 𝑖
𝑘1
)2 < 4

𝛼|𝐺|

2

𝓁𝜆

𝑁 𝑖
𝑘2

−𝑁 𝑖
𝑘1

< |𝐺|

√

4𝛼
𝓁𝜆

Since |𝐺+(𝑠𝑖+1)| ≤ max𝑐 |𝐺+(𝑐)|, we have

𝑁 𝑖
𝑘2

+ |𝐺+(𝑠𝑖+1)| < 𝑁 𝑖
𝑘1

+ |𝐺|

√

4𝛼
𝓁𝜆

+ max
𝑐

|𝐺+(𝑐)|.

Furthermore, 𝑁 𝑖
𝑘2

+ |𝐺+(𝑠𝑖+1)| = 𝑁 𝑖+1
𝑘2

and the definition
of 𝑀𝜆 ensure that this formula can be rewritten as

𝑁 𝑖+1
𝑘2

< 𝑁 𝑖
𝑘1

+𝑀𝜆.

Finally, 𝑁 𝑖
𝑘1

= 𝑁 𝑖+1
𝑘1

holds since the fact is sent to server 𝑘2,
so the last observation proves our claim.
Proposition 5.1. Algorithm 2 produces a partition that
satisfies |𝐺𝑘| ≤ 𝛼 |𝐺|

𝓁
for each 1 ≤ 𝑘 ≤ 𝓁 whenever 𝛼 and 𝜆

are selected such that

𝛼 > 1+𝓁
max𝑐 |𝐺+(𝑐)|

|𝐺|

and 𝜆 ≥ 4𝛼

𝓁
(

𝛼−1
𝓁

− max𝑐 |𝐺+(𝑐)|
|𝐺|

)2
.

Proof. Let 𝛼 > 1 and 𝜆 be as stated in the proposition. Note
that the condition on 𝛼 ensures

𝛼 − 1
𝓁

−
max𝑐 |𝐺+(𝑐)|

|𝐺|

> 0.

We now show that 𝑀𝜆 ≤ (𝛼 − 1) |𝐺|

𝓁
holds. Towards this

goal, we make the following observations, each obtained
from previous one using standard algebraic identities.

𝜆 ≥ 4𝛼

𝓁
(

𝛼−1
𝓁

− max𝑐 |𝐺+(𝑐)|
|𝐺|

)2

√

4𝛼
𝜆𝓁

≤ 𝛼 − 1
𝓁

−
max𝑐 |𝐺+(𝑐)|

|𝐺|

|𝐺|

√

4𝛼
𝜆𝓁

≤ |𝐺|

𝛼 − 1
𝓁

− max
𝑐

|𝐺+(𝑐)|

|𝐺|

√

4𝛼
𝜆𝓁

+ max
𝑐

|𝐺+(𝑐)| ≤ (𝛼 − 1)
|𝐺|

𝓁

Using the definition of 𝑀𝜆 from Lemma B.1, the last in-
equality can be rewritten as

𝑀𝜆 ≤ (𝛼 − 1)
|𝐺|

𝓁
.

Let = 𝐺1,… , 𝐺𝓁 be the partition produced by Algo-
rithm 2. Clearly, we have min𝑘 |𝐺𝑘| ≤

|𝐺|

𝓁
. Now consider

an arbitrary server 𝑘. Property (33) of Lemma B.1 ensures
|𝐺𝑘| ≤ |𝐺|∕𝓁 +𝑀𝜆, which together with the upper bound
on 𝑀𝜆 proved above ensures

|𝐺𝑘| ≤
|𝐺|

𝓁
+ (𝛼 − 1)

|𝐺|

𝓁
= 𝛼

|𝐺|

𝓁
.

This holds for each server 𝑘, which implies our claim.

C. Proofs for Section 5.3
Proposition 5.2. Algorithm 3 produces a partition that
satisfies |𝐺𝑘| ≤ 𝛼 |𝐺|

𝓁
for each 1 ≤ 𝑘 ≤ 𝓁 whenever

𝛼 > 1 +
max𝑐 |𝐺+(𝑐)|

|𝐺|

.

Proof. For each community 𝑚, the following property holds
at each point during algorithm’s execution:

𝑆(𝑚) =
∑

𝑐 with 𝑀(𝑐)=𝑚
|𝐺+(𝑐)| (34)

In particular, 𝑆 is initialised to 𝑆(𝑚𝑐) = |𝐺+(𝑐)| for each
constant 𝑐. Moreover, lines 70 and 71 clearly preserve this
property when mapping 𝑀 is updated in line 72.

We prove by induction that function ASSIGNCOMMUNI-
TIES ensures the following inequality:

max
𝑘

𝑁𝑘 − min
𝑘

𝑁𝑘 ≤ (𝛼 − 1)
|𝐺|

𝓁
. (35)

For the induction base, all 𝑁𝑘 are initialised to zero, so equa-
tion (35) holds after line 74. For the induction step, assume
that equation (35) holds before line 77 is applied to a com-
munity 𝑚. Let 𝑘1 = argmin𝑘𝑁𝑘 and 𝑘2 = argmax𝑘𝑁𝑘,
and let 𝑁 ′

𝑘 be the updated values of 𝑁𝑘 after line 77; we
clearly have 𝑁 ′

𝑘 = 𝑁𝑘 for all 𝑘 ≠ 𝑘1, 𝑁 ′
𝑘1

= 𝑁𝑘1 + 𝑆(𝑚),
and min𝑘𝑁 ′

𝑘 ≥ min𝑘𝑁𝑘. We have two possibilities.
• 𝑁 ′

𝑘1
≤ 𝑁𝑘2 . Then, max𝑘𝑁 ′

𝑘 = 𝑁𝑘2 and so the follow-
ing condition holds, where the induction assumption
ensures the second inequality:

max
𝑘

𝑁 ′
𝑘−min

𝑘
𝑁 ′

𝑘 ≤ max
𝑘

𝑁𝑘−min
𝑘

𝑁𝑘 ≤ (𝛼−1)
|𝐺|

𝓁
.

• 𝑁 ′
𝑘1

> 𝑁𝑘2 . Then, max𝑘𝑁 ′
𝑘 = 𝑁𝑘1 + 𝑆(𝑚), and the

requirement on the choice of 𝛼 in our claim and
the condition in line 69 of the algorithm ensure that

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 28 of 29

Materialisation and Data Partitioning Algorithms for Distributed RDF Systems

𝑆(𝑚) ≤ (𝛼−1)|𝐺|

𝓁
holds for each community 𝑚 at any

point in time during an algorithm’s run. This, in turn,
ensures the following property:

max
𝑘

𝑁 ′
𝑘 − min

𝑘
𝑁 ′

𝑘 = 𝑆(𝑚) ≤ (𝛼 − 1)
|𝐺|

𝓁
.

Thus, (35) holds. In addition, at the end of function ASSIGN-
COMMUNITIES, so min𝑘𝑁𝑘 ≤ |𝐺|

𝓁
because ∑

𝑘𝑁𝑘 = |𝐺|.
This, in turn, ensures

max
𝑘

𝑁𝑘 ≤ min
𝑘

𝑁𝑘 + (𝛼 − 1)
|𝐺|

𝓁
≤ 𝛼

|𝐺|

𝓁
.

In the second phase, each triple ⟨𝑠, 𝑝, 𝑜⟩ is assigned to
server 𝑇 (𝑀(𝑠)). But then, equation (34) clearly ensures
|𝐺𝑘| = 𝑁𝑘 for each 𝑘, which implies our claim.

T. Ajileye and B. Motik: Preprint submitted to Elsevier Page 29 of 29

