
Article No. jsco.1999.0347
Available online at http://www.idealibrary.com on

J. Symbolic Computation (1999) 11, 1–29

A Calculus for Schemas in Z

S. M. BRIEN† AND A. P. MARTIN‡

†Mercer Management Consulting, Ltd., London, U.K.
‡Oxford University Software Engineering Centre, Oxford, U.K.

pl.supply date

The popularity and flexibility of the Z notation can largely be attributed to its notion of
schemas. We describe these schemas and illustrate their various common uses in Z. We
also present a collection of logical laws for manipulating these schemas. These laws are
capable of supporting reasoning about the Z schema calculus in its full generality. This
is demonstrated by presenting some theorems about the removability of schemas from Z
specifications, together with outline proofs. We survey briefly models against which this
logical system may be proven sound, and other related logics for Z.

c© 1999 Academic Press

1. Introduction

The Z notation (Spivey, 1992b) has become a popular tool, both in teaching software
specification and in industrial practice. Testimony to this may be seen in the regular Z
User Meetings (Bowen et al., 1997), and numerous tools and textbooks. Examples of the
latter include those of Woodcock and Davies (1996) and Wordsworth (1993); there are
at least 35 in total. Tools and publications are listed by Bowen (1996). This proliferation
of interest has led to the development of an ISO/IEC standard for Z (Nicholls, 1995),
the standardization panel having representatives from approximately ten countries. That
Draft Standard will be our normative reference in this paper; usually it will be referred
to simply as “the Standard”, or “Standard Z”.

A brief introduction to the Z notation is presented in Section 2. Z is based on classical
first-order logic and set theory, but an integral part of the notation is its language of
schemas. Much of the appeal of Z can be attributed to this schema notation, which
provides a flexible and powerful means of structuring specifications. Z schemas are used
in virtually every Z specification. These schemas are also described in Section 2, together
with a discussion of their representation and syntax. A separate section (Section 4)
describes some of the various applications of the schema notation in Z.

The language of schemas in Z includes a collection of operators on schemas—many
related to similar logical operators. These have become known as the schema calculus.
This is something of a misnomer, since in most use there has been no practical calculus
associated with schemas, or at best, a semi-formal notion of expansion to a normal form
and some ad hoc rules of manipulation.

Being a notation based on classical logic, Z provides many opportunities for proof of
properties of specifications—either related to their internal consistency, or their confor-
mance to some other specification, or their refinement towards an implementation in
an imperative programming language. Perhaps surprisingly, there have been very few
attempts to provide a comprehensive logic in which to prove such properties. Rules for

0747–7171/99/000001 + 29 $30.00/0 c© 1999 Academic Press

2 S. M. Brien and A. P. Martin

manipulating terms of logic and set theory are well known, but logics for the schema
operators are not.

The contribution of this paper is to provide a true calculus for schemas, a component
of a whole logic for Z. We present V, a logic for Z which incorporates the ability to
reason about schemas. We prove a result which demonstrates in the fullest generality
that this logic is sufficient for reasoning about all uses of Z. This is accomplished by
showing that the schemas may be eliminated from a Z specification. The possibility of
removing schemas has been suspected—and even assumed—for some time; this result
makes it precise. The soundness of V is proved elsewhere (Brien, 1998), with respect to
a model theory consistent with that used in the Draft Z Standard.

The relation of Z schemas to schemas in other branches of computing may be rather
tangential. One interpretation of certain Z schemas is as a specification of a procedure
(Section 4.1); the schema might be regarded as a schematic form of the implementa-
tion. The schema is intended to capture at a high level what an implementation is to
achieve, and not necessarily how that is to be done. Whilst this was one of the earliest
interpretations of Z schemas, it is by no means the only one, as we shall explain.

1.1. outline of the paper

In this paper we present logical rules which can be used to manipulate instances of
schemas in Z specifications. Whilst these rules are quite straightforward, ease of use
comes at the expense of additional logical apparatus to manage names. Z schemas use
names (of variables, etc.) in a way quite unusual in logic. The “Laws” presented below
may be basic or derived—they are included either through relevance to the exposition
or because they are used in the proofs of theorems. An appendix gives the entire set of
basic rules.

After introducing Z, in Section 3 we begin by explaining the key features of the logic
V for reasoning in Z. The full account of the logic is elsewhere; here we concentrate on
the schema constructs. In consequence, whilst we include many properties of schemas,
we have avoided labelling some as definitions and some as derived properties; instead, all
are labelled as laws.

In Section 4 we survey most of the uses of schemas in Z, and how these schemas may be
constructed and decomposed. A number of logical rules are given. The following section
outlines some of the theorems about Z which follow from these rules. The key result is
that schemas may be eliminated altogether from any given Z specification.

Section 6 surveys related work, including models in which this logic may be proven
sound. The paper concludes with a summary and pointers to further work.

2. The Z Notation

The Z notation began in the work of Abrial and others in Oxford, and has evolved over
the last 20 years (Brien, 1994) to cover a wide international community. To a large degree,
it is simply a style for using first-order predicates and a typed form of Zermelo set theory.
It uses a precise grammar to facilitate machine analysis—some of the most useful Z tools
are type-checkers (for example, Spivey’s 1992a, fuzz). Many of the fundamental features
of Z are also present in B (Abrial, 1996), with the notable exception of Z schemas.

Many organizations are using Z as a means of writing precise high-level descriptions
of software systems. Most typically, a Z specification describes the state and operations

Schemas in Z 3

of a system (see below), and so it is well suited, say, to the description of secure data
processing—but many other applications exist. Z includes a notion of refinement so that
a more concrete specification can be proved consistent with a more abstract one. That
feature will not be explored here.

2.1. Z mathematical language

The three main syntactic classes of Z are declarations, predicates, and expressions.
Whenever a variable is declared, its type must be indicated. Fundamental types are ei-
ther “given sets”—introduced into the specification without further analysis (an example
is the set of integers, Z)—or sets constructed from these using powerset and cross-product
operators (or schema types; see below). Any set-valued expression may be used as a vari-
able type. Type-checking rules of Z ensure that such sets are subsets of the fundamental
types.

Reasonable declarations, then, include

x : {1, 2, 3}
x , y : N

N is not a fundamental type, but is defined as

N == {x : Z | x ≥ 0}

Here we see “==” used for definitional equality, and we see Z notation for a simple-set
comprehension. Observe that this consists of a declaration part and a predicate part,
separated by “|”.

Predicates are constructed using the usual logical operators, quantifiers having the
general form

∀Declaration | Constraint • Predicate

(similarly for the existential quantifier). When the constraint is vacuous, it may be omit-
ted. Thus, the following predicates are equivalent:

∀ x : Z | x ≥ 0 • P
∀ x : N • P

When an identifier is declared at the outermost scope (an “axiomatic definition”; as
distinct from a declaration within a quantifier, or a set comprehension), it is given some
visual furniture to identify it: a vertical and horizontal line, with the declaration above
the line, and a predicate constraining the value below.

succ : N → N

∀n : N • succ(n) = n + 1

The above definition comes from the Z Mathematical Toolkit, a large collection of defini-
tions covering the theory of sets, relations, functions, numbers, sequences, etc., including
for example, the definition of N, above. The toolkit allows Z users to communicate reason-
ably complex ideas using shared common definitions. It is documented in Spivey (1992b)
and Nicholls (1995).

4 S. M. Brien and A. P. Martin

2.2. Z schema language

The language introduced thus far does not afford much scope for structuring specifica-
tions. Z language of schemas allows declarations and predicates to be associated together
to form a new syntactic entity. The general form of a schema, then, is

[Declaration | Predicate]

The predicate part may be omitted.
The next Z paragraph contains a declaration of a schema named File, which has two

components. One is a sequence of integers which represents its contents; the other is a
natural number recording the file size. The second component is redundant in that its
value can be discovered from the first. It is often useful to include redundant information
in a specification (for ease of reading, and because checking that redundant information
remains consistent often provides a useful cross check that the specification behaves is
as expected). Here the predicate part of the schema asserts a state invariant for the file;
the guarantee that the size component always correctly records the size of the contents.

File == [contents : seq Z; size : N | size = #contents].

Z uses schemas to denote structured types, system states, operations on those states,
and in many other roles. These are outlined in Section 4. Thus the question of what a
schema “means” depends very much on the context of its declaration/use. A denotational
semantics for schemas however, is well accepted: a schema denotes a set of bindings of ap-
propriate type, having components which satisfy the relevant predicate. The relationship
between schemas and bindings is explored in Sections 4.3 and 4.4. This means of giving
semantics to schemas is well-documented in the Z Standard; the logical consequences of
so doing are reported in this paper.

Schemas are more commonly written using a display notation similar to that for ax-
iomatic definitions given above. The form most familiar to users of Z is shown below. This
is visually distinctive, and helps to identify a Z document. The following Z paragraph
means exactly the same as the preceding one.

File
contents : seq Z

size : N

size = #contents

In both of these forms, we have the schema appearing as an expression, and being given
a name. The Standard uses “==” for all forms of definitional equality; the symbol =̂ has
previously been used in schema definitions (Spivey, 1992b). A Z specification consists
of a sequence of Z paragraphs (with commentary), such as those shown here. There are
other Z paragraph forms, but they will not be relevant to our present discussion.

It is important to note that whilst in early accounts, the schemas were largely viewed as
“macros” (they enabled a name to be given to a collection of declarations and predicates),
by the time Spivey (1988) wrote his seminal account of Z semantics, schemas were entities
in their own right. Z incorporates a collection of operators for combining schemas in
various ways (see below)—these operators have been known as the schema calculus. It
is this treatment of schemas as first-class entities which makes reasoning about them a
significant challenge—and this is the issue addressed by this paper.

Schemas in Z 5

3. The V Logic

The schema properties given in this paper are axioms and theorems of a logic developed
for reasoning about the consequences of Z specifications, named V. It is presented in the
form of a typed sequent calculus with structured antecedents. We shall describe the
structure of the V sequent and the operation of the rules of the logic.

The distinctive feature of the logic is that, in order to treat schemas faithfully, it is
necessary to include a “scope calculus”. In conventional logics, the property of a variable
name being bound or free in a particular predicate or expression is easily, statically
determined. In Z, freeness also depends on the context of the term—therefore Z notion
of freeness is different from that classically used, and must be carefully defined by V.

3.1. sequents

A sequent of V is an assertion about well-formed and well-typed fragments of Z. Z
has a simple decidable type system (Spivey and Sufrin, 1990), and so in all that follows,
well-typedness will be assumed. A traditional sequent is composed of an antecedent and
a consequent, where the antecedent records the assumptions under which the consequent
is entailed. For V this structure must be such that it can express all the assertions that we
wish to make about specifications, and all the assertions we need during the intermediate
stages of a proof.

In a traditional sequent calculus, both the antecedent and the consequent consist simply
of lists of predicates. However, in V we also include declarations such as schemas in the
antecedent whose syntax corresponds to a specification (i.e. a sequence of Z paragraphs).
The entailment relation is between an antecedent specification and a single consequent
predicate. Thus a well-formed Sequent has the following structure:

Spec 	 Pred

In the logic, we use a horizontal (compact) style of presenting a specification, because
it suits the sequent form. The compact and display forms of Z schemas are explained in
Section 2.2. The term Spec will consist of Z paragraphs separated by “|”. We use this
symbol because it corresponds to its use in the vertical presentation of specifications to
identify a new definition which introduces a fresh scope. The comma (more commonly
used in sequent calculi) has significance as a list separator in Z.

In a usual sequent calculus the order of the clauses in the antecedent is not significant:
they are all predicates and are interpreted in the same scope. In contrast, the clauses
in a V antecedent are Z paragraphs, including declarations, which create fresh nested
scopes stretching rightwards through the sequent. Thus the interpretation of an individual
clause in a V sequent is dependent on its context. Hence, the order of the clauses of the
antecedent in V is significant.

Using the model described in Section 6.1, we determine that a well-formed sequent
is valid if the consequent predicate is true for every interpretation of the antecedent
specification.

rules

A sequent calculus consists of a number of rules for manipulating constructs within
its sequents, as well as structural rules. V has rules for manipulating the constructs of

6 S. M. Brien and A. P. Martin

the predicate calculus in both the antecedent and in the consequent. As is conventional,
we present rules using a horizontal bar, with a (possibly empty) list of sequents above
the bar, and the conclusion below. Rules in V do not contain side-conditions because
the constraints (such as those on free variables) are expressed in terms of premises. We
extend the definition of a sequent to include the notion of a constraint that is evaluated
in the context of a specification. These constraints are decidable in V.

Spec 	 Constraint

For example, Γ 	 x\P asserts that in the context of the specification Γ, variable x does
not occur free in P . In many contexts, the calculation of freeness will be just as in
conventional logics. Where a schema is involved, however, different conditions will apply.

The rules of V for the propositional operators in Z, and for the ordinary expressions
(powerset, set comprehension, tuple, etc.) are entirely as one would expect. In this paper
we limit our attention to rules relating to Z schemas. These are incorporated in the sequel
as “Laws”—whether primitive or derived rules. The full set of primitive rules is presented
in an appendix, and the reader will observe that the rules for the classical logical and set
theoretic constructions are exactly as one would expect in a sequent calculus. A fuller
account may be found in Brien (1998); a similar logical system appears in the Z Standard
(Nicholls, 1995).

In the following presentation, where context is unimportant, we give simply equations
or logical equivalences; otherwise full sequents are given. Where possible these properties
are presented as axioms, but some must be inference rules, due to our treatment of “not
free in” constraints.

4. Roles for Schemas in Z

In this section, we consider a number of different ways that schemas are used in Z, and
laws which relate them.

4.1. state-based systems

The most common use of schemas in Z is in the specification of state-based systems.
Having defined a file as above, we might proceed by declaring operations which append
input data (extra?) to the file and report the contents of the file as an output (data!).

Append
File
File ′

extra? : seq Z

contents ′ = contents � extra?

Read
File
File ′

data! : seq Z

contents ′ = contents = data!

Append is a schema which denotes not the state of some system, but an operation upon
that system. Two copies of the File schema are brought into scope; the second one has
all its components primed. The unprimed components belong to the state before the
operation has taken place; the primed components describe the state after the operation.
Inclusion of File brings both its declarations and predicates; thus not only are contents
and size brought into scope, the state invariant which relates them is part of Append

Schemas in Z 7

also. Likewise, an invariant relating contents ′ and size ′ is also present in Append , and so
there is no need to state explicitly how size ′ relates to size.

This style of specification is so common that a shorthand is used to cover the inclusion
of both File and File ′. The following schemas are assumed declared:

∆File == [File; File ′]
ΞFile == [File; File ′ | θFile = θFile ′]

The first of these is used in operations like Append where the state changes; the second
incorporates a predicate which asserts that no change takes place—it is used in the
definition of functions which query the state without altering it, as in Read . The θ will
be explained in Section 4.6. In this case, θFile = θFile ′ is equivalent to contents =
contents ′ ∧ size = size ′. Thus the schemas above would more usually appear as:

Append
∆File
extra? : seq Z

contents ′ = contents � extra?

Read
ΞFile
data! : seq Z

data! = contents

We mention this and other alternative presentations to emphasize that a comprehensive
logic for schemas in Z must cope with a broad range of notations and conventions,
including multiply nested schema declarations.

In a state-based system it is also important to define how the system is to be initialized.
This may be described using a degenerate operation, which has an “after” state, but no
“before” state:

InitFile
File ′

contents ′ = 〈 〉

Specifications in this style can be refined towards code in a very natural way (the
refinement is typically informal, but can be made formal (Calvacanti, 1997)). The usual
expectation is that the state variables will become global variables in some program (or
module, or class). The initialization schema will be refined either by initialization of the
variables by the compiler, or by some explicit initialization procedure (or method). The
operation schemas will be refined by procedures (or functions, if they do not change the
state, or methods) with appropriate inputs and outputs.

points to note

Even in this elementary Z specification, we see a number of different uses of schemas,
and an expectation that they will denote different kinds of artifacts in the implementation
of the system being specified.

Each of the boxes above defines a named schema. Some of the schema names have
been duplicated for pedagogical reasons; the result is that this document is not a valid Z
specification. Besides forming expressions, we have also seen schemas used as declarations.
This idea will be explored further, below.

We also implicitly have two different levels of semantic descriptions. The schemas, we
have hinted, are first-class objects, and so have a uniform semantic description (outlined

8 S. M. Brien and A. P. Martin

below). They also contribute in different ways to a system specification (as descriptions
of state, of initialization and of particular operations), and so, at another level, belong
to quite a different model. We consider both models in Section 6.1.

4.2. schemas as declarations

Z style for quantifiers, set comprehensions, etc. borrows from the schema style. If we
were to construct a sub-type of the type of File where the contents component is to be
sorted in nondecreasing order, we might write

SortedFile
File

∀ i , j : dom contents | i < j • contents(i) ≤ contents(j)

The reader will recognize a schema between the ∀ and the • symbols. We could have
defined that schema explicitly, and then used it to write the predicate in a short form.
Within the schema above we could have written:

letS == [i , j : dom contents | i < j] •
∀S • s(i) ≤ s(j)

A calculus of schemas must allow for all such alternative forms of expression, and permit
proofs of equivalence where appropriate.

points to note

If contents were for some reason defined globally instead of (or as well as) as a state
component, we could have defined S at the top level

S == [i , j : dom contents | i < j]

In this case, any use of S would refer to that global instance of contents, so writing
(∀S • . . .) in SortedFile above would not have had the desired effect. In short, schemas
may not be considered as macros.

The use of a schema declaration constrained by a predicate can be eliminated using
the following law.

Law 4.1. (∀S | P • Q) ⇔ (∀S • P ⇒ Q)

4.3. schemas as record types

An alternative (or additional) use for the schema File we have declared above is as the
definition of a collection of bindings, or a record type, as in many high-level programming
languages. We may see File as declaring a type for variables so that a declaration

f : File

would declare f as a variable having two components: f .contents, a sequence of integers,
and f .size, a natural number. File is more constrained than a usual record type in that
it also contains a predicate which will ensure in this case that the identity #f .contents =
f .size holds, no matter what value f may take.

Schemas in Z 9

We could use File in this way to declare a directory of files:

Directory
lookup : Name �→ File
info : Name �→ N × Date

dom lookup = dom info
∀n : dom lookup • (lookup n).size = (info n).1

This definition provides two partial functions lookup and info, which, given a file name,
return respectively either the contents of the file, or some directory information for the
file. The state invariants ensure that both functions have the same domain (that is, that
information is stored for all the known files, and no others), and that the size information
stored in the info lookup is an accurate record of the size of the corresponding file.

Instead of the function first which Spivey (1992b) uses to select the first component of
a tuple, the Standard uses a postfix “.1”. The range types of lookup and info illustrate
the relationship between schema types and Cartesian products. Both look similar: in
the case of a Cartesian product, the position is important; in the case of a schema type
(labelled product), the label or component name is important and the position in the
declaration list is not.

points to note

Here we have the kernel of the idea for the semantics of schemas. A schema expression
denotes the set of bindings which have the schema’s signature and satisfy the property
of the schema. The names of the components in the signature are important; they form
part of the schema’s type. It follows that the next schema is quite different from File.
Indeed, the two are incomparable since their types differ.

File2
data : seq Z

size : N

size = #data

Viewing a schema as a collection of bindings, we may state some identities relating
schemas presented in the style we have seen (declaration constrained by predicate):

Law 4.2. [(S | P) | Q] = [S | P ∧ Q]

Law 4.3. [S | P] ⊆ S

Law 4.4. S = T ⇒ [S | P] = [T | P]

For example, we have OrderedFile ⊆ File, and whereas from Law 4.4, OrderedFile is
equivalent to

[(contents : seq Z; size : N | contents = #size) | (∀ i , j : Z | · · · • · · ·)]
this is, by Law 4.2:

[contents : seq Z; size : N | contents = #size ∧ (∀ i , j : Z | · · · • · · ·)]

10 S. M. Brien and A. P. Martin

Such equivalences are understood by Z users; this calculus makes them precise.

4.4. bindings and substitutions

The account of Spivey (1992b) does not allow an explicit representation of a binding
in extension within Z. It is convenient to do so, however, so the Draft Standard provides
a syntax for this. Using this notation, one member of File might be

〈|contents == 〈4,−2, 36〉, size == 3|〉

An unexpected feature of the particular treatment of names and bound/free variables
of Z (see below) is that substitution can be expressed within the language using a binding.
The Standard uses the symbol � to denote the use of a binding as a substitution into a
predicate (and � for substitution into an expression) though this can be defined away
in a similar way to let (Spivey, 1992b, pp. 59, 71). The choice of symbol is deliberately
reminiscent of the dot used to indicate selection:

〈|contents == 〈4,−2, 36〉, size == 3|〉.size

takes the value 3; the predicate

〈|contents == 〈4,−2, 36〉, size == 3|〉�(size < max)

may be simplified to 3 < max . Tables for computing these substitutions are presented in
the Standard; they may be derived from the rules in the Appendix.

points to note

Besides this notion of substitution, Z has long had a notation for schema component
renaming. S [x/y] is the schema S with all references to component x replaced by com-
ponent y . There are two types of variable in Z: free variables and labels (schema/binding
components). Labels can bind other variables. This is the key distinction between Z and
other logical systems. We have made variables (as labels) first-class objects. The rela-
tionship between free variables and labels is largely orthogonal as characterized by the
following law:

Law 4.5. b � (S [x/y]) = (b � S)[x/y]

The theory of renaming is outside the scope of this paper, but is included in a full account
of V (Brien, 1998). It is developed in a similar way to the theory of substitution.

The following identity shows how to convert the use of a schema as a declaration into
a schema used as an expression, by changing a quantification over the components of the
schema into a quantification of a binding.

Law 4.6.
Γ 	 b\(∀S • P)

Γ 	 ∀S • P ⇔ ∀ b : S • b�P

Using bindings, we may make precise the semantics of the usual schema presentation
of a declaration constrained by a predicate. This law and the preceding one can be used
to prove Law 4.1.

Schemas in Z 11

Law 4.7. b ∈ [S | P] ⇔ b ∈ S ∧ b�P

The following equivalence is perhaps one of the most surprising consequences of this
treatment of substitution:

Law 4.8.
Γ 	 S\S

Γ 	 b ∈ S ⇔ b�S

This property relates schemas used as expressions to schemas used as predicates. The
constraint S\S may appear odd: it says that the component variables of S do not occur
free in S (i.e. do not occur in the constraining sets in the declaration part of S).

In some of these rules we have seen freeness constraints which are not as straightforward
as those encountered previously. By S\T we mean (for S and T schemas) that none of
the components of S occur free in T . See Section 4.8.

4.5. schema calculus

A more practical (easier to implement) specification of File might have placed an upper
limit on the size of contents. Consider this definition:

File
contents : seq Z

size : N

size = #contents
size < 10000

In the state-based system Z specification style, under this definition, the Append oper-
ation of Section 4.1 would be partial. It could be guaranteed to complete only when the
combined size of the contents and the material to be appended did not exceed the chosen
maximum. We may compute the precondition of the operation by quantifying over the
“post-state” variables.

preAppend = ∃ contents ′ : seq Z, size ′ : N • Append

preAppend is a schema. It may be rewritten using the laws given in this paper as follows:

[File; extra? : seq Z | size + #extra? < 10000]

Because such partial operations are very common in state-based specifications, and be-
cause it is usually prudent to specify failing behaviours as well as successes, it is customary
to augment specifications with material for reporting success or failure.

Report ::= Ok | TooBig
Success == [r ! : Report | r ! = Ok]
FailTooBig == [ΞFile; r ! : Report | size + #extra? ≥ 10000 ∧ r ! = TooBig]
RobustAppend == (Append ∧ Success) ∨ FailTooBig

The precondition of FailTooBig is the complement (modulo the state invariant) of that
of Append . Moreover, it uses ΞFile to indicate that the file state is unchanged in this
failure case. The final schema RobustAppend performs the append operation if possible,
reporting failure otherwise.

12 S. M. Brien and A. P. Martin

points to note

In this section we have seen operators of the schema calculus. Operators (quantification,
disjunction, conjunction) which typically belong to the logical calculi are here used upon
schemas (as expressions), the result being other schemas (as expressions).

When schemas constructed using schema propositional operators are used as predi-
cates, the schema calculus operators may be replaced by logical ones. Z overloads the
operator symbols, so in the laws below, the operator on the left is a schema calculus
operator; that on the right is a logical operator, as is the equivalence symbol.

Law 4.9. [S∧T] ⇔ S ∧ T

Law 4.10. [¬ S] ⇔ ¬ S

Square brackets are used in these laws to disambiguate the overloaded symbols: since
square brackets surround schemas (and [S] = S) the term inside the brackets must be a
schema, so the instance of ∧ or ¬ there must be a schema calculus operator, and not a
logical one.

Propositional operators in schemas used as expressions may also be removed, using
the following laws:

Law 4.11.
Γ 	 S ∧ T\S ∧ T

Γ 	 b ∈ S ∧ T ⇔ b�S ∧ b�T

Law 4.12. b ∈ ¬ S ⇔ b �∈ S

We may also say what it means for a binding to belong to a schema quantification
(where the quantified schema is used as an expression): the schema quantification is
replaced by a logical quantification, with the binding used as a substitution.

Law 4.13.
Γ 	 b\(∀S • T) Γ 	 S\T

Γ 	 b ∈ (∀S • T) ⇔ (∀S • b�T)

Unlike the definition of preAppend , the initialization theorem is not an instance of a
schema quantification. This theorem is a result often considered for state-based Z speci-
fications; proving it demonstrates something about the consistency of the specification.

∃File ′ • InitFile

This is a logical quantification. The result is expected to be true, not some schema. Thus,
in this case, InitFile is playing the role of a predicate, the predicate

contents ′ ∈ seq Z ∧ size ′ ∈ N ∧ size ′ = #contents ′ ∧ contents ′ = 〈 〉

Schemas in Z 13

4.6. theta

The basis of the meaning of a schema predicate is through that of a theta-term. In
this section we define the meaning of a theta term and show how it relates to an identity
substitution.

The theta term θS is a binding whose component names are those of the schema S .
It identifies its components with the values of the same names in the local environment.
Typically, θS will occur only in schemas where S is part of the declaration (such as
θFile in ∆File above), but nothing forces this to be the case. This binding is the identity
binding, mapping each name to its value. Hence, we define its characteristic property as
follows:

Law 4.14. θS .x = x

This holds only if x is a component of S , but that is guaranteed by the type system.
The binding defined by a theta term is determined by the type rather than the value

of the defining schema. Therefore, we can derive the following result (S ⊆ T is one way
to assert that S and T both have the same type):

Law 4.15. S ⊆ T 	 θS = θT

Since a theta term identifies its component names with the same variable names in the
local context, it behaves as an identity substitution:

Law 4.16. (θS) � e = e

Law 4.17. (θS)�P ⇔ P

Since a theta term is an identity substitution, a substitution into it either absorbs the
theta term where b and S have the same components (guaranteed by the typing rules):

Law 4.18. b � θS = b

or it distributes through it where b and S have disjoint components as in Law 4.21
below. When the component names overlap, then the substitution b�θS corresponds to
the substitution b restricted to the components of the schema S . The following derived
rule shows how a substitution can be restricted to those variable names that are free in
the predicate.

Law 4.19.
Γ 	 b\ ∃S • P

Γ 	 b�P ⇔ (b � θS)�P

We can eliminate all instances of theta terms by replacing them by an explicit binding.

Law 4.20. θS = 〈|x1 == x1, . . . , xn == xn |〉

This equality helps to illustrate that the free variables of a theta term include the com-
ponent names of the defining schema.

14 S. M. Brien and A. P. Martin

A substitution distributes through a theta term, providing the substituted variable is
not a component name of the schema:

Law 4.21.
Γ | x == e 	 S\x

Γ 	 〈|x == e |〉�θS = θ(〈|x == e |〉�S)

A schema is true as a predicate whenever the local variables corresponding to its
component names satisfy the property of the schema. For a simple schema this can be
stated as

Law 4.22. [x : s] ⇔ x ∈ s

More generally,

Law 4.23. [S] ⇔ θS ∈ S

This definition is the crucial link between the interpretation of a schema as a predicate
and a schema as a set of bindings.

4.7. promotion

We may use the material of the preceding sections together to introduce a higher
level of structuring into our specification. We have seen how operations can be defined
which update and/or query the state of File. We have also seen how to use File in the
description of a more complex artifact Directory . We would like to be able to use the
operations defined on File to update and/or query items within the structure Directory .

One popular way to do this uses promotion. We begin by using a schema to describe
the use of a change to a certain named file as a change to the whole directory.

Promote
∆Directory
∆File
filename? : Name

filename? ∈ dom lookup
θFile = lookup filename?
θFile ′ = lookup′ filename?
{filename?} −� lookup = {filename?} −� lookup′

dir = dir ′

We can now define an append operation on an arbitrary named file

AppendToFile == ∃∆File • Append ∧ Promote

and likewise the read operation.

ReadFile == ∃∆File • Read ∧ Promote

This approach extends the “state and operations” style for using Z. It is almost object-
oriented in its approach (some would say object-based). There are a number of object-

Schemas in Z 15

oriented extensions to Z (Stepney et al., 1992) which develop these themes further. Pro-
motion is important because it stays within Standard Z but makes considerable use of
the schema apparatus to perform reasonably elaborate structuring.

Note that it is not possible to define within Z a function which would take an arbitrary
File operation and return a promoted version. This is because Z is not a higher-order
logic; the type system prevents the construction of such arbitrary functions. In Stan-
dard Z, however, one could define a promotion function for all operations of a uniform
signature. Suppose there were a class of operations like Read . We could define

ReadClass == [ΞFile; data! : seq Z]
PromotedReadClass == [ΞDirectory ; filename? : Name; data! : seq Z]

promoteReadClass : ReadClass → PromotedReadClass

∀S : P ReadClass •
promoteReadClass S = ∃∆File • S ∧ Promote

4.8. on free variables

One consequence of the abstraction power of the schema calculus is that it is possible
to have formulae containing schemas whose free variables are not visible from the text.
That is, a predicate may constrain the value of a variable without it appearing in the
text of the predicate.

For example, if File appeared as a predicate, size would be a free variable of that
predicate. File as an expression, however, would have different properties. Moreover,
since schemas may be defined at different levels of scope (e.g. using let, as above), the
calculation of free variables is not a trivial one.

We have seen that V uses the constraint form Γ 	 x\P to require that x not be
free in predicate P in the context of Γ. A collection of rules is provided, for predicates
and expressions, to permit the simplification of such constraints. These may be used to
describe a complete decision procedure for those constraints. Some simple examples are:

Γ 	 x\y

Γ 	 x\e Γ 	 x\s

Γ 	 x\e ∈ s

To determine whether or not x occurs free in a quantified predicate, there are two
cases to consider. Either x occurs nowhere at all, or it is one of the components of the
schema in the quantification. We write Γ 	 x ≺ S to denote the judgement that x is a
component of schema S , in the context of specification Γ.

Γ 	 x\S Γ | S 	 x\P

Γ 	 x\ ∃S • P

Γ 	 x\S Γ 	 x ≺ S

Γ 	 x\ ∃S • P

Observe that in the first case, schema S is appended to the specification Γ in the
second subgoal.

The context is used in determining the truth of the x≺S statements. Such a judgement
is converted into a statement about the schema type (that it is of type set (P) of labelled
product (Σ), with components xi having type τi). Rules for determining types, within

16 S. M. Brien and A. P. Martin

the context of a specification, are given in the Z Standard.

Γ 	 S o
o PΣ(x ❀ τ, x1 ❀ τ1, . . . , xn ❀ τn)

Γ 	 x ≺ S

Where the term on the left of the “\” is a schema, the judgement is replaced by a
collection of judgements ensuring that none of the components of the schema is free in
the relevant term (expression or predicate).

Γ 	 x1\P . . . Γ 	 xn\P Γ 	 S o
o PΣ(x1 ❀ τ1, . . . , xn ❀ τn)

Γ 	 S\P

4.9. other uses of schemas

The foregoing account has concentrated on the main uses of schemas in Z. It must
be stressed, however, that as simple associations of declarations and predicates, schemas
find a wide range of uses in different specification styles. Stoddart (1997) uses schemas in
process algebra-like specifications within Z, for example, augmenting the conventions for
state-based systems described above. Fidge et al. (1998) use schemas to capture properties
of components of dynamic systems, and the schema calculus to compose these, without
use of the more familiar style for state-based systems.

4.10. summary

We have seen in this section that schemas are used in most parts of the Z notation
in a variety of ways. These, however, all fall into the categories of declarations, predi-
cates, or expressions. Laws have been presented which relate various schema constructs
together, and permit, under certain side conditions, schema uses in one of these forms
to be transformed into another. By careful use of renaming, these side conditions can be
satisfied. A theory of renaming is included in (Brien, 1998), but we have not reproduced
it here. As with the scope calculus for free variables, it must be constructed carefully to
deal with the unusual semantics of Z schemas.

The semantics and logic discussed here and in the following section is entirely capable of
dealing with these uses of schemas. We might be tempted to describe this as a denotational
semantics for schemas, and distinguish it from an operational semantics for the state and
operations style, but to use these terms might be misleading, since those two views are
describing different aspects, and not different views of the same semantic features.

5. Results

We illustrate the effectiveness of the laws given previously by stating some meta-
theoretical results, with sketch proofs.

The use of bindings as substitutions is useful in explaining the properties of schemas,
but is not essential. That is, predicates of the form b�P can be rewritten using an
explicit substitution 〈|x1 == e1, . . . , xn == en |〉�P , which might traditionally (outside Z)
be written P [x1\e1, . . . , xn\en].

Theorem 5.1. Every instance of a binding used as a substitution in a type-satisfiable

Schemas in Z 17

predicate can be replaced by a binding extension and hence can be replaced by a traditional
substitution.

Proof. If the formula in question is type satisfiable, then the type of the binding, and
hence its set of component names, can be determined. The rule of Leibniz for substitutions

Law 5.1.
Γ 	 e�P Γ 	 b = e

Γ 	 b�P

allows a binding used as substitution to be replaced by a binding extension. From that
derivation, we can construct the following rule:

Γ 	 〈|x1 == b.x1, . . . , xn == b.xn |〉�P Γ 	 b = 〈|x1 == b.x1, . . . , xn == b.xn |〉

Γ 	 b�P

By using this rule all instances of bindings as substitutions (whether into expressions or
into predicates) can be replaced by substitutions whose form corresponds to the classical,
and hence removable, structure.✷

The following theorem shows that quantifications of the form ∀S • P can be rewritten
in the form ∀ x : e • P etc.

Theorem 5.2. Every instance of a schema used as a declaration can be replaced by a
declaration containing only schema expressions and bindings as substitutions.

Proof. (Outline) Logical rules not presented here (but included in the Appendix) allow
us to transform each declaration in the antecedent of a sequent into a quantification.
Therefore, if we can replace each schema declaration in a quantification, we can replace
all instances of schema quantification. Each existential quantification can be transformed
into a universal quantification by de Morgan’s correspondence, suitably generalized for
schemas:

∃S • P ⇔ ¬ ∀S • ¬ P

Finally, by applying Definition 4.6, all universal quantification involving schemas can be
replaced by set-bounded quantification and substitution.✷

As we have seen, schemas S and T can be combined using schema conjunction to form
a new schema S ∧ T . If this schema is used as a predicate, the schema operators can be
replaced by logical ones.

Theorem 5.3. All instances of schemas used as predicates, constructed using schema
propositional operators, can be eliminated.

Proof. By Laws 4.9, 4.10, etc., each of the schema propositional operators can be
replaced by their logical equivalent.✷

Theta provides a succinct notational device, but it is not essential.

18 S. M. Brien and A. P. Martin

Theorem 5.4. Every instance of a theta-term in a type-satisfiable formula (predicate or
expression) can be eliminated.

Proof. Since we are working in a typed world, the type of each theta term can be deter-
mined. Therefore, each theta term can be replaced by its binding extension equivalent,
using Law 4.20.✷

Schemas used as expressions (as in b ∈ S) may be replaced by schemas used as pred-
icates. This is not a trivial consequence of Law 4.8 because of the constraint on that
law.

Theorem 5.5. All formulae containing instances of schemas used as expressions can be
replaced by ones containing schemas used as predicates only.

Proof. (Outline) Any instance of a schema expression can be transformed using the
rule of Leibniz and the extensionality of sets into a predicate of the form b ∈ s. If the
free variables of the schema construction are disjoint from its component variables then
we can apply Law 4.8 to transform the membership predicate into a substituted schema
predicate. If there is a name clash, then it is necessary to rename the components of the
schema and binding before transforming (details omitted).

Having eliminated all name clashes, the earlier transformation rule can be applied to
replace the membership relation with a substituted schema predicate with the following
form:

(b[x/y])�[S [x/y]]

in which both the substitution and the schema are renamed.
We have placed no constraints on the relationship between the free variables and

component names of the schema. The derivation is straightforward for the case where
there is no clash and Law 4.8 can be applied directly.✷

When schema calculus operators are used in an expression, they can be eliminated, as
the next two theorems show.

Theorem 5.6. All instances of schema propositional operators can be eliminated from
a formula.

Proof. (Outline) By Theorem 5.5, all formulae with schemas as expressions can be
converted to ones using only schema predicates. Any renaming of these schemas can be
distributed inwards through the schema propositional operators (the theory of renaming
is not covered in this paper). Finally, by Theorem 5.3, the schema propositional operators
can be replaced by their logical equivalents.✷

Theorem 5.7. Every formula containing a schema quantification can be removed.

Proof. By Theorem 5.5, all formulae with schemas as expressions can be converted
to ones using only schema predicates, likewise for declarations. Any renaming of these
schemas can be distributed inwards through the schema quantification. Finally, the
schema quantifiers can be replaced by their logical equivalents.✷

Schemas in Z 19

The following theorem follows directly from Law 4.23.

Theorem 5.8. Every instance of a schema predicate can be replaced by a predicate con-
taining schemas only as expressions.

The theorems proved above may be combined to produce a significant result for this
schema calculus. Reference to typed set theory in the statement of the theorem is of
course a set theory which includes bindings/labelled products. With the removal of the
schema apparatus, these labelled products are exactly analogous to Cartesian products,
and only need an analogous collection of inference rules.

Theorem 5.9. The schema calculus we have defined is an assertion complete with re-
spect to a typed set theory. Every formula containing a schema construct can be replaced
by one without.

Proof. There are four steps to this process. They rely on the presence of typing infor-
mation about the terms that are manipulated:

Removal of theta-terms. All instances of theta terms can be replaced by explicit identity
bindings whose component names are the same as those of the defining schemas.

Conversion into schema predicates. All instances of schemas as declarations can be
replaced by set-bounded declarations with schema expressions. Each formula with an
instance of a schema expression can be reconstructed to have the expression in terms of
a membership relation, which can then be converted into a substituted schema predicate.

Elimination of schema operators. All instances of schema constructs as predicates can
be decomposed into predicates containing only schema references. By Theorem 5.6 and by
Theorem 5.7 we can remove all instances of schema propositional operators and schema
quantification respectively.

Conversion into expressions. Every schema reference used as a predicate can be re-
placed with the membership relation relating the theta term to the schema reference.
The theta term can be replaced by the binding extension.

The resulting formula is one in which there are no instances of schemas used as pred-
icates or as declarations. The only schema construct used is the simple schema product.
Hence we have eliminated all forms of schemas and are left with labelled products for
which we have a complete set of rules relative to those for Cartesian products.✷

6. Related Work

In order to demonstrate the soundness of the logic we have referred to in the preceding
sections, a model for Z is required. In this section we discuss briefly some of the models
which have been proposed. We also survey some of the other published work in logical
treatments of Z schemas.

20 S. M. Brien and A. P. Martin

6.1. semantics for schemas

denotational model

Spivey (1988) gave the first comprehensive treatment of Z semantics. In developing
logics for Z, others found this semantic description hard to use, and proposed a simpler
model (Gardiner et al., 1991). The Z Standard has adopted a model based upon that
one, and this is used by Brien (1998) in proving the soundness of the logic presented in
his thesis.

This model for Z can be given using naive set theory, with the addition of labelled
products to model schemas as types/bindings. The central notion of the model is that
of an environment, a mapping of names to values in some suitable universe. A Z speci-
fication (or a fragment of a specification; a collection of paragraphs, or a single schema
declaration) is then a relation on environments. A predicate is denoted by a set of envi-
ronments (those in which it holds), and an expression by a mapping from environments
to elements of the chosen universe.

Since schemas can be used in a number of different ways, they have a denotation
of their own. A schema is a function from environments to sets of bindings—i.e. in any
given context, it denotes a particular set of bindings. From this construction, the meaning
of a schema predicate in any given environment can be calculated. Likewise, a schema
used as an expression denotes the set of bindings (equivalently, environments) gained
by applying its meaning function to the current environment. Finally, a schema as a
declaration denotes the relation formed in the obvious way from the schema’s meaning
function.

In this way, the model takes account of the context of each schema use, and this is
reflected in the logic we have outlined.

The traditional approach to defining schemas has been by informally defining their
properties, but at a semi-formal level, by means of an expansion. The “expansion” of
schemas has been defined for those in normal form. This approach has been supported
by a form of normalization whereby each schema could be expressed by a normalized dec-
laration and a predicate. Such an approach was an informal way of eliminating instances
of schemas from specifications and proofs.

semantics of state-based systems

Most attempts to provide a semantic account of the Z state-based system conventions
described above will naturally build on the semantics and logic given here. That semantics
is not, however, sufficient alone to give an account of this style for using Z since, as we
have remarked, in this style different schemas denote different sorts of artifacts.

The account of refinement given in the standard texts (e.g. Spivey, 1992b) amounts to
an approach to an axiomatic semantics for these Z state machines. In a different context,
having identified schemas with sets of bindings, we might have defined refinement using
a notion of inclusion (equivalently, implication). Such a notion of refinement is not ap-
propriate here because whilst it does reduce nondeterminism, it allows the strengthening
of the precondition of the operation.

Z state machines may be compared with action systems (Back and Sere, 1991). These
are similar in structure and principle. It is important to note, however, that the alterna-
tives in an action system are presented with guards, and the choice among the actions

Schemas in Z 21

is an internal choice. In the usual interpretation of a Z state machine, the actions (oper-
ations) have preconditions, but no guards. The choice of order of operations is assumed
to be external. The reason that Z operation schema preconditions are not interpreted
as guards or “firing conditions” is that such a view is incompatible with the Z data
refinement rules; the weakening of a precondition would increase nondeterminism.

6.2. other related work

Spivey’s (1988) account of Z semantics includes ideas for a logic for Z (the schema
calculus in particular), but these have not been developed or exploited. A step towards
the development of V was W (Woodcock and Brien, 1992). That logic has many of the
features of V as presented here, but by failing to take account of context in the calculation
of free variables and substitutions, places very heavy constraints on the use of names.

Henson and Reeves (1998) present a logic for Z, together with metalogical results on a
similar theme to those presented here. Their logic is rather different, and does not follow
the W/V approach to substitution. First, a core specification logic ZC is defined, which
uses a classical notion of substitution, and then the more unusual schema operators are
defined in terms of ZC . They argue that this achieves a better separation of concerns
than V, which treats the whole of Z at once. The paper cited uses its own semantic model
for ZC , whereas the soundness of V shown in (Brien, 1998) uses the same semantic model
as the Standard.

Though not using Z schemas explicitly, the work of Hoare and He (1998) has many
similarities with the treatment of schemas described here. Each predicate in their theory
has an associated alphabet, and operators are defined to combine such combinations of
predicates and alphabets in much the same way as Z schema calculus.

Several projects have implemented proof tools for various logics for Z. Some of these
are more evidently logics for Z than others; that is, some take care to support the Stan-
dard schema semantics, others do not. These various approaches are surveyed by Martin
(1997).

7. Conclusion

In this paper we have demonstrated how schemas are used for a wide variety of spec-
ification tasks in Z. These uses may be classified into uses of schemas as expressions,
declarations, and predicates. We have demonstrated parts of a logical system which is
consistent with the Draft Z Standard and the good texts on Z. It provides a sound means
of reasoning about schemas in fullest generality, and one which is amenable to mecha-
nization. Using this calculus, we have shown that specifications using schemas can be
re-cast without schemas.

This metalogical result is not necessarily a surprise. Since Z is a first-order theory,
it is to be expected that it can be interpreted in ordinary logic and set theory. The
complexity of the construction, however, serves to illustrate that the schema structuring
notions used in Z add a nontrivial layer of structure. This may help to account for the
popularity and perceived utility of Z. Though the ability to remove and replace schema
references is unlikely to be of great value in a general-purpose approach to proof in Z
(but see Z/EVES, Saaltink, 1997), we have demonstrated elsewhere the practical utility
of this logic for reasoning about Z specifications (Brien and Martin, 1995).

We have also observed that most users of Z follow a collection of structuring conventions

22 S. M. Brien and A. P. Martin

in their uses of schemas so that they describe a model of a state-machine. A model for this
use of Z sits at a higher level than the basic model and logic for schemas which we have
described. This use of schemas—as schematic descriptions of state and operations—is
perhaps closer to the use of the term “schema” in other branches of computing science.

Our main future goal in this area is to produce a reference implementation of the V
logic for Standard Z. We also hope to publish a machine-checked proof of soundness for
the logic.

Acknowledgements

We are grateful to Michael Butler, Andy Gravell, Martin Henson, Tony Hoare, Ray
Turner, and the anonymous referees for comments on this work. Andrew Martin’s con-
tribution was written whilst he was employed at the University of Southampton.

References
Abrial, J.-R. (1996). The B-Book: Assigning Programs to Meanings. Cambridge, Cambridge University

Press.
Back, R.-J., Sere, K. (1991). Stepwise refinement of action systems. Struct. Program., 12, 17–30.
Bowen, J. P. (1996). Z archive. URL:http://www.comlab.ox.ac.uk/archive/z.html.
Bowen, J. P., Hinchey, M. G., Till, D., eds (1997). In ZUM’97: The Z formal specification notation, Pro-

ceedings of the 10th International Conference of Z Users, Reading, UK, April 1997, LNCS 1212,
Berlin, Heidelberg, Springer.

Brien, S. M. (1994). The Development of Z. In Andrews, D. J., Groote, J. F. and Middelburg, C. A.,
eds, Semantics of Specification Languages (SoSL), Workshops in Computing, pp. 1–14. Springer.

Brien, S. M. (1998). A logic and model for the Z standard. D.Phil. Thesis, University of Oxford.
Brien, S. M., Martin, A. P. (1995). A tutorial on proof in Standard Z. Technical Monograph PRG-120,

Programming Research Group, Oxford University Computing Laboratory, Wolfson Building, Parks
Road, Oxford, OX1 3QD, UK. Presented at ZUM’95.

Calvacanti, A. (1997). A refinement calculus for Z. D.Phil. Thesis, University of Oxford. Available as
Technical Monograph PRG-125, Oxford University Computing Laboratory.

Fidge, C. J., Kearney, P., Martin, A. P. (1998). Applying the Cogito program development environ-
ment to real-time system design. In McDonald, C., ed., Computer Science ’98, pp. 367–378. Springer.
Proceedings of the 21st Australasian Computer Science Conference, Perth, 4–6 February 1998. Aus-
tralian Computer Science Communications, volume 20, no. 1. Also available as Technical Report
SVRC-TR-97-36.

Gardiner, P. H. B., Lupton, P. J., Woodcock, J. C. P. (1991). A simpler semantics for Z. In Nicholls, J.
E., ed., Z User Workshop, Oxford 1990, Workshops in Computing, pp. 3–11. Springer.

Henson, M. C., Reeves, S. (1998). Investigating Z. Technical Report CSM-317, Department of Computer
Science, University of Essex. Journal of Logic and Computation, to appear.

Hoare, C. A. R., He, J. (1998). Unifying Theories of Programming. Series in Computer Science, Prentice
Hall.

Martin, A. (1997). Why effective proof tool support for Z is hard. Technical Report 97-34, Software Ver-
ification Research Centre, School of Information Technology, The University of Queensland, Brisbane
4072, Australia.

Nicholls, J., ed. (1995). Z Notation. Z Standards Panel, ISO Panel JTC1/SC22/WG19 (Rapporteur
Group for Z). Version 1.2, ISO Committee Draft; CD 13568.

Saaltink, M. (1997). The Z/EVES system. In Bowen et al. (1997), pp. 72–85.
Spivey, J. M. (1988). Understanding Z: A Specification Language and its Formal Semantics, volume 3

of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press.

Spivey, J. M. (1992a). The fuzz Manual, 2nd edn, Computing Science Consultancy, 34 Westlands
Grove, Stockton Lane, York YO3 0EF, UK.

Spivey, J. M. (1992b). The Z Notation: A Reference Manual, 2nd edn. Prentice-Hall.
Spivey, J. M., Sufrin, B. A. (1990). Type inference in Z. In Bjørner, D., Hoare, C. A. R. and Langmaack,

H., eds, VDM’90: VDM and Z—Formal Methods in Software Development, LNCS 428. pp. 426–451.
Springer.

Stepney, S., Barden, R., Cooper, D., eds. (1992). Object Orientation in Z, Workshops in Computing.
Springer.

Stoddart, B. (1997). An introduction to the event calculus. In Bowen et al. (1997), pp. 10–34.

Schemas in Z 23

Woodcock, J. C. P., Brien, S. M. (1992). W: A logic for Z. In Proceedings of the Sizth Z User Meeting.
Springer.

Woodcock, J. C. P., Davies, J. (1996). Using Z: Specification, Refinement, and Proof. Europe, Prentice-
Hall.

Wordsworth, J. B. (1993). Software Development with Z: A Practical Approach to Formal Methods in
Software Engineering. Addison-Wesley Publishing Company.

Appendix: The V logic for Z

This material is presented with commentary in Brien (1998).

Notational Conventions

We use the following meta-variable conventions:

Predicates P,Q,R Variables x, y, z
Expressions e, u Sets s, t
Binding b Schemas S,T
Specifications Γ

A.1. structural rules

Γ | P 	 Q Γ 	 P Γ | P 	 Q
√

Γ 	 Q
(cut P)

Γ | P 	 P
Assum

Γ 	 Q

Γ | P 	 Q
(thin �)

A.2. propositions

true ≡ ¬ false

¬ P ≡ P ⇒ false

P ⇔ Q ≡ (P ⇒ Q) ∧ (Q ⇒ P)

Γ | false 	 P
(false �)

Γ | P ⇒ false 	 P

Γ 	 P
(⇒ false)

Γ | P | Q 	 R

Γ | P ∧ Q 	 R
(∧�)

Γ 	 P Γ 	 Q

Γ 	 P ∧ Q
(�∧)

Γ | P 	 R Γ | Q 	 R

Γ | P ∨ Q 	 R
(∨�)

Γ 	 P

Γ 	 P ∨ Q
(�∨)

Γ 	 Q

Γ 	 P ∨ Q
(�∨)

Γ 	 P Γ | Q 	 R

Γ | P ⇒ Q 	 R
(⇒�)

Γ | P 	 Q

Γ 	 P ⇒ Q
(�⇒)

24 S. M. Brien and A. P. Martin

Γ 	 〈|x�e|〉�(P ⇒ Q) ⇔ (〈|x�e|〉�P) ⇒ (〈|x�e|〉�Q)
(�⇒)

A.3. quantification

Γ | 〈|x�y|〉�P 	 Q

Γ | ∀[x] • P 	 Q
(∀ �)

Γ | (e ∈ s) ⇒ 〈|x�e|〉�P 	 Q Γ 	 e ∈ s
√

Γ | ∀ x : s • P 	 Q
(∀ �)

Γ 	 P 	 ‘x’ \ [Γ]
Γ 	 ∀[x] • P

(∀ �)
Γ 	 x ∈ s ⇒ P 	 ‘x’ \ [Γ] Γ 	 ‘x’ \ s

Γ 	 ∀ x : s • P
(� ∀)

Γ 	 〈|x�e|〉�∀ x : s • P ⇔ ∀ x : 〈|x�e|〉�s • P
(�∀)

Γ 	 ‘y’ \ x Γ 	 ‘y’ \ e

Γ 	 〈|x�e|〉�∀ y : s • P ⇔ ∀ y : 〈|x�e|〉�s • 〈|x�e|〉�P
(�∀)

Γ 	 ‘y’ \ x Γ 	 ‘y’ \ e

Γ 	 〈|x�e|〉�∀[y] • P ⇔ ∀[y] • 〈|x�e|〉�P
(�∀)

Γ 	 ‘b’ \ ∀S • P

Γ 	 ∀S • P ⇔ ∀ b : S • b�P
: []

∃[x] • P ≡ ¬ ∀[x] • ¬ P

∃S • P ≡ ¬ ∀S • ¬ P

A.4. substitution

Γ 	 〈|x�x|〉�P ⇔ P
(�1)

Γ 	 ‘x’ \ P

Γ 	 〈|x�e|〉�P ⇔ P
(�2)

Γ | 〈|x�e|〉�b 	 ‘x’ \ P

Γ 	 〈|x�e|〉�(b�P) ⇔ (〈|x�e|〉�b)�P
(�3)

Γ 	 ‘x’ \ y Γ 	 ‘x’ \ u

Γ 	 〈|y�u|〉� (〈|x�e|〉�P) ⇔ 〈|x�〈|y�u|〉�e|〉� (〈|y�u|〉�P)
(�4)

Γ 	 ‘x’ \ v · · · Γ 	 ‘y’ \ v

Γ 	 〈|x�e, . . . , y�u, z�v|〉�P ⇔ 〈|x�e, . . . , y�u|〉� (〈|z�v|〉�P)
(�5)

Schemas in Z 25

A.5. declarations

Γ 	 ∀[x] • P

Γ | [x] 	 P
([] �)

Γ | [x] 	 P 	 Γ | [x]
√

Γ 	 ∀[x] • P
(� [])

Γ 	 ∀S • P

Γ | S 	 P
(:�)

Γ | S 	 P

Γ 	 ∀S • P
(�:)

Γ 	 〈|x�e|〉�P

Γ | x := e 	 P
(:=�)

Γ | x := e 	 P

Γ 	 〈|x�e|〉�P
(��)

A.6. equality and membership

Γ 	 e = e
Refl

Γ 	 〈|x�u|〉�P Γ 	 e = u

Γ 	 〈|x�e|〉�P
Leib

Γ 	 ‘x’ \ t Γ 	 ‘x’ \ s

Γ 	 (∀ x : s • x ∈ t ∧ ∀ x : t • x ∈ s) ⇔ s = t
Extn

Γ 	 ‘x’ \ s

Γ 	 〈|x�y|〉�(e ∈ s) ⇔ (〈|x�y|〉�e) ∈ s
(∈ �)

Γ 	 ‘x’ \ e

Γ 	 〈|x�y|〉�(e ∈ s) ⇔ e ∈ 〈|x�y|〉�s
(� ∈)

Γ 	 ‘x’ \ u

Γ 	 〈|x�y|〉�(e = u) ⇔ (〈|x�y|〉�e) = u
(� =)

A.7. set theory

Γ 	 e ∈ {u1, u2, . . .} ⇔ (e = u1 ∨ e ∈ u2 . . .)
Pairing

Γ 	 ‘x’ \ e

Γ 	 e ∈
⋃

s ⇔ (∃ x : s • e ∈ x)
Union

Γ 	 ‘x’ \ s

Γ 	 e ∈ P s ⇔ (∀ x : e • x ∈ s)
Powerset

Γ 	 S \ e

Γ 	 e ∈ {S • u} ⇔ ∃S • e = u
Comp

	 ∃[x] • ∀ y : x • false
Empty

	 ∃[x] • ∃ 0 : x • ∃ succ : x �→ (x \ {0}) • true
Infty

	 ∃[W] • · · ·
WRep

Γ 	 ∃ x : s →→ t • true ⇒ ∃ y : t � s • true
Choice

26 S. M. Brien and A. P. Martin

A.8. tuples

Γ 	 x = (e1, . . . , en) ⇔ x.1 = e1 ∧ · · · ∧ x.n = en
Tuple

Γ 	 (e1, . . . , en).i = ei (1 ≤ i ≤ n)
TupleSel

Γ 	 e ∈ s1 × · · · × sn ⇔ e1 ∈ s1 ∧ · · · ∧ en ∈ sn
CartProd

Γ 	 ∃1 x : f • x.1 = e Γ 	 ‘x’ \ e

Γ 	 y = f(e) ⇔ (e, y) ∈ f
Funct

Γ 	 b \ x

Γ 	 b�(f(x)) = (b�f)x
SubFun

Γ 	 b \ f

Γ 	 b�(f(x)) = f(b�x)
SubArg

Γ | S 	 ‘x’ \ e Γ | S 	 ‘y’ \ e

Γ 	 µS • e =
{

y : P Ŝ; x : { Ŝ • e } | x ∈ { y • e } • (y, x)
}

(S)
Desc

A.9. bindings

〈|x1�e1, . . . , xn�en |〉.xi = ei (1 ≤ i ≤ n)
Bind

Γ 	 b = 〈|x1�e1, . . . , xn�en |〉 ⇔ b.x1 = e1 ∧ · · · ∧ b.xn = en
BindSel

Γ 	 b ∈ [x1 : s1; · · · ; xn : sn] ⇔ b.x1 ∈ s1 ∧ · · · ∧ b.xn ∈ sn
SchProd

Γ 	 θS.x = x
Theta

Γ 	 〈|x1�e1, . . . , xn�en |〉[x1/y] = 〈|y�e1, . . . , xn�en |〉
〈|/|〉

Γ 	 b ∈ S[x/y] ⇔ b[x/y] ∈ S
[/]

Γ 	 (b)′.x′ = b.x
Dec

Γ 	 (b)′ ∈ (S)′ ⇔ b ∈ S
Dec

A.10. schemas

S; T ≡ S ∧ S

S ⇒ T ≡ ¬ S ∨ T

S ⇔ T ≡ (S ⇒ T) ∧ (S ⇒ T)
∃S • T ≡ ¬ ∀S • ¬ T

Γ 	 θS ∈ S ⇔ [S]
θ[]

Schemas in Z 27

Γ 	 [S | P] ⇔ [S] ∧ P
[|]

Γ 	 [S ∧ T] ⇔ [S] ∧ [T]
[∧]

Γ 	 [¬ S] ⇔ ¬ [S]
[¬]

Γ 	 [S ⇒ T] ⇔ [S] ⇒ [T]
[⇒]

Γ 	 S \ T

Γ 	 [∀S • T] ⇔ ∀S • [T]
[∀]

Γ 	 [∀S[x/y] • T[x/y]] ⇔ [∀S • T]
[∀[/]]

A.11. generic definitions

The following rules for generic definitions are valid only when the names of the generic
variables/schemas are distinct:

y[x] := e ≡ ∀[x] • y[x] = e

[x]S ≡ ∀[x] • [(S)[x]]

A.12. free variables

The following rules give a context dependent definition of the free variables of formulae
in V. For a set of rules to derive the type of these formulae see the Draft Standard
(Nicholls, 1995). In the following we assume that the meta-variables x and y are not
instantiated with the same variable.

predicates

Γ 	 ‘x’ \ y Γ 	 ‘x’ \ false

Γ 	 ‘x’ \ e Γ 	 ‘x’ \ s

Γ 	 ‘x’ \ e ∈ s

Γ 	 ‘x’ \ e Γ 	 ‘x’ \ u

Γ 	 ‘x’ \ e = u

Γ 	 ‘x’ \ P Γ 	 ‘x’ \ Q

Γ 	 ‘x’ \ P ∧ Q

Γ 	 ‘x’ \ P Γ 	 ‘x’ \ Q

Γ 	 ‘x’ \ P ⇒ Q

Γ 	 ‘x’ \ S Γ | S 	 ‘x’ \ P

Γ 	 ‘x’ \ ∀S • P

Γ 	 ‘x’ \ S Γ 	 S succ x

Γ 	 ‘x’ \ ∀S • P

Γ 	 ‘x’ \ e

Γ 	 ‘x’ \ 〈|x�e|〉�P

Γ 	 ‘x’ \ e Γ | y := e 	 ‘x’ \ P

Γ 	 ‘x’ \ 〈|y�e|〉�P

Γ | [y] 	 ‘x’ \ P

Γ 	 ‘x’ \ ∀[y] • P Γ 	 ‘x’ \ ∀[x] • P

28 S. M. Brien and A. P. Martin

expressions

Γ 	 ‘x’ \ e1 · · · Γ 	 ‘x’ \ en

Γ 	 ‘x’ \ {e1, . . . , en}
Γ 	 ‘x’ \ s Γ 	 ‘x’ \ P ‘Γ 	 x’ \ e

Γ 	 ‘x’ \ {y : s | P • e}

Γ 	 ‘x’ \ s

Γ 	 ‘x’ \ {x : s | P • e}
Γ 	 ‘x’ \ s

Γ 	 ‘x’ \ P s

Γ 	 ‘x’ \ s

Γ 	 ‘x’ \
⋃

s

Γ 	 ‘x’ \ e1 · · · Γ 	 ‘x’ \ en

Γ 	 ‘x’ \ (e1, . . . , en)

Γ 	 ‘x’ \ e

Γ 	 ‘x’ \ e.i
Γ 	 ‘x’ \ s1 · · · Γ 	 ‘x’ \ sn

Γ 	 ‘x’ \ s1 × · · · × sn

Γ 	 ‘x’ \ S Γ 	 S \ x

Γ 	 ‘x’ \ θS

Γ 	 ‘x’ \ e1 · · · Γ 	 ‘x’ \ en
Γ‘x’ \ 〈|x1�e1, . . . , xn�en |〉

Γ 	 ‘x’ \ b

Γ 	 ‘x’ \ b.y

Γ 	 ‘x’ \ b

Γ 	 ‘x’ \ b[x/y]

schemas

Γ 	 ‘x’ \ S Γ 	 ‘x’ \ T

Γ 	 ‘x’ \ S ∧ T

Γ 	 ‘x’ \ S Γ 	 ‘x’ \ T

Γ 	 ‘x’ \ S ⇒ T

Γ 		 ‘x’ \ S Γ 	 ‘x’ \ T

Γ 	 ‘x’ \ ∀S • T

Γ 	 ‘x’ \ S Γ | S 	 ‘x’ \ P

Γ 	 ‘x’ \ (S | P)
Γ 	 ‘x’ \ S Γ 	 S succ x

Γ 	 ‘x’ \ (S | P)

Γ 	 x \ s

Γ 	 ‘x’ \ y : s

Γ 	 S \ x Γ 	 ‘x’ \ S

Γ 	 ‘x’ \ [S]

paragraphs

	 ‘x’ \ [Γ] Γ 	 ‘x’ \ P

‘x’ \ [Γ | P]
	 ‘x’ \ [Γ] Γ 	 ‘x’ \ [S]

	 ‘x’ \ [Γ | S]

component names

Γ 	 ‘x1’ \ P · · · Γ 	 ‘xn ’ \ P Γ 	 S o
o P(x1 ❀ τ1 ©# · · · ©# xn ❀ τn)

Γ 	 S \ P

Schemas in Z 29

Γ 	 S o
o P(x1 ❀ τ1 ©# · · · ©# xn ❀ τn)

Γ 	 S succ x

‘x’ \ s
‘x’ \ y : s

Γ 	 ‘x1’ \ e · · · Γ 	 ‘xn ’ \ e Γ 	 S o
o P(x1 ❀ τ1 ©# · · · ©# xn ❀ τn)

S \ e

Originally Received xx September 1998
Accepted xx May 1999

