Mark Scheme:

Each part of Question 1 is worth 4 marks which are awarded solely for the correct answer.
Each of Questions 2-7 is worth 15 marks

QUESTION 1:

A. Considering the sequence, $a_{2}=l, a_{3}=l^{2}, a_{4}=l^{3}$, each additional term multiplies the previous term by l. The product of the first 15 terms is equal to $l^{1+2+\ldots+14}=l^{\frac{14 * 15}{2}}=l^{105}$. The answer is (d).
B. Call the length of one of the sides of the hexagon p, then the side of the square is equal to $p+(1-p)=1$. Then as the hexagon side forms a triangle in each corner of the square, using Pythagoras, $p^{2}=(1-p)^{2}+(1-p)^{2}$. Solving this quadratic results in $p=2 \pm \sqrt{2}$, but as the length must be less than 1 the answer is (b).
C. We can rewrite the given equation as $\left(x+\frac{a}{2}\right)^{2}+\left(y+\frac{a}{2}\right)^{2}=c+\frac{a}{4}+\frac{b}{4}$. For the circle to contain the origin, the distance from the centre to the origin must be less than the radius, so $\frac{a}{4}+\frac{b}{4}<c+\frac{a}{4}+\frac{b}{4}$. The answer is (a).
D. $\cos ^{n}(x)+\cos ^{2 n}(x)=\cos ^{n}(x)\left(1+\cos ^{n}(x)\right)=0$. For this to be true, if n is even, $\cos (x)=0$ has two roots, but when n is odd either $\cos (x)=0$ or $\cos (x)=-1$, which is three roots. Hence the answer is (d).
E. When $x=0, y=1-1=0$, so we can rule out (d) and (e). To work out the number of x-axis intersection points, consider $(x-1)^{2}=\cos (\pi x)$. The shape of these graphs means they cannot intersect 6 times (eliminating (b)). The answer cannot be (c), because we know there is a crossing point $x=2$, but that y is positive when $x=1$. So the answer is (a).
F. Using the factor theorem, for $\left(x^{2}+1\right)$ to be a factor, $\left(x^{2}+1\right)=0$, so $x^{2}=-1$. Then the equation given becomes $(4)^{n}-(2)^{n}(-2)^{n}=0$. This only holds when $(-2)^{n}$ is positive, so the answer is (b).
G. Considering the first few terms $x_{0}=1, x_{1}=x_{0}=1, x_{2}=2, x_{3}=4, x_{4}=8$, and so on. By observation, $x_{n}=2^{n-1}$ for $n \geqslant 1$. As this is a geometric progression, we can evaluate the sum of the sequence as

$$
\begin{aligned}
\sum_{k=0}^{\infty} \frac{1}{x_{k}} & =\frac{1}{1}+\sum_{k=1}^{\infty} \frac{1}{2^{k-1}} \\
& =1+\frac{1}{1-\frac{1}{2}} \\
& =3
\end{aligned}
$$

The answer is (d).
H. The area bounded by the x-axis and the curve $y=f(x), A_{1}$ is equal to

$$
A_{1}=\int_{-\sqrt{a}}^{\sqrt{a}} f(x) \mathrm{d} x=\frac{4}{3} a^{\frac{3}{2}}
$$

whilst the area bounded by the x-axis and the curve $y=g(x), A_{2}$ is equal to

$$
A_{2}=\left|\int_{-\sqrt[4]{a}}^{\sqrt[4]{a}} g(x) \mathrm{d} x\right|=\frac{8}{5} a^{\frac{5}{4}}
$$

We require an a such that $A_{1}>A_{2}$, so

$$
\begin{aligned}
\frac{4}{3} a^{\frac{3}{2}} & >\frac{8}{5} a^{\frac{5}{4}} \\
20 a^{\frac{6}{4}} & >24 a^{\frac{5}{4}} \\
a^{\frac{1}{4}} & >\frac{6}{5}
\end{aligned}
$$

and so the answer is (e).
I. Let $a x+b y=c$, which rearranges to $y=\frac{a}{b} x+\frac{c}{b}$. Given that b is positive we can interpret this as achieving the maximum c when the line $y=\frac{a}{b} x+\frac{c}{b}$ is moved up the y-axis whilst still intersecting the disc formed by $x^{2}+y^{2} \leqslant 1$. Hence the line should be tangent to the unit circle.

By Pythagoras,

$$
\left(\frac{c}{b}\right)^{2}=1+\left(\frac{a}{b}\right)^{2}
$$

and so the answer is (c).
J. We are trying to construct counter-examples for each of the statements. Note that $0 \leqslant x(n) \leqslant 9$. (a) is true since, for example, $\Pi(4)=1$, but 4 is not prime. (b) is false - we don't need to consider even n beyond $x_{n}=4$; for this case we know no primes end in a 4 , but for example $\Pi(64)=1$ as $64=2^{6}$. For odd $n, x(n)=1, \Pi(n)=1$, counterexample $n=121=11^{2} ; x(n)=3, \Pi(n)=1$, counterexample $n=243=3^{5} ; x(n)=5, \Pi(n)=1$, counterexample $n=25=5^{2} ; x(n)=7, \Pi(n)=1$, counterexample $n=16807=7^{5} ; x(n)=9, \Pi(n)=1$, counterexample $n=9=3^{2}$. (c), (d), and (e) are all true. The answer is (b).
2. (i) [1 mark] We have

$$
\begin{aligned}
& A(B(x))=2(3 x+2)+1=6 x+5 \\
& B(A(x))=3(2 x+1)+2=6 x+5
\end{aligned}
$$

(ii) [3 marks] We note

$$
\begin{aligned}
& A^{2}(x)=2(2 x+1)+1=4 x+2+1 \\
& A^{3}(x)=2(4 x+2+1)+1=8 x+4+2+1
\end{aligned}
$$

and so more generally

$$
A^{n}(x)=2^{n} x+2^{n-1}+2^{n-2}+\cdots+2+1=2^{n} x+\left(2^{n}-1\right)
$$

using the geometric series formula (pattern spotting sufficient).
(iii) [4 marks] As $108=2^{2} 3^{3}$ then F can be achieved using two applications of A and three applications of B. As $A B=B A$ then only one such F can be achieved but the number of different orders in which A, A, B, B, B might be performed is ${ }^{5} C_{2}=10$.
(iv) [3 marks] Note that in each case the constant coefficient is one less than the coefficient of x. We can prove this by noting

$$
\begin{aligned}
& A(a x+(a-1))=2(a x+(a-1))+1=2 a x+2 a-1 \\
& B(a x+(a-1))=3(a x+(a-1))+2=3 a x+3 a-1 .
\end{aligned}
$$

So $c=107$. [Alternatively to find c a student might just determine $A^{2} B^{3}$.]
[Alternative: Commuting argument:
By part (i) A and B commute. Therefore we only need to check 1 of the possible configurations. From this calculation we find that $c=107$.]
(v) [4 marks] As each $A^{m_{i}} B^{n_{i}}(x)$ will have a constant coefficient one less than its x coefficient it follows that $k=214-92=122$. However the x coefficient of $A^{m_{i}} B^{n_{i}}(x)$ can never be less than 2 so the sum of 122 such functions cannot have an x coefficient less than 244 .
[Alternative: Divisible by 6 argument:
Each term contains at least an A and at least a B, and so each x coefficient is a multiple of 6 . However 214 is not divisible by 6 and hence there exist no positive integers.]

3. 3. Solution:

(i) [1 mark] Note that

$$
f(2 \alpha-x)=(2 \alpha-x-\alpha)^{2}=(\alpha-x)^{2}=(x-\alpha)^{2}=f(x)
$$

for all x and hence f is bilateral.
(ii) [2 marks] Consider, for example, $x=\alpha+1$ where

$$
f(\alpha+1)=1 \neq-1=f(\alpha-1)=f(2 \alpha-(\alpha+1))
$$

It follows that f is not bilateral.
(iii) [2 marks] Note that

$$
\begin{aligned}
\int_{a}^{b} x^{n} \mathrm{~d} x=\left[\frac{x^{n+1}}{n+1}\right]_{a}^{b} & =\frac{b^{n+1}-a^{n+1}}{n+1} \\
& =-\left(\frac{a^{n+1}-b^{n+1}}{n+1}\right)=-\left[\frac{x^{n+1}}{n+1}\right]_{b}^{a}=-\int_{b}^{a} x^{n} \mathrm{~d} x
\end{aligned}
$$

as required.
[Alternatively: Some students may show this graphically and argue that area is preserved under reflection]
(iv) [3 marks] Since f is a polynomial there is a non-negative integer d and reals c_{0}, \ldots, c_{d} such that $f(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$ for all x. Integration is linear so by the previous part we have

$$
\begin{aligned}
\int_{a}^{b} f(x) \mathrm{d} x & =\sum_{i=0}^{d} c_{i} \int_{a}^{b} x^{i} \mathrm{~d} x \\
& =-\sum_{i=0}^{d} c_{i} \int_{b}^{a} x^{i} \mathrm{~d} x=-\int_{b}^{a} f(x) \mathrm{d} x
\end{aligned}
$$

as required.
(v) [2 marks] The first integral is just the signed area under the graph of $y=f(x)$ between α and t and the second integral is the signed area under the graph of $y=f(x)$ between $2 \alpha-t$ and α. The second signed area is a reflection of the first, and area is preserved under reflection. Hence the integrals are equal.
(vi) [3 marks] For $t \geq \alpha$ we have by the previous two parts that

$$
G(t)=\int_{\alpha}^{t} f(x) \mathrm{d} x=\int_{2 \alpha-t}^{\alpha} f(x) \mathrm{d} x=-\int_{\alpha}^{2 \alpha-t} f(x) \mathrm{d} x=-G(2 \alpha-t)
$$

If $t \leq \alpha$ then put $u=2 \alpha-t \geq \alpha$ and note that by what we have just shown

$$
G(2 \alpha-t)=G(u)=-G(2 \alpha-u)=-G(t)
$$

The result follows.
(vii) [2 marks] Since f is a bilateral polynomial we see $G(2 \alpha-t)=-G(t)$ for all t. On the other hand since G is bilateral we have $G(2 \alpha-t)=G(t)$ for all t, so $G(t)=0$ for all t as required.
4. (i) [3 marks] Let d_{1} be the distance from $(0,0)$ to the point where C_{1} touches the x-axis. Note that the x-axis is tangent to C_{1} and hence perpendicular to the radius at this point. So C_{1} has centre $\left(d_{1}, 1\right)$. We have a right-angled triangle, with $\frac{1}{d_{1}}=\tan (\alpha)$, so $d_{1}=\frac{1}{\tan (\alpha)}$.
So the centre of C_{1} is $\left(\frac{1}{\tan (\alpha)}, 1\right)$.
(ii) $[1$ mark $] C_{1}$ has centre $\left(\frac{1}{\tan (\alpha)}, 1\right)$ and radius 1 , so has equation

$$
\left(x-\frac{1}{\tan (\alpha)}\right)^{2}+(y-1)^{2}=1
$$

(iii) [3 marks] Let d_{2} be the distance between the points where C_{1} and C_{2} touch the x-axis. Then Pythagoras on the right-angled triangle gives $(1+3)^{2}=2^{2}+d_{2}^{2}$, so $d_{2}^{2}=12$.
Also we have similar triangles (both have a right angle and share angle α) so

$$
\frac{3}{1}=\frac{d_{2}+d_{1}}{d_{1}}
$$

so $d_{2}=2 d_{1}$.
So $12 d_{2}^{2}=\left(2 d_{1}\right)^{2}=4 d_{1}^{2}$, so $d_{1}=\sqrt{3}$ (must have $d_{1}>0$). So $\tan (\alpha)=\frac{1}{d_{1}}=\frac{1}{\sqrt{3}}$ so $\alpha=30^{\circ}$ (or $\frac{\pi}{6}$).
(iv) [3 marks] Take $\alpha=30^{\circ}$. Let C_{3} have radius r. Let d_{3} be the distance between the points where C_{2} and C_{3} touch the x-axis. Then by similar triangles we have

$$
\frac{r}{d_{1}+d_{2}+d_{3}}=\frac{1}{d_{1}}=\frac{1}{\sqrt{3}}
$$

So $r=\frac{d_{1}+d_{2}+d_{3}}{\sqrt{3}}=3+\frac{d_{3}}{\sqrt{3}}$. So $d_{3}=\sqrt{3}(r-3)$.
Also since $\stackrel{\sqrt{3}}{C}_{2}$ and C_{3} touch Pythagoras gives

$$
(r+3)^{2}=(r-3)^{2}+d_{3}^{2}=(r-3)^{2}+3(r-3)^{2}=4(r-3)^{2}
$$

so $r^{2}+6 r+9=4 r^{2}-24 r+36$, which factorises to $(r-1)(r-9)=0$.
We're looking for C_{3} larger than C_{2} so $r=9$.
(v) [5 marks] Centres of triangle C_{1} and C_{2} are $\left(\frac{1}{\tan (\alpha)}, 1\right)$ and $\left(\frac{3}{\tan (\alpha)}, 3\right)$ respectively. Area of trapezium is half (bottom plus top) times height, so:

$$
\frac{3+1}{2} \frac{2}{\tan (\alpha)}=\frac{4}{\tan (\alpha)}
$$

Or break down as rectangle (area $=\frac{2}{\tan (\alpha)}$) plus triangle $\left(\right.$ area $=\frac{2}{\tan (\alpha)}$).
Now deduct C_{1} sector and C_{2} sector from trapezium area. Area of C_{1} sector is $\frac{1}{2} 1^{2}\left(\frac{\pi}{2}+\alpha\right)=\frac{\pi}{4}+\frac{\alpha}{2}$. Area of C_{2} sector is $\frac{1}{2} 3^{2}\left(\frac{\pi}{2}-\alpha\right)=\frac{9 \pi}{4}-\frac{9 \alpha}{2}$.

So interstitial area is:

$$
\frac{4}{\tan (\alpha)}-\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)-\left(\frac{9 \pi}{4}-\frac{9 \alpha}{2}\right)=\frac{4}{\tan (\alpha)}-\frac{5 \pi}{2}+4 \alpha=4 \sqrt{3}-\frac{11 \pi}{6}
$$

5. (i) [3 marks] We have

$$
\begin{gathered}
s_{1}=2(A+B)+C=2 \\
s_{2}=4(2 A+B)+C=10 \\
s_{3}=8(3 A+B)+C=34
\end{gathered}
$$

(ii) [3 marks] Subtracting the first equation from the other two gives

$$
\begin{aligned}
6 A+2 B & =8 \\
22 A+6 B & =32
\end{aligned}
$$

whence $4 A=8$, so $A=2, B=-2, C=2$ and $f(n)=(n-1) 2^{n+1}+2$.
(iii) [2 marks] We have

$$
\begin{aligned}
s_{k+1} & =f(k)+(k+1) 2^{k+1} \\
& =(k-1) 2^{k+1}+2+(k+1) 2^{k+1} \\
& =k 2^{k+2}+2=f(k+1)
\end{aligned}
$$

as required.
(iv) [4 marks] We have

$$
\begin{aligned}
t_{n} & =\left(n+2 n+4 n+\cdots+2^{n} \cdot n\right)-\left(2+8+24+\ldots+2^{n} \cdot n\right) \\
& =n\left(2^{n+1}-1\right)-f(n) \\
& =n\left(2^{n+1}-1\right)-(n-1) 2^{n+1}-2 \\
& =2^{n+1}-n-2 .
\end{aligned}
$$

Now $u_{n}=t_{n} / 2^{n}$, so

$$
u_{n}=2-\frac{n+2}{2^{n}}
$$

(v) [3 marks]

$$
\begin{aligned}
\sum_{k=1}^{n} s_{k} & =\sum_{k=1}^{n}\left(2 k 2^{k}-2^{k+1}+2\right) \\
& =\sum_{k=1}^{n}\left(k 2^{k+1}\right)-\sum_{k=1}^{n}\left(2^{k+1}\right)+2 n \\
& =2 \sum_{k=1}^{n}\left(k 2^{k}\right)-2^{n+2}+4+2 n \\
& =2 f(n)-2^{n+2}+4+2 n \\
& =2^{n+2} n-2^{n+3}+2 n+8
\end{aligned}
$$

6. (i) [3 marks] There are no possible arrangements - if A is a 1 , then either B and D are both 1 s or both 0 s . However, if B and D are both 1s then C must also be a 1 - but that would require all the dancers to be 1 s which is forbidden. If B and D are both 0 s then C must also be a 0 otherwise D would not be off-beat. But if C is a 0 they cannot be off-beat.
(ii) [3 marks] Assume that A is a 1 and holds hands with F and B, then either F and B are both 1s or both 0s. If both F and B are 1s then this pattern must propagate around the circle, forcing everyone to be 1 s , which is forbidden. If F and B are both 0 s then C and E must also be 0 s, to keep F and B off-beat. However to ensure C, D, and E are off-beat D must be a 1. Hence the only possible arrangements are those where precisely two dancers on opposite positions on the ring are 1 , and there are 3 such arrangements.
(iii) [3 marks] Each person holding hands either requires one of the three dancers to be a 1 or all three to be a 1 . If all three, then this propagates round resulting in all 1 s , which is forbidden. Thus for each triplet of dancers one person is a 1 . Then either spot the $1,0,0$ pattern which only repeats when n is a multiple of three, or look at the sum of each local triplet of dancers which must be equal to n and also equal to $3 k$ where k is the number of dancers who are 1 s .
(iv) [2 marks] If n is even two separate rings form, however each ring can only be off-beat if the number of dancers are a multiple of 3 , by previous argument. If n is odd, then n must be a multiple of 3 still because a ring is still formed (with displaced dancers).
(v) [1 mark] Either one dancer is a 1 or three dancers are 1 s and one is a 0 . There are 8 different ways in total.
(vi) [3 marks] There must be at least one dancer who is a 1 . Holding hands with this dancer there must be either no dancers or precisely two dancers who are 1s. If none of the dancers are 1s, then the alternating 0,1 pattern is very obvious. If two dancers are 1 s , then this leads to a situation where all dancers are 1 s , which is still forbidden. Hence there are 2 possible ways of arranging off-beat dances.
7. (Example taken from Graham, Knuth, Patashnik, Concrete Mathematics.)
(i) [2 marks] Three 2-spans:

(ii) [4 marks] Eight 3-spans:

(iii) [3 marks] In a 4 -span, the top group may have $t=1,2,3$ or 4 elements, and may be connected to the hub by any of t line segments in each case. If $t=4$, that is the end of the story, but if $t<4$ then the remaining tips may form any ($4-t$)-span. Thus (using the notation of the next part),

$$
z_{4}=1 . z_{3}+2 . z_{2}+3 . z_{1}+4=1 \times 8+2 \times 3+3 \times 1+4=21 .
$$

(iv) [4 marks] More generally, we have

$$
z_{n}=1 . z_{n-1}+2 . z_{n-2}+\cdots+(n-1) \cdot z_{1}+n .
$$

It follows that

$$
z_{5}=1 \times 21+2 \times 8+3 \times 3+4 \times 1+5=55 .
$$

(v) [2 marks]

$$
z_{6}=1 \times 55+2 \times 21+3 \times 8+4 \times 3+5 \times 1+6=144
$$

