
Modelling and verifying key-exchange protocols using CSP and FDR

A.W. Roscoe

Oxford University Computing Laboratory

Wolfson Building

Parks Road

Oxford OX1 3QD United Kingdom

Abstract

We discuss the issues involved in modelling and

verifying key-exchange protocols within the framework

of CSP and its model-checking tool FDR. Expressing

such protocols within a process algebra forces careful

consideration of exception handling, and makes it nat-

ural to consider the closely connected issues of commit-

ment and no-loss-of service. We argue that it is often

better to specify key exchange mechanisms in the con-

text of an enclosing system rather than in isolation.

1 Introduction

In this paper I show how key exchange protocols
can be brought into the framework of CSP and po-
tentially verified using the FDR model-checker. In
particular I will look at them in the context of the on-
going programme of work on the use of different forms
of CSP abstraction to characterise the views of (legit-
imate or otherwise) users of a system. The theory
behind these abstractions has already been developed
in [?, ?], where techniques for showing the absence of
information-flow are presented and applied.

It is hard to be sure what the right specification of
a key-exchange protocol is in isolation. Most of the
existing literature, for example [?, ?, ?], concentrates
either on logics of knowledge or on tools and strategies
for looking for attacks.

It is my thesis that it is easier to formulate desir-
able properties of an enclosing system such as a session
protocol using a key-exchange. Certainly some issues
such as no-denial-of-service can only be addressed in
this context. Therefore much of this paper is devoted
to the embedding of key-exchange within a more gen-
eral protocol.

There are some features of key-exchange protocols
which make this subject well-suited to CSP:

• CSP is appropriate for modelling multi-agent sys-
tems which communicate via messages;

• CSP forces close attention to issues such as the
behaviour of the insecure message transport sys-
tem which underlies one of these protocols.

• Some forms of insecurity appear not in a single
action or individual state, but over series of ac-
tions. Since CSP models a process as the possible
behaviours over time it can perform, it gives an
excellent framework for understanding such sub-
tleties.

• It is possible to build time into CSP modelling,
either continuous time (in abstract models) or dis-
crete (for model checking). These both seemingly
relate well to uses of time and time-stamping in
security protocols.

What limitations there are apply not to the theory
but to the difficulties caused to automated verifica-
tion by the large or infinite data types that a natural
presentation of these protocols contains.

Status of this work

At the time of writing (January 1995) the work re-
ported in this paper is under active development as
part of a programme investigating how new insights
into the specification and verification of security prop-
erties can be applied. This paper reports on the mod-
elling assumptions and methods used, both for key-
exchanges and session protocols using them, and also
on the appropriate formulation of security properties
and expected verification methods.

A session protocol (correct and robust against arbi-
trary message loss) has been constructed and verified
using FDR. This will be reported in [?]. Over the next
few months we expect to be able to verify extensions
building in (i) encryption using known keys and then
(ii) the use of keys obtained using Needham-Schroeder
and variants. By this means we expect to have a sys-
tem that can be shown – in a suitably specified sense –
secure and free from denial of service (necessarily un-

1

der limiting assumptions to bring the state-space size
within the bounds of available tools).

Where reference is made to the “session protocol”,
it refers to either the verified unencrypted one or to
these further developments.

This paper is an abbreviated and updated version of
the technical report [?]. The main omission from the
earlier paper is the CSP ‘code’ of a prototype session
protocol with key exchange and encryption.

2 Base model: formalising informal as-

sumptions

2.1 Assumptions about encryption

Encrypted messages are assumed to be created us-
ing a universally-known algorithm by reference to keys
k . We will usually that the same key suffices to en-
crypt and decrypt a message (i.e., this is a symmetric

algorithm), and that the algorithm is good enough,
and the range of keys so large, that we can discount
the possibilities of any of the following

(i) decryption by an agent who does not possess the
right key;

(ii) encryption in key k by any agent not possessing
k (other than by copying an already-observed en-
crypted message);

(iii) guessing a key;

(iv) the recovery of a key from an encrypted message
(even when the contents of the message is accu-
rately guessed).

(v) anyone reasonably believing they have decoded
some data when they have not: in other words
encryption, even of “random” data contains suf-
ficient redundancy to eliminate mistaken decryp-
tions.

Given these assumptions, it is appropriate to choose
an abstract representation e(k , x) of a message x en-
crypted under key k .

We will adopt, at least for now, the principle that
keys are inviolable tokens that can be invented, com-
bined with other messages, encrypted and decrypted
like any other data, but which have no other opera-
tions on them. In other words we forbid the following

• the use of anything other than a specifically-
created key as a key;

• the modification by any operation of any key to
produce another key.

This is essentially an assumption about the behaviour
of the type KEY in our programs. It is an assumption
that can be enforced by the use of public-key encryp-
tion to validate keys, but the real reason for making
the assumption is related to the different ways we will
wish to treat keys and other data when we consider
verification. Of course there are a number of key ex-
change protocols that do not fit into this pattern. The
point of keeping keys and the rest of data separate is
that it provides a mechanism for assuming facts about
what can be done with, and guessed with, keys with-
out placing constraints on what other messages a user
can generate.

For the time being we will not assume (and thus
effectively assume the contrary of) any algebraic prop-
erties of encryption. Thus we will assume that
e(k1, e(k2, x)) and e(k2, e(k1, x)) are distinct and that
neither confers information about the other in the ab-
sence of the keys. In subsequent work it may be pos-
sible to relax this assumption, though doing so would
require either explicit or implicit symbolic reasoning
in any automated verification.

We will assume that if an agent, in possession of
key k , is able to decipher a message e(k , x), then it
may not only recognise this fact but also identify k

(necessarily in K).

Similar symbolic abstractions from the mechanics
of encryption are used almost universally in the lit-
erature of crypto protocols, and are sometimes called
envelopes [?]. A variety of notations are used.

The extent to which the underlying postulates
about information-flow from, and creation of, these
objects are stated varies widely. Nevertheless they
are of vital importance since they represent the spec-
ification interface between the protocol designer and
the cryptographer. They also allow a precise eval-
uation and perhaps justification of protocol analysis
techniques.

We must treat nonces, from a structural point of
view, in a similar way. The only difference in a typical
protocol is which process is able to generate them.

We are assuming the following forms for data:

• Text, including names of users/nodes and any
special signals such as acknowledgements.

• Keys from a given set K .

• Nonces from a given set N .

• The pairing of two items d1.d2.

• The encryption e(k , d) for a key k and data d .

At any time a node or other observer will have seen
a set S of such items, including any with which it was
given knowledge initially.

Two related questions that arise are, given the set
S , what keys does an observer have knowledge of
(which we might define to be keys(S)) and what mes-
sages can the node generate (which we might define
to be span(S), borrowing terminology from algebra)?

In fact, keys(S) = span(S)∩K , and so it will suffice
to determine span(S); this is the smallest set contain-
ing S and which is closed under the following rules

• It contains all text.

• It contains d1 and d2 iff it contains d1.d2.

• If it contains k then it contains e(k , d) iff it con-
tains d .

Thus k2 is in span{k1, e(k1, e(k1, k3).e(k3, k2))} but
not in span{k1, e(k1, e(k2, k2))}.

Informally, span(S) denotes the set of those mes-
sages that an observer can generate from a given state
of knowledge: as well as the keys it can fully deduce
and the messages it can thereby construct, it also con-
tains all of the undeciphered messages it happens to
have seen and which, though it cannot understand
them, can use in the construction of others (for ex-
ample by encoding further).

2.2 Assumptions about message trans-
mission

Throughout this work I will assume that the pro-
cesses using encryption communicate via a “medium”
process.1 What passes over the medium is not secure,
so we have to rely on the proper use of codes and
secure exchanges of keys to achieve security.

This still leaves open a lot of detail of what sort
of mechanisms are provided by the medium, and the
details of these are really very important in assessing
what sort of “attacks” or security breaches can occur.

Our basic model will be that the medium is a pro-
cess to which messages are output by the nodes, and
which delivers them. I think it breaks into two essen-
tially separate cases which require consideration. This
depends on the form of the messages and the intelli-
gence of the medium. Can we (and the medium) see
openly who the sender and addressee of a message are,
or are these encrypted?

1An alternative approach is possible, namely identifying the

medium with the enemy agent. While elegant, this has the dis-

advantages from our point of view that specifying no-denial-of-

service becomes highly problematic, and that it largely removes

our ability to make different assumptions about the disruptive

power of the intruder.

1. Messages are openly labelled and the medium acts
as a conventional postal service between nodes.

2. Messages are entirely encrypted, and are therefore
broadcast by the medium to all nodes. Each node
must therefore attempt to decipher every message
and will recognise those intended for it, provided
it possesses the appropriate key or keys.

Of course there is nothing, in the first case, to prevent
a message carrying encrypted information that con-
firms (or otherwise) the openly-carried information.
But there is a clear division between the modelling of
these two cases. The first gives considerably greater
scope for users not in the possession of keys to interfere
with encrypted traffic. While the second apparently
puts encrypted messages directly into the hands of all
users, this is actually no hardship since we will almost
certainly have to assume, in the first case, that a copy
of any message might fall into the hands of anybody.

While there are seemingly a number of advantages
as well as disadvantages in the closed addressing case
– which are discussed in [?] – I will concentrate in this
paper on the more usual open address case, not least
because it is more interesting from the point of view
of CSP modelling.

3 Towards the CSP model

In this section and the next we will give an outline
description of the Needham-Schroeder protocol in the
context of an encrypted session protocol which it sup-
ports. The reason for choosing this one is that it is the
most extensively researched, and therefore best under-
stood, protocol of this sort and therefore an excellent
means of comparison between analysis methods.

My overall model will be of a number of nodes, each
a process for handling security aspects of communica-
tion for a single user, plus a communications medium
that handles messages between them. The external
view to a user will be that sessions are open and closed
between nodes, and while they are open messages can
pass to and fro between the connected pair. We will
assume that a fresh key is sought for each session.

In constructing the node process it is simpler to
separate the functions of initiating a session and re-
sponding to a request for a session. Therefore I will
assume that each node is of one of two sorts: an initia-

tor that can seek connections with the other class, the
responders. Thus two nodes of the same sort never
have sessions. Of course, in most applications, we
would expect each physical user to be served by at
least one of each.

3.1 CSP model of medium

A message has sender and receiver fields, plus its
contents: NODE.NODE.CONTENTS. A pure and se-
cure delivery system would then naturally be modelled
with a pair of channel arrays in and out for the inser-
tion and delivery of messages respectively. Node a

uses the actions in.a.b.m and out.a.b.m to insert and
receive message m for/from b. Thus the message that
is inserted as in.a.b.m will be delivered as out.b.a.m.

We need channels to allow for the interception and
faking of messages by intruders. Channels fkin and
leak of the above type, a.b.m represent (respectively)
the false insertion or leaking of the message properly
delivered as out.a.b.m.

The leaking of a message does not itself prevent the
proper delivery. To give agents the ability to interfere
with delivery an additional channel kill is used. Its
natural type is NODE.NODE, where the kill.a.b re-
moves one message (if any) in passage from b to a.
Note that the re-routing of a message can be achieved
by a combination of leaking, killing and faked inser-
tion.

We can actually change kill to be a data-free ac-
tion (i.e., of trivial type), where kill has the effect to
removing an arbitrary message in transit. The point
is that to prove a system secure one would have to
prove it secure against this whatever was nondetermin-
istically removed, including any that the agent might
have taken out by design.

The most general model might therefore be to cre-
ate a delivery system MEDIUM whose state is a bag
(multi-set) of those messages inserted (one way or an-
other) but not yet delivered. The buffering regime will
be, following the usual definition of the most nonde-
terministic buffer, to force input on in when empty,
output on out when nonempty, and to nondeterminis-
tically allow input when nonempty.

MEDIUM(B) = if card(B)==0 then

in?x -> MEDIUM({dual(x)})

else

((in?x ->

MEDIUM(union(B,{dual(x)})))

|~| STOP)

[] fkin?n?x -> MEDIUM(union(B,{x}))

[] (if card(B)==0 then STOP else

|~| x:B @ out!x ->

MEDIUM(diff(B,{x}))

[] leak?n?x:B -> MEDIUM(B))

[] kill ->

(if card(B)==0 then MEDIUM(B)

else |~| x:B @ MEDIUM(diff(B,{x})

))

The function dual(x) is assumed to turn an ‘input’
message into an ‘output’ message by swapping address
and sender fields.

A system with less insecurities could be created
by simply removing the appropriate clauses (the most
likely one being the kill one). Equally we could easily
place a limit on buffering by reducing the availability
of the in and fkin clauses.

Clearly it would be possible to specify the order of
delivery of messages more precisely (perhaps becom-
ing FIFO or just FIFO between a given pair of nodes),
though this would introduce questions such as the pos-
sible ability of an intruder to insert a message at an
arbitrary point in a queue. Note that the intruder
can in any case re-order messages by a combination or
leaking, deletion and re-insertion.

Given the nature of the protocols which are used to
cope with message loss, with repeated sending of mes-
sages, and reply to messages by acknowledgements, it
is sometimes both natural and necessary (for untimed
correctness) to force the medium to accept reply mes-
sages in preference to others. This is what is done
in the CSP session protocol. Specifically, upon de-
livering a message which needs a reply, the medium
will reserve a slot for this reply (presumably the one
it has just used in delivering to the same place). Of
course this has to be used carefully, otherwise dead-
locks can appear. In the CSP session protocol, the
medium is allowed to determine which messages will
need an immediate reply. When encryption is built in
(and it is no longer reasonable to have the medium un-
derstand message contents) then either messages ex-
pecting replies will need to be specifically tagged as
such, or probably better (since it eliminates the mis-
chief that can be caused by an intruder changing this
tag), the medium will expect a reply to every mes-
sage, though some of these replies will be null and the

medium will throw them away.
The above definition does not allow for this, but it

could easily be modified to do so.

3.2 Needham-Schroeder Protocol

This protocol [?], for establishing session keys be-
tween pairs of processes based on communication with
a central server, appears to be one of the best-studied
examples. It is the one I will concentrate on in this pa-
per, though most of what is said would translate with
modifications to any protocol with the same aims.

The actors in this story are a number of legitimate
nodes, A, B , etc., the key-server S , the insecure com-
munications medium described above, and whatever
agents happen to be intruding on, and interfering with,
this medium. Initially each node A knows its private

key kas which is know only to it and to S : it is used
for communication between A and S . The role of the
protocol is to establish, at the request of one partici-
pant (A, say), a session key kab for use with a second
node B .

The protocol is generally expressed as a series of
messages that pass between the principals:

1. A → S : A,B ,Na

2. S → A: e(kas ,Na ,B .kab .e(kbs , kab .A))

3. A → B : e(kbs , kab .A)

4. B → A: e(kab ,Nb)

5. A → B : e(kab ,Nb − 1)

Here, Na and Nb are nonces invented by, respectively,
A and B .

One can paraphrase this protocol thus:

1. A asks S (openly) for a key to B .

2. S returns a package encrypted using A’s private
key containing

• the return of Na to reassure A of freshness;

• the label of B (which appears strictly un-
necessary given Na , which ought to identify
B);

• the new key kab ;

• an encrypted package (not comprehensible
to A, which can now be forwarded to B).

3. A then forwards the embedded package, contain-
ing the name of A and the new key, to B .

4. B acknowledges receipt by using the new key on
a nonce.

5. A re-acknowledges (the change in the value of the
nonce by subtraction is simply to change the mes-
sage from the previous one).

This protocol is known to be secure except for certain
insecurities arising relative to previous compromises.

The protocol, of course, does not tell us everything
about how the individual nodes behave. And indeed
the list of communications above fails to describe sev-
eral potentially important features of the protocol,
specifically what happens when something goes wrong.
Any implementation must have features to deal both
with the non-appearance of expected communications
within a given time-limit (essential if nonces are to
mean anything with respect to timeliness) and the re-
ceipt of incorrect communications.

Let us first consider the behaviour of a node outside
the protocol. In this state we must be interested in
what is communicated since a security leak is clearly
possible, particularly since what is to be communi-
cated may be less governed than during the protocol
itself. Obviously we would wish that the communica-
tions be sufficiently restricted that (i) all communica-
tions are encrypted using an appropriate key and (ii)
no key is compromised. It is also important that a
node correctly recognises when it is supposed to enter
the protocol (such as when a new node is attempting
to establish a link with it).

The right way to deal with this is to think of the role
of the “node” process in our system as being purely a
device for managing secure communication. The con-
ceptual model is of a secure telephone, where each call
corresponds to a “session”, and the calling process in-
stigates the key-distribution protocol for establishing
the session key. We can thus make the following divi-
sion between the node and the external user.

• The external user of the “telephone” decides
whom to call, thereby opening a session and what
substantive messages to send to the user at the
other end of a live session. There is also some
mechanism for closing a session – hanging up.
The messages between user and the local node
are unencrypted.

• The external user has no knowledge of the secu-
rity protocol or of the keys it uses.

• Thus the devices of encryption, such as keys,
nonces and encrypted messages play no part in
the interface between the node and its user.

• The node operates the protocol as necessary to
acquire keys for communication with the other

nodes to which its user wants to send messages,
and encrypts/decrypts its user’s communications
as necessary.

In other words a clear distinction is made between the
provision of communications security and the genera-
tion of what messages are sent over the service thus
provided. Recall that each node is either a receiver or
an initiator, and that each user might well possess at
least one of each.

Now let us consider the treatment of exceptions by
the node. If the node detects some irregularity in its
dealings with the rest of the system, there are two ways
it might deal with this. The first is to work around
the exception – re-establishing links etc. as necessary
to recover in a way which is invisible to the outside.
The second is to generate an externally-visible effect,
perhaps an error event, either because no work-around
can be found or because it is thought appropriate to re-
port a security threat. From a verification standpoint
one should realise that it will be necessary to handle
these two cases differently: the former corresponds to
external intruders being unable to produce effects visi-
ble to users – which provides a convenient specification
in the latter we are giving them an explicit way of do-
ing just that. We will later discuss these two views
as the “paranoid” and “confident” methods of system
design.

We might also bear in mind that it will not only be
the communications within a key-distribution protocol
that are potential targets for interference, but also the
messages that constitute the session using the key.

Considerable care needed in designing not only key
exchange and subsequent session management, but
also the transition between them. For example we
would not want the system to deadlock because one
end of a session believes it to be live and the other
does not.

While it is not necessary to include all of this ex-
tra detail into a CSP presentation of the protocol,
it is in my view natural to do so. And by doing so
properly we can hope to prove much more, with more
intuitive specifications. After all, key exchange is a
means to an end and not an end in itself: we want
to achieve secure communication. The specifications
of these higher-level aims can be much clearer – and
more clearly “right” – than those of key-exchange. For
the external view would (except for the intruder) be
entirely divorced from keys.

While we are assuming the intruder can stop any
individual message from being delivered, there are ar-
guments for assuming there is a mechanism for avoid-
ing this (by repetition etc.) for certain messages which

occur in a session after the key-exchange is complete.
There is a far greater need to have this sort of mes-
sage delivered reliably if the operation of the security
system is to be invisible to the external users, because
there must come a point where both nodes are com-
mitted to the session and cannot be broken out of it
by external influences, and the external users should
be able to rely on the transmittal of data within a
session.

The usual mechanism for reliably transmitting data
over a lossy medium is to use a sub-protocol which
sends tagged data packets and acknowledgements.
While this sort of device cannot be used properly over
an enemy-infested network in general (for an enemy
could introduce fake messages and acknowledgements
to corrupt it), it is possible to use them between pairs
of users who share a reliable key. For we can encrypt
the communications, thereby preventing this type of
corruption. It will certainly be possible to include an
explicit coding of such a protocol into our overall sys-
tem. It is also possible to assume that it is provided
at a lower level and to make communications between
nodes that have a shared key (an sufficient knowledge
of this fact) unstoppable via an event refinement: the
series of messages and acknowledgements implement-
ing a message become one. In this case the approach
would be:

• code the main process description as though the
given class of messages are certain to be deliv-
ered (adjusting the communications service de-
scription accordingly), and

• analyse separately the implementation of the cho-
sen protocol in the context of encryption, using
the medium where messages can be intercepted.

Overall correctness in this context would then require
only the assumption that an enemy is not able to pre-
vent delivery of infinitely many consecutive messages,
which is clearly the weakest possible assumptions un-
der which any progress will be provable.

Use of unstoppable messages is a clear abstraction
from what is actually implemented. It simplifies both
the coding of the protocol and the state-space size
in a verification. It does, however create difficulties
in formally justifying the abstraction, demonstrating
that language constructs (in particular alternatives)
are reasonable, and in demonstrating that the assump-
tions required of keys are valid.

For these reasons I am presently using unstoppable
communications as a prototyping tool for CSP descrip-
tions of this sort of protocol. Further theoretical work
will be required before we can be confident of what has

been proved in a verification of a system abstracted in
this way.

The abstraction I have been discussing here is part
of a larger question of how much it is (a) possible and
(b) desirable to follow the conventional approach of
factoring a protocol involving key-exchange and en-
cryption into multiple “layers”: the traditional way of
overcoming the formidable technical and conceptual
difficulties of handling protocol design. To some ex-
tent that is what this assumption about reliable mes-
sage transmission is doing. On the whole I am not
convinced that it is often possible to get much use-
ful factorisation between the message-transport level
and the reliable establishment of sessions, chiefly be-
cause the actions of an intruder have to be dealt very
carefully with and recognised at every layer at which
they are still visible. If there is a layer lower than
the encryption one generating packets or data fields
that are not encrypted, then it will be very difficult
to prevent that layer being catastrophically disrupted
by an enemy (for example, by the faked insertion of
acknowledgements).

4 Process descriptions

There is insufficient space in this summary to give
full CSP descriptions of the processes. Much fuller
ones are contained in [?]. What I will attempt to do
here is to give a flavour of what each process is doing in
each phase of its actions, and to give the main design
considerations.

4.1 Server

This is the one process we can describe fully, since
it is so simple. Its actions are simply to respond to
correctly-formed responses to keys. In the following
definition, InsServer denotes the set of all inputs of
the server process (i.e., communications on in.s.r

and in.s.i).

SERVER(issued) =

(in.s?A?B?N ->

|~|k:diff(K,issued) @

(out.s.A.e(pk(A),N.B.k.e(pk(B),k.A)) ->

SERVER(union(issued,{k}))

+| x:InsServer -> SERVER(issued))

This simple example does illustrate several impor-
tant features of how the processes are coded:

1. Because we are assuming that all inputs are re-
sponded to (even if by a null), we can be sure that
the communication medium will accept the out-
put immediately. It is, of course, our obligation
to provide an output.

2. In any other state, this and all other processes
must be willing to accept any input whatsoever
to deny an intruder the ability to deadlock the
system. We are, specifically, adopting a receptive

style of coding CSP. This explains the last line
of the above: the operator +| is an operator that
generalises Hoare’s guarded alternative operator
in CSP2: if an event is possible for the process on
the left, it is taken there, otherwise it is accepted
on the right. In this case, any input that matches
the pattern of the input in.s?A?B?N (A and B

being respectively initiator and responder nodes
and N being a nonce) will be accepted on the last
line and ignored. In the input in.s.r?A?B?N we
are implicitly typing A, B and N respectively
to node, node and nonce. Any communication
where these types are incorrect will fail this clause
and thus fall in the exception one.

3. The description of encryption in the CSP re-
tains the symbolic structure of the earlier discus-
sion. Equality is symbolic equivalence, and we
can decide decodability by using simple pattern-
matching coding of the form: in.a.b.e(k,?x)

meaning input any message to over in.a.b en-
crypted with key k.

4.2 Initiator node

Next, let us consider the behaviour of an initiator
node. This is always in one of the following phases:

1. Idle: in this state it can accept requests from its
user to establish a session with any responder.

2. Establishing a key: attempting to perform a key-
exchange protocol with the server and the in-
tended partner.

3. Establishing a session: making the final negotia-
tions before hopefully opening the session.

4. In a session (with communications flowing both
ways between the user and the partner).

5. Rejected: a request for a session has been turned
down, and the user has to be informed.

6. Closing a session.

2Hoare’s operator must be used between processes with dis-

joint sets of explicit prefixes. My generalisation is to drop the

disjointness condition, but retaining the requirement that the

initial events of both sides are immediately calculable, giving a

left-to-right priority allowing the right hand argument to be an

“else” clause.

The complexity of this process is such that it is
difficult to be precise about its behaviour in a limited
space. There are some points that I would like to
emphasise here: for further details see [?].

At any stage during the run the node N may receive
communications it is not expecting as part of the given
session. These can come from three sources:

• The intruder.

• Other processes communicating legitimately, but
where N has been previously confused by the in-
truder into a state where the given communica-
tion is no longer expected.

• Communications from other users which repre-
sent tail-ends of sessions now complete. (Where
both participants know the it is complete, but
perhaps the other node does not know N knows!
In the context of a network with arbitrary mes-
sage loss and no time bound on transmission, this
must always remain possible.)

Obviously the protocol must prevent ones of the first
sort gaining significant access, but we must expect
that N can be deceived for at least part of a key-
exchange run, leading to the second possibility above.
While a node cannot be confident that a series of com-
munications are genuine, it cannot become committed
to them, and must realise that its partner is behaving
similarly. The crucial analysis we need to carry out in
setting up a session – during which we will certainly
have a protocol which relies on retransmission until
suitable acknowledgements are received – is to iden-
tify the point at which we can be confident that the
partner node is listening and knows a suitable private
key. For then we can repeat communications until
they are received and acknowledged in the certainty
that unless infinitely many messages are lost by the
network, progress will be made. Until that time the
node must back out of the current run if either (i) no
response is received to a message within a reasonable
time or (ii) an unexplained communication is received
that is not clearly from the intruder.

I have implemented the Needham-Schroeder proto-
col in the obvious orientation: with the initiator pro-
cess also being the one that initiates the key request.
It is only after the receipt of the acknowledgement of
key receipt from the reponder (the penultimate om-
munication of the protocol e(kab ,Nb)) that the initia-
tor (thanks to the postulate that a node can always
recognise that a message has been encrypted using a
specific key, if it knows that key) knows the respon-
der knows kab . Therefore all communications before

this point cannot be regarded as unstoppable in the
sense discussed earlier, and the initiator must be able
to time out. The final communication of Needham-
Schroeder (e(kab ,Nb − 1)) can be unstoppable (i.e.,
repeated until a response) and double as a request for
commitment to the session.

The initiator must take into account, however, the
fact that the responder does not know that the penul-
timate communication got through, and therefore that
the responder might have timed out or been otherwise
moved away from the protocol run. Therefore, even
after getting so far, the answer might be “no”.

I have implemented the unstoppable communica-
tions during the final setup phase and the closing
phase using a “stop and go” variant of the alternat-
ing bit protocol, only with all packets encrypted and
using a unique numbering scheme rather than alter-
nating bits to prevent replay attacks.

Closing the connection is relatively straightforward
compared to setting it up. In my coding it is the ini-
tiator node which requests closure, but there is noth-
ing essential in this. There are various decisions one
can make about what happens to pending commu-
nications, etc. We should note that one node or the
other will certainly be left in the position of not know-
ing that the other one is entirely through the session.
This is the cause of the final type of unexpected com-
munication discussed above.

4.3 Responder process

The responder side of a node must obviously be set
up to mirror the activities of the initiator. It is simpler
in the way it handles a specific run of the protocol, but
more complex in other ways since it has to arbitrate
between requests.

Specific points to note are

• It must remember the keys of any sessions that
were abandoned after it sent the penultimate
Needham-Schroeder message, for it can always
get a commit request in such a key that it must
refuse even though it (the responder) has moved
on.

• It must be able to handle requests for connec-
tion even when busy in a session. It can refuse
these most conveniently by modifying the penul-
timate Needham-Schroeder message to a special
encrypted refusal message.

• Like the initiator, it has to be able to handle the
final message of sessions that it knows to have
closed. One of the nodes (and in my implemen-
tation it is this one) has not only to absorb these
messages but also respond to them.

5 Verification issues
The way we model as complex a thing as a key

exchange protocol has a significant influence on what
type of properties we can seek to verify of it. For
example it will certainly be influenced by

• Whether time has been used, and if so how: the
accurate incorporation of time should sharpen the
description of communicating behaviour (particu-
larly where timeouts are used in protocol design),
and thereby perhaps into the liveness specifica-
tion, and also bring time-dependency into the be-
haviour of the imagined agent (such as minimal
time to break a key) and thereby into the security
specification.

• Whether the protocol is being considered in isola-
tion – in which case the most we can realistically
hope to prove are properties relating to which
keys an agent can hold relative to what states
of knowledge of the legitimate participants, and
perhaps time, all under explicit or implicit as-
sumptions about how the nodes behave outside
the protocol – or is encapsulated in a higher-level
protocol which uses it to achieve secure session
communication. In this latter case what we can
prove will certainly depend, inter alia on how
the enclosing protocol reacts to errors detected at
the lower level. One can imagine either a “para-
noid” approach, in which any misbehaviour is re-
ported to the external users and possibly causes
a deliberate loss of service because of the per-
ceived existence of an intruder, or a “confident”
approach where we believe (hopefully because we
have proved it!) that an agent can gain nothing
useful from his activities, and therefore it is better
for the communication system to overcome errors
in a way that is invisible to the external users. It
should then be possible to prove that the system
suffers no loss of service because of the intruder,
as well as that the intruder gains no information.

The second major parameter to verifying that a
protocol is secure is the threat level: i.e., our assump-
tions about the abilities of a potential intruder. The
abilities of an intruder to intercept, stop and fake mes-
sages was discussed in an earlier section, and I think
that any reasonable model of threat must include an
intruder who can do these things within the limita-
tions that

• The intruder’s ability to invent messages is lim-
ited to be within the span of the messages he has
seen and any keys, etc, we are assuming he pos-
sesses.

• The proof of some properties may be subject to
an assumption that the intruder cannot interfere
with a sufficiently high proportion of messages to
prevent progress (though the only effect of him
exceeding this bound must be lack of progress).

Given this, we may seek to prove either an absolute

security property: this will assume that the intruder
never obtains by any mechanism external to our rea-
soning (such as breaking a code) any key in use; or
a relative security property where it is assumed that
one or more keys do become available and we try to
prove that the damage is suitably contained (for exam-
ple, that breaking one key does not allow the intruder
to obtain other ones). All of the following relates to
the specification of absolute properties. Most relative
properties will involve the incorporation of timing into
the specification and implementation.

5.1 Confidentiality versus robustness

There are two things we will typically want to
prove of a “confident” session protocol involving key-
exchange and encryption. We want to prove that no
information can leak from the trusted users to an in-
truder, and also that nothing the intruder does can
prevent a proper service to these users. The first of
these is a confidentiality property, whereas the sec-
ond is a robustness or non-disruption property. They
subtly different flavours of non-interference. One says
that nothing the users can do will affect the agent,
whereas the other says that nothing the agent can do
will affect the users. And indeed, the methods of ab-
straction developed for CSP in [?] are the key to both.
What we need to do is to form an abstracted view of
what the system looks like in some alphabet: in our
case either the alphabet of the intruder or the alpha-
bet of all legitimate users. Having done this we can
reason about how the actions of the other party affect
this view.

In the earlier paper, I argued in detail that, in the
case where we want to prove that there is no infor-
mation flow from alphabet H to alphabet L, it is nec-
essary to prove that the abstraction A(P ,L) (the ab-
stracted view of P in alphabet L) is deterministic, for
only then can we know that the view in L is indepen-
dent of any choices that might be made in H (even
though the effects might not be apparent in the se-
mantics of the operators used). This is what is needed
for a confidentiality property: we would like the ab-
stracted view of an intruder to be deterministic. This
type of security property has the advantage that it is
certainly closed under refinement.

The situation is subtly different in the case of ro-
bustness, and we are trying to show that specific ac-

tions of the intruder do not adversely affect the sys-
tem. For it seems reasonable to take as a base-point
that it has either been proved, or is assumed, that the
semantics of the system is satisfactory on the assump-
tion that the intruder does nothing. So that if we can
prove that the abstracted view of the legitimate users
is a refinement of the view from the same perspective
assuming no intrusion, then this should be a sufficient
demonstration of non-interference. In other words,

A(P ‖
L

STOP ,H) v A(P ,H)

where L is the alphabet of the intruder and H is the
complement of L. When the abstraction mechanism
is the lazy abstraction LH (P) = P ||| RUN L of [?] (as
we will assume for the rest of this paper, since it is
the most appropriate one in the type of example we
are considering), the above inequality is a consequence
of, but does not imply, the determinism of A(P ,H).
In other words the above is weaker than the confi-
dentiality property. For it can hold when A(P ,H) is
nondeterministic: since the process with no intrusion
is deemed to be satisfactory, the process with intru-
sion is still satisfactory since it is a refinement. The
point is that we do not care if there might be ways in
which the intruder’s behaviour can change the ways in
which nondeterminism is resolved towards the legiti-
mate users; all we care is that the range of nondeter-
minism is not increased.

This view of non-interference as robustness would
have made equal sense as a definition of fault toler-
ance, with the malicious events of the intruder being
replaced by error actions. The only difference is that
we are more likely to want to prove fault tolerance on
the assumption that the number of faults is bounded.
In this case the correct definition would be that

LH (P ‖
L

STOP) v LH (P ‖
L

Err)

where Err is a deterministic process allowing whatever
sequences of error actions we wish to consider.

An excellent example is given by the FDR session
protocol that has already been developed and veri-
fied as a prototype. This is specifically designed to
be immune from message loss, and this immunity is
demonstrated by proving the refinement

LΣ\L((SYSTEM ‖
L

STOP)) v LΣ\L(SYSTEM)

(where L is the set of error events, one being necessary
for each loss of a message) even though the process on
the left hand side is, quite naturally, nondeterministic

because of the contention between initiators for one
responder.

In conclusion, the specifications of confidentiality
and of robustness are similar, but that of robustness
can permit more nondeterminism.

5.2 Does robustness imply confidential-
ity?

The previous section shows what we have to do
within our framework to prove the two sorts of prop-
erty we are looking for. It quickly becomes clear, on
seeing how either of them must be formulated in the
presence of encryption that we must take account of
what an intruder can understand: i.e., his span. The
messages he can introduce into the system are lim-
ited to that set, and his ability to decode messages
intercepted depends on which keys are presently in
the span.

This requires a re-modelling of the specification. In
the case of robustness it is relatively easy to see what
we must do: the occurrence of intruder outputs to the
system can be limited to those events in the span of the
set of events the intruder has received from it (plus any
we assume are present). This is, in fact, merely a so-
phisticated version of the case discussed above where,
in a fault tolerance specification, we might limit the
occurrence of error events. Specifically, if L is the
event-set of the intruder (the channels fkin, kill, leak),
then the precise specification of robustness becomes

RUN (L) ||| (SYSTEM ‖
L

STOP)

v RUN (L) ||| (SYSTEM ‖
L

Knows(I))

Where I is the assumed initial state of knowledge of
the intruder and

Knows(X) = kill → Knows(X)
2 leak?x → Knows(X ∪ {x})
2 fkin?x : span(X) → Knows(X)

This restriction will certainly be necessary to prove
the refinement, for without it the intruder could easily
disrupt the protocol by sending messages labelled with
a current key.

This gives a remarkably succinct definition of ro-
bustness, which is also, in some sense, clearly “right”.
We should note that in addition to proving that the
intruder cannot disrupt communication between le-
gitimate users, establishing this robustness property
shows that he cannot establish any pseudo-connection
with one of them.

Unfortunately, with confidentiality properties of the
sort discussed in [?], we would be forced to take ac-
count of the changing span in the abstraction itself.

There are two ways in which our intruder can gain
information: he might obtain a key and thereby de-
crypt messages or he might gain some knowledge of
what is happening because of an analysis of network
traffic. We have, in fact, gone to elaborate lengths to
avoid the former while ignoring the second possibility
entirely. It undoubtedly would be possible for some
information to be gained about the users’ activities
of the system we created by observing traffic. The
only possible way of eliminating this type of inference
is by introducing camouflage traffic to conceal which
messages are genuine.

Given that this has little to do, in fact, with keys
and encryption, it seems appropriate to concentrate
on the issue of which keys the intruder can obtain
relative to those used by the system (and perhaps the
times when they are used). There seem to me to be
two reasonable ways of proving facts about this: one is
by building the network so that the keys legitimately
used are visible on special channels, and building a
process that extracts which keys are visible from the
span of the intruder. The confidentiality property can
then be specified like any other safety property. We
will thus term this the “safety property” method of
specification.

The other method is to observe that if our intruder
ever knows a key that is used for communication be-
tween legitimate nodes (which is all that the keys in
our protocol are used for) then if that key is current it
would allow him to break the protocol used for the ses-
sion. Since this would create visible interference it fol-
lows that the interference-freedom property must show
that no current key is ever known by the intruder. It
would be straightforward to alter the responder nodes
so that they reflect illegitimate use of old keys in ex-
ternal behaviour: this would be a less severe coding
trick than the safety property method and would ex-
tend the robustness-implies-confidentiality argument
to old as well as current keys.

In the case the we were examining the key-exchange
protocols in isolation rather than in the context of a
session protocol, the most satisfactory method of spec-
ification appears to be the safety property method.

Model checking programs deal with finite-state sys-
tems, whereas there are a number of things both in the
modelling of the protocols and in the specifications
we have discussed here that, naturally, lead to infinite
or huge finite numbers of states. Three of these are:
choice of keys and nonces; incrementing counter la-
bels on encrypted packets; and remembering the span
of the intruder process. Practical verifications will
require partial systems or approximate checks to get

around this. In this they will be little different from
existing protocol verification tools (for example [?])
which in any finite run only try a subset of an infinite
collection of attacks. With a little care we expect to
be able to obtain significant results here.

Acknowledgements

Peter Ryan has been an excellent guide to a field
which I had not encountered less than a year ago, and
frequent meetings with him have been essential in for-
mulating my ideas. Dave Jackson and Paul Gardiner
of Formal Systems have helped both in general discus-
sions and in producing the tool modifications which
this work has required. Jim Woodcock and Lars Wulf
have been my partners in developing the CSP theory
of non-interference upon which this work rests.

This work was funded by a contract from DRA,
Malvern.

References

[1] P Bieber, N Boulahia-Cuppens, T Lehmann and
E van Wickeren, Abstract Machines for Commu-

nication Security Proceedings of Franconia Work-
shop.

[2] M. Burrows, M. Abadi and R.M. Needham, A

logic of authentication, ACM transactions on
Computer Systems, 8, 1 (1990), pp18-36.

[3] C. Meadows, A system for the specification and

analysis of key management protocols, Proc. 1991
IEEE Computer Society Symposium on Security
and Privacy, pp 182-195, IEEE Computer Society
Press, 1991.

[4] P.H.B. Gardiner and A.W. Roscoe The develop-

ment and verification of a fault-tolerant session-

management protocol In preparation.

[5] R.M. Needham and M.D. Schroder, Using en-

cryption for authentication in large networks of

computers, CACM, 21,, 12 1978, 993-999.

[6] A.W. Roscoe and H. McCarthy, Verifying a repli-

cated database: A Case Study in Model-checking

CSP submitted for publication.

[7] A.W. Roscoe, CSP and determinism in security
modelling to appear in the proceedings of 1995
IEEE Symposium on Security and Privacy.

[8] A.W. Roscoe, Prospects for describing, specifying

and verifying Key-exchange protocols in CSP and

FDR Formal Systems Technical Report, Decem-
ber 1994.

[9] A.W. Roscoe, J.C.P. Woodcock and L. Wulf,
Non-interference through determinism, Proc. ES-
ORICS 94, Springer LNCS 875, pp 33-53.

[10] E. Snekkenes, Exploring the BAN approach to

protocol analysis, Proc. 1991 IEEE Computer So-
ciety Symposium on Security and Privacy, pp
171-181, IEEE Computer Society Press, 1991.

