I. HILBERT SPACES, PROJECTORS AND SPECTRAL PROPERTIES

Let \mathcal{V} be a Hilbert space with dim $(\mathcal{V}) = d$ finite and let $|i\rangle$ index a basis for \mathcal{V} , such that $\langle i|j\rangle = \delta_{ij}$, where δ_{ij} is Kronecker's delta. Consider the vectors $|\phi\rangle, |\psi\rangle \in \mathcal{V}$ and some $P = \sum_{n=1}^{N} |n\rangle\langle n|$ where all $|n\rangle \in \{|i\rangle\}$, and the index *n* ranges over at most *d* vectors.

- (i) Show that $P^2 = P$ and hence that P is a projector. Show that $U = -2\sum_n |n\rangle\langle n| + 1$ is self-adjoint and unitary.
- (ii) Give values for the matrix trace and determinant of U.
- (iii) Show that $(1 \sum_{n} |n\rangle \langle n|)$ and $(\sum_{n} |n\rangle \langle n|)$ project onto eigenspaces of U, find the corresponding eigenvalues and the maximum dimension of the eigenspaces. Show that eigenvectors $|\phi\rangle$ in the +1 and -1 subspaces satisfy $P|\phi\rangle = 0$ and $P|\phi\rangle = |\phi\rangle$, respectively.
- (iv) Hence, using these results or otherwise construct an invertible map between projectors and self-adjoint unitary maps.

II. TENSOR PRODUCTS, DENSITY OPERATORS, SINGULAR VALUES AND PURIFICATION

Let $\psi = |001\rangle + |010\rangle + |100\rangle$ be a state in $\mathcal{H}_1 \otimes \mathcal{H}_2$ with dim $(\mathcal{H}_1) = 2$ and dim $(\mathcal{H}_2) = 4$, and let

$$V^{\dagger} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
(1)

- (i) By writing $\phi = \sum_{ij} C_{ij} |i\rangle |j\rangle$, where $|i\rangle \in \mathcal{H}_1$, $|j\rangle \in \mathcal{H}_2$ are both orthonormal basis, state the values of $i \in \{0, 1\}, j \in \{0, 1, 2, 3\}$ that correspond to non-zero coefficients of C_{ij} and hence express ψ in the basis $|i\rangle, |j\rangle$.
- (ii) Write the 2x4 matrix $\mathbf{C} = (C_{ij})_{ij}$ and show that \mathbf{CC}^{\dagger} and $\mathbf{C}^{\dagger}\mathbf{C}$ are (non-normalized) density operators, equivalent to ρ_1 , ρ_2 found by tracing over the systems \mathcal{H}_1 and \mathcal{H}_2 respectively. (Here the adjoint \dagger means matrix conjugate transpose.)
- (iii) From the singular value decomposition, one can write $\mathbf{C} = U\Sigma V^{\dagger}$. For V given above, and U the 2x2 identity matrix, find the 2x4 matrix of singular values Σ .
- (iv) Find purifications for ρ_1 and ρ_2 (other than ψ).

III. HAMILTONIANS, EVOLUTIONS, OBSERVABLES AND PROBABILITIES

Recall that the evolution of a quantum system in a static configuration can be found by solving the eigenvalue equation, $H|\psi_n\rangle = E_n|\psi_n\rangle$, where **H** is the Hamiltonian and E_n is the energy of state $|\psi_n\rangle$ written in terms of $\hbar\omega$, where ω is angular frequency. The time-evolution of some initial state $|\phi\rangle$ under **H** is then given as

$$|\phi(t)\rangle = \sum_{n} \exp(-itE_n/\hbar) \langle \psi_n | \phi \rangle | \psi_n \rangle$$
(2)

Let the Hamiltonian for a certain three-level system be given as

$$\mathbf{H} = \hbar \omega \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

and consider the observables

$$\mathbf{A} = \lambda \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
$$\mathbf{B} = \mu \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

for positive real constants λ and μ .

- (i) Find a map P that transforms the eigenvectors of **A** (given as $|1\rangle + |2\rangle$, $|1\rangle |2\rangle$, $|3\rangle$) into the eigenvectors of **B**.
- (ii) Suppose the system starts out in the generic state $|\psi(0)\rangle = c_1|1\rangle + c_2|2\rangle + c_3|3\rangle$ where $|c_1|^2 + |c_2|^2 + |c_3|^2 = 1$. Find the expectation values at t = 0 of **H**, **A** and **B**.
- (iii) Find the time-dependence of the static configuration and hence find $|\psi(t)\rangle$ under the Hamiltonian **H**.
- (iv) Determine the possible measured values of the energy of state $|\psi\rangle$ at time t. Likewise, determine the possible measured values values of $|\psi\rangle$ at time t for the observables **A** and **B**.