I. HILBERT SPACES, PROJECTORS AND SPECTRAL PROPERTIES

Let \mathcal{V} be a Hilbert space with $\operatorname{dim}(\mathcal{V})=d$ finite and let $|i\rangle$ index a basis for \mathcal{V}, such that $\langle i \mid j\rangle=\delta_{i j}$, where $\delta_{i j}$ is Kronecker's delta. Consider the vectors $|\phi\rangle,|\psi\rangle \in \mathcal{V}$ and some $P=\sum_{n=1}^{N}|n\rangle\langle n|$ where all $|n\rangle \in\{|i\rangle\}$, and the index n ranges over at most d vectors.
(i) Show that $P^{2}=P$ and hence that P is a projector. Show that $U=-2 \sum_{n}|n\rangle\langle n|+\mathbf{1}$ is self-adjoint and unitary.
(ii) Give values for the matrix trace and determinant of U.
(iii) Show that ($1-\sum_{n}|n\rangle\langle n|$) and ($\left.\sum_{n}|n\rangle\langle n|\right)$ project onto eigenspaces of U, find the corresponding eigenvalues and the maximum dimension of the eigenspaces. Show that eigenvectors $|\phi\rangle$ in the +1 and -1 subspaces satisfy $P|\phi\rangle=0$ and $P|\phi\rangle=|\phi\rangle$, respectively.
(iv) Hence, using these results or otherwise construct an invertible map between projectors and self-adjoint unitary maps.

II. TENSOR PRODUCTS, DENSITY OPERATORS, SINGULAR VALUES AND PURIFICATION

Let $\psi=|001\rangle+|010\rangle+|100\rangle$ be a state in $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ with $\operatorname{dim}\left(\mathcal{H}_{1}\right)=2$ and $\operatorname{dim}\left(\mathcal{H}_{2}\right)=4$, and let

$$
V^{\dagger}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{1}\\
\frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} \\
0 & 0 & 1 & 0
\end{array}\right)
$$

(i) By writing $\phi=\sum_{i j} C_{i j}|i\rangle|j\rangle$, where $|i\rangle \in \mathcal{H}_{1},|j\rangle \in \mathcal{H}_{2}$ are both orthonormal basis, state the values of $i \in\{0,1\}, j \in\{0,1,2,3\}$ that correspond to non-zero coefficients of $C_{i j}$ and hence express ψ in the basis $|i\rangle,|j\rangle$.
(ii) Write the 2 x 4 matrix $\mathbf{C}=\left(C_{i j}\right)_{i j}$ and show that $\mathbf{C C}^{\dagger}$ and $\mathbf{C}^{\dagger} \mathbf{C}$ are (non-normalized) density operators, equivalent to ρ_{1}, ρ_{2} found by tracing over the systems \mathcal{H}_{1} and \mathcal{H}_{2} respectively. (Here the adjoint \dagger means matrix conjugate transpose.)
(iii) From the singular value decomposition, one can write $\mathbf{C}=U \Sigma V^{\dagger}$. For V given above, and U the 2 x 2 identity matrix, find the 2 x 4 matrix of singular values Σ.
(iv) Find purifications for ρ_{1} and ρ_{2} (other than ψ).

III. HAMILTONIANS, EVOLUTIONS, OBSERVABLES AND PROBABILITIES

Recall that the evolution of a quantum system in a static configuration can be found by solving the eigenvalue equation, $H\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle$, where \mathbf{H} is the Hamiltonian and E_{n} is the energy of state $\left|\psi_{n}\right\rangle$ written in terms of $\hbar \omega$, where ω is angular frequency. The time-evolution of some initial state $|\phi\rangle$ under \mathbf{H} is then given as

$$
\begin{equation*}
|\phi(t)\rangle=\sum_{n} \exp \left(-i t E_{n} / \hbar\right)\left\langle\psi_{n} \mid \phi\right\rangle\left|\psi_{n}\right\rangle \tag{2}
\end{equation*}
$$

Let the Hamiltonian for a certain three-level system be given as

$$
\mathbf{H}=\hbar \omega\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

and consider the observables

$$
\begin{aligned}
& \mathbf{A}=\lambda\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right) \\
& \mathbf{B}=\mu\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

for positive real constants λ and μ.
(i) Find a map P that transforms the eigenvectors of \mathbf{A} (given as $|1\rangle+|2\rangle,|1\rangle-|2\rangle,|3\rangle$) into the eigenvectors of \mathbf{B}.
(ii) Suppose the system starts out in the generic state $|\psi(0)\rangle=c_{1}|1\rangle+c_{2}|2\rangle+c_{3}|3\rangle$ where $\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}=1$. Find the expectation values at $t=0$ of \mathbf{H}, \mathbf{A} and \mathbf{B}.
(iii) Find the time-dependence of the static configuration and hence find $|\psi(t)\rangle$ under the Hamiltonian \mathbf{H}.
(iv) Determine the possible measured values of the energy of state $|\psi\rangle$ at time t. Likewise, determine the possible measured values values of $|\psi\rangle$ at time t for the observables \mathbf{A} and \mathbf{B}.

