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1. The Gutzwiller approximation

Ultracold bosonic atoms in a 1D optical lattice are described by the Bose-Hubbard Hamiltonian

H = −J
∑
m

(
a†mam+1 + h.c.

)
+

U

2

∑
m

a†ma†mamam − µN .

Here J is the hopping matrix element, U the onsite atom-atom interaction, µ the chemical
potential and N the particle number operator. The bosonic operator am destroys a particle in
site m. In the Gutzwiller approximation the state of the atoms in the lattice is written as

|G〉 =
M∏

m=1

(∑
n

f (m)
n |n〉m

)
,

where |n〉m is a Fock state of n atoms in site m. We investigate how this state describes the
superfluid and Mott insulator regions, and the transition between them.

(i) Show that |G〉 is a matrix product state.

(ii) Calculate f
(m)
n so that |G〉 becomes the Mott insulating ground state of H for J = 0. How

does the lattice site occupation n change with µ. Calculate the particle number fluctuations
in lattice site m.

(iii) We introduce a small perturbation to the n = 1 Mott insulator

|Gε〉 = N
∏
m

(√
ε |0〉m + |1〉m +

√
ε |2〉m

)
.

Calculate the normalization factorN and show that this state preserves the average particle
number when varying ε. By working out the energy expectation value 〈Gε|H |Gε〉 conclude
that the Mott insulator becomes unstable at a critical value of

(
U

2J

)

crit

≈ 5.8.

(iv) In the limit J À U the ansatz

|G〉 ∝ e
∑

m φma†m |vac〉 ,

is a good approximation. Calculate the corresponding values of f
(m)
n . Assume the pa-

rameters φm to be time dependent and find their evolution equation from a variational
calculation, i.e. minimizing 〈G| i∂t −H |G〉. Show that this recovers a discretized form of
the Gross-Pitaevskii equation. By going to the continuum limit identify the macroscopic
wave function, effective mass and interaction coefficient g of the lattice system. Calculate
the particle number fluctuations in lattice site m in this limit.

(v) Discuss the importance of the possibility of violating particle number conservation in the
state |G〉 for describing the superfluid state. There are no correlations between the different
lattice sites in this approximation. Is this consistent with the description of a BEC using a
macroscopic wave function?
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2. Matrix product states

We consider a one dimensional optical lattice of M sites which each can either be empty or filled
with one particle. We denote these two quantum states per site as {|↑〉 , |↓〉}. Pauli matrices are
denoted as σ’s in the standard way in this problem.

(i) Write the fully polarized states |⇑〉 = |↑↑ · · · ↑〉 and |⇓〉 = |↓↓ · · · ↓〉 as matrix product states
with matrices A and B, respectively.

(ii) Use the above result to show that the superposition |⇑〉 + |⇓〉 can be written as a matrix
product state with matrices C = A⊕B for periodic boundary conditions (PBC). Show that
the matrix product is canonical for PBC and for suitably chosen boundary states |Φ0〉 and
|ΦM 〉 also in the case of open boundary conditions (OBC).

(iii) Extract the Schmidt decomposition of the state |⇑〉+ |⇓〉 for a split at M/2 from its matrix
product representation for OBC. Explain the connection between properties of the matrices
C and the amount of entanglement in |⇑〉+ |⇓〉.

(iv) Determine a matrix product representation of the anti-ferromagnetic superposition state
|↑↓ · · · ↑↓〉+ |↓↑ · · · ↓↑〉 using PBC.

(v) The W-state is an equal superposition of all translates of states |↓↑ · · · ↑〉. In contrast to
the previous examples, despite this state possessing full permutation symmetry, there is no
translationally invariant matrix product representation of a W-state with 2 × 2 matrices
for all sites m and PBC. Instead the simplest representation of a W-state uses OBC and
does not fully share its symmetries. Show that the choice

A↑ = I , A↓ = σ+

realizes the W-state for boundary states |Φ0〉 = |↑〉 and |ΦM 〉 = |↓〉. Is this a canonical
form of matrix product state?

(vi) Show that the three body Hamiltonian

H =
∑
m

σz
mσx

m+1σ
z
m+2 ,

with PBC has a matrix product state with matrices

A↑ = σ− +
1
2
(1− σz) , A↓ =

1
2
(1 + σz)− σ+ ,

as its ground state. There is no need to show that this ground state is unique.

3. Correlation functions of matrix product states

Let us consider an MPS which is translationally invariant, i.e. the matrices A are site independent
and PBC. We assume for simplicity (this is not necessarily always true but the conclusions will
still hold) that the transfer matrix can be diagonalized and has one eigenvalue ν1 = 1 while
all other eigenvalues νγ with γ = 2 · · ·χ2 have a modulus smaller than 1 and are arranged
in descending order. The corresponding right and left eigenvectors are |rγ〉 and |lγ〉. We are
interested in correlation functions of the form Cl = 〈OlOm〉 − 〈Ol〉〈Om〉. Show that these can
be written as

Cl =
χ2∑

γ=2

κγ

(
νγ

|νγ |
)l

e−l/ξγ ,

and calculate the parameters κγ and ξν appearing in this expression. Conclude that MPS do
not well approximate quantum systems with power law correlation functions when l →∞.
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