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Problem sheet, D Jaksch

1. The Gutzwiller approximation

Ultracold bosonic atoms in a 1D optical lattice are described by the Bose-Hubbard Hamiltonian

H = −J
∑
m

(
a†mam+1 + h.c.

)
+

U

2

∑
m

a†ma†mamam − µN .

Here J is the hopping matrix element, U the onsite atom-atom interaction, µ the chemical
potential and N the particle number operator. The bosonic operator am destroys a particle in
site m. In the Gutzwiller approximation the state of the atoms in the lattice is written as

|G〉 =
M∏

m=1

(∑
n

f (m)
n |n〉m

)
,

where |n〉m is a Fock state of n atoms in site m. We investigate how this state describes the
superfluid and Mott insulator regions, and the transition between them.

(i) Show that |G〉 is a matrix product state.

Solution: This state is an MPS with χ = 1 and 1× 1 matrices An
m = f

(m)
n .

(ii) Calculate f
(m)
n so that |G〉 becomes the Mott insulating ground state of H for J = 0. How

does the lattice site occupation n change with µ. Calculate the particle number fluctuations
in lattice site m.
Solution: The energy expectation value is given by

E = 〈G|H |G〉 = M
∑
n

(
U

2
n(n− 1)− µn

)
f2

n

and we have set f
(m)
n = fn = |fn|. We search for the minimum of E subject to the constraint∑

n f2
n = 1. The bracket has one global minimum at

n = n̄ =
1
2

+
µ

U
.

Thus the vacuum state with fn = δn,0 will be the ground state for n̄ ≤ 0 and the energy
will be minimized by MI states fn = δn,n0 . For finding n0 we need to calculate the ratio
of µ/U for which it becomes energetically favorable to go from n0 → n0 + 1. This happens
when

U

2
n0(n0 − 1)− µn0 =

U

2
(n0 + 1)n0 − µ(n0 + 1) ,

and thus at n0 = µ/U . The ground state therefore is given by the MI state with n0 =
[1 + µ/U ] where [] denotes the largest integer. We find 〈G| a†mama†mam |G〉 = n2

0 and
〈G| a†mam |G〉2 = n2

0 and therefore the particle number fluctuations are zero.
(iii) We introduce a small perturbation to the n = 1 Mott insulator

|Gε〉 = N
∏
m

(√
ε |0〉m + |1〉m +

√
ε |2〉m

)
.

Calculate the normalization factorN and show that this state preserves the average particle
number when varying ε. By working out the energy expectation value 〈Gε|H |Gε〉 conclude
that the Mott insulator becomes unstable at a critical value of(

U

2J

)

crit

≈ 5.8.
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Solution: The normalization factor is N = (1 + 2ε)−M/2. The total number of particles is

N̄ = M(ε× 0 + 1× 1 + ε× 2)2N 2 = M ,

which is independent of ε and the same as for the n0 = 1 MI state. We work out the
expectation values

〈am〉 =
√

ε(1 +
√

2)
1 + 2ε

,

and find 〈
a†mama†mam

〉
=

1 + 4ε

1 + 2ε
.

The total energy of the system is thus given by

Eε = 〈Gε|H |Gε〉 = M


−2Jε

(
1 +

√
2

1 + 2ε

)2

+
U

2
1 + 4ε
1 + 2ε

− U

2
− µ


 .

We expand this expression to first order in ε and find

Eε = Mε(−2J(1 +
√

2)2 + U) + const. +O(ε2) .

The MI state will thus be unstable for
(

U

2J

)
<

(
U

2J

)

crit

= (1 +
√

2)2 ≈ 5.8.

(iv) In the limit J À U the ansatz

|G〉 ∝ e
∑

m φma†m |vac〉 ,

is a good approximation. Calculate the corresponding values of f
(m)
n . Assume the pa-

rameters φm to be time dependent and find their evolution equation from a variational
calculation, i.e. minimizing 〈G| i∂t −H |G〉. Show that this recovers a discretized form of
the Gross-Pitaevskii equation. By going to the continuum limit identify the macroscopic
wave function, effective mass and interaction coefficient g of the lattice system. Calculate
the particle number fluctuations in lattice site m in this limit.
Solution: This is a coherent state whose coefficients (including normalization) are given
by

f (m)
n = e−

|φm|2
2

φn
m√
n!

.

It has the properties am |G〉 = φm |G〉 and
∣∣∣Ġ

〉
=

∑
m a†mφ̇m |G〉 which we use to derive

Euler-Lagrange equations which minimize 〈G| i∂t − H |G〉. These are given by the set of
equations

iφ̇m = −J(φm+1 + φm−1) + U |φm|2φm − µφm ,

and a trap potential can easily be accounted for by making µ space dependent. We identify
the macroscopic wave function Ψ(x)

√
` = φm at the discrete points x = m` where ` = λ/2

is the lattice period. A discretized version of the second derivative of the wave function is

Ψ′′(m`) =
φm+1 − 2φm + φm−1

`5/2
,

and we can rewrite the evolution equation as

iΨ̇(x) = −J(Ψ′′(x)`2 + 2Ψ(x)) + U`|Ψ(x)|2Ψ(x)− µΨ(x) .
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This corresponds to a Gross Pitaevskii equation with effective mass meff = 1/2J`2 and
g = U`. We find 〈G| a†mama†mam |G〉 = |φm|2(|φm|2 + 1) and 〈G| a†mam |G〉2 = |φm|4 and
therefore the variance in the particle number in each site is |φm|2.

(v) Discuss the importance of the possibility of violating particle number conservation in the
state |G〉 for describing the superfluid state. There are no correlations between the different
lattice sites in this approximation. Is this consistent with the description of a BEC using a
macroscopic wave function?
Solution: Briefly: Any Gutzwiller state other than an MI state violates particle number
conservation. The macroscopic wave function does not contain correlations between differ-
ent positions, i.e. all local observables are uncorrelated with other parts of the condensate.
This is identical to what happens in the Gutzwiller approximation.

2. Matrix product states

We consider a one dimensional optical lattice of M sites which each can either be empty or filled
with one particle. We denote these two quantum states per site as {|↑〉 , |↓〉}. Pauli matrices are
denoted as σ’s in the standard way in this problem.

(i) Write the fully polarized states |⇑〉 = |↑↑ · · · ↑〉 and |⇓〉 = |↓↓ · · · ↓〉 as matrix product states
with matrices A and B, respectively.
Solution: We have A↑m = B↓

m = 1 and B↑
m = A↓m = 0. When using OBC all boundary

states are 1.
(ii) Use the above result to show that the superposition |⇑〉 + |⇓〉 can be written as a matrix

product state with matrices C = A⊕B for periodic boundary conditions (PBC). Show that
the matrix product is canonical for PBC and for suitably chosen boundary states |Φ0〉 and
|ΦM 〉 also in the case of open boundary conditions (OBC).
Solution: The direct sum yields C↑

m = (I + σz)/2 = |↑〉 〈↑| and C↓
m = (I − σz)/2 = |↓〉 〈↓|.

Their products are (C↑)n = C↑ and (C↓)n = C↓, while C↑C↓ = C↓C↑ = 0. The trace of the
matrix product will thus be 1 if all spins are aligned and 0 otherwise. Suitable boundary
states for OBC are |Φ0〉 = (1, 1)′ and |ΦM 〉 = (1, 1)′. The matrices fulfill the conditions of
canonical MPS.

(iii) Extract the Schmidt decomposition of the state |⇑〉+ |⇓〉 for a split at M/2 from its matrix
product representation for OBC. Explain the connection between properties of the matrices
C and the amount of entanglement in |⇑〉+ |⇓〉.
Solution: The diagonal matrix has two degenerate eigenvalues of 1 (Note: the state is not
normalized, otherwise the eigenvalues would be 1/

√
2). The resolution of I in terms of the

the corresponding eigenvectors is I = |↑〉 〈↑|+ |↓〉 〈↓| and therefore we find

|⇑〉+ |⇓〉 = 1
∣∣↑1 · · · ↑M/2

〉⊗ ∣∣↑M/2+1 · · · ↑M

〉
+ 1

∣∣↓1 · · · ↓M/2

〉⊗ ∣∣↓M/2+1 · · · ↓M

〉
,

as expected.
(iv) Determine a matrix product representation of the anti-ferromagnetic superposition state

|↑↓ · · · ↑↓〉+ |↓↑ · · · ↓↑〉 using PBC.
Solution: The MPS of |↑↓ · · ·〉 is given by A↑odd = 1, A↑even = 0, A↓odd = 0, A↓even = 1. The
MPS of |↓↑ · · ·〉 is given by A↑odd = 0, A↑even = 1, A↓odd = 1, A↓even = 0. From the result in
(ii) we thus find the the superposition state MPS is given by C↑

odd = C↓
even = (I + σz)/2

C↑
even = C↓

odd = (I − σz)/2. This is not translationally invariant but the state is. The
main property of these matrices is C↑

oddC
↑
even = 0, C↓

oddC
↓
even = 0 and C↑

oddC
↓
even = |↑〉 〈↑|,

C↓
oddC

↑
even = |↓〉 〈↓|. This can also be achieved by the translationally invariant matrices (M

even) C↑ = |↑〉 〈↓| and C↓ = |↓〉 〈↑|.
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(v) The W-state is an equal superposition of all translates of states |↓↑ · · · ↑〉. In contrast to
the previous examples, despite this state possessing full permutation symmetry, there is no
translationally invariant matrix product representation of a W-state with 2 × 2 matrices
for all sites m and PBC. Instead the simplest representation of a W-state uses OBC and
does not fully share its symmetries. Show that the choice

A↑ = I , A↓ = σ+

realizes the W-state for boundary states |Φ0〉 = |↑〉 and |ΦM 〉 = |↓〉. Is this a canonical
form of matrix product state?
Solution: If all spins are up the matrix product is 〈↑| I |↓〉 = 0. If one spin is down the
matrix product is given by 〈↑| |↑〉 〈↓| |↓〉 = I with a trace of 2. Since (A↓)2 = 0 the trace
will be zero whenever more than one spin is down. The matrices fulfil all conditions for
this MPS to be canonical.

(vi) Show that the three body Hamiltonian

H =
∑
m

σz
mσx

m+1σ
z
m+2 ,

with PBC has a matrix product state with matrices

A↑ = σ− +
1
2
(1− σz) , A↓ =

1
2
(1 + σz)− σ+ ,

as its ground state. There is no need to show that this ground state is unique.
Solution: The matrices E are given by

E↑↑ =




0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1


 , E↑↓ =




0 0 0 0
0 0 0 0
1 −1 1 −1
0 0 0 0




E↓↑ =




0 0 0 0
1 1 −1 −1
0 0 0 0
0 0 0 0


 , E↓↓ =




1 −1 −1 1
0 0 0 0
0 0 0 0
0 0 0 0


 .

We have Oz = E↑↑ − E↓↓, Ox = E↑↓ + E↓↑ and I = E↑↑ + E↓↓. We find

In = 2n−1




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 .

The product OzOxOz = −I3. We therefore find for the energy E of this state

E = M
tr

{IM−3OzOxOz
}

tr {IM} = −M .

Each of the M term in H is bounded by −1 and thus the state is a ground state. The state
is the unique ground state as can e.g. be shown by using the stabilizer formalism.
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3. Correlation functions of matrix product states

Let us consider an MPS which is translationally invariant, i.e. the matrices A are site independent
and PBC. We assume for simplicity (this is not necessarily always true but the conclusions will
still hold) that the transfer matrix can be diagonalized and has one eigenvalue ν1 = 1 while
all other eigenvalues νγ with γ = 2 · · ·χ2 have a modulus smaller than 1 and are arranged
in descending order. The corresponding right and left eigenvectors are |rγ〉 and |lγ〉. We are
interested in correlation functions of the form Cl = 〈OlOm〉 − 〈Ol〉〈Om〉. Show that these can
be written as

Cl =
χ2∑

γ=2

κγ

(
νγ

|νγ |
)l

e−l/ξγ ,

and calculate the parameters κγ and ξν appearing in this expression. Conclude that MPS do
not well approximate quantum systems with power law correlation functions when l →∞.

Solution: We write I =
∑

γ νγ |rγ〉 〈lγ | with 〈lγ | rγ′
〉

= δγ,γ′ . For M →∞ we have IM = |r1〉 〈l1|
and

Cl = 〈OmOm+l〉 − 〈Om〉 〈Om+l〉 = tr
{

OI l−1OIM−l−1
}
− (

tr
{
OIM−1

})2
.

We rewrite this as

Cl =
∑

γ

〈l1|Oνl−1
γ |rγ〉 〈lγ |O |r1〉 − (〈r1|O |l1〉)2 =

χ2∑

γ=2

νl−1
γ 〈l1|O |rγ〉 〈lγ |O |r1〉 ,

and thus we find κγ = 〈l1|O |rγ〉 〈lγ |O |r1〉 /νγ and the correlation lengths ξγ = 1/ ln |νγ |.
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