SHEET 11
THE QUANTUM THEORY OF INFORMATION AND
COMPUTATION — Trinity Term 2010/

* Course homepage: http://wuw.comlab.ox.ac.uk/activities/quantum/course/
T Thanks to Martin Aulbach (http://www.martinaulbach.net/en/physics/research) for providing prob-
lems and solutions used in this sheet!



QUANTUM CIRCUITS, SYMMETRY AND EIGENSTATES

(i) Let P.o := poX +p1Y +psZ where |P| = 1 and show that exp(—i4P.c) = 1 cos(6/2) —
i(P.o)sin(f/2) and find the values of 8, P to recover the Hadamard gate, up to a phase
factor. Give a Hamiltonian and prescribed time of evolution to remove this global phase
factor.

(ii) Find the time of the evolution of the Hamiltonian |11)(11] to create a CZ-gate, then
write down a quantum circuit in terms of H and CZ to create a CNOT-gate. What

are the input states needed to use the CNOT-gate to prepare the singlet state |¥~) =
|01) — [10)7

(ili) Show that the SWAP operator 3(1 + 0, - 05) permutes the values of bits A and B as
SWAPi4)|ig) = |ip)|ia) (1)
where the notation o, - 05 stands for the scalar and tensor product.
(iv) Express the logic function on bits A, B, C' implemented by the following circuit

VA

73

<P~ P <] R
T F\t@ 1

where the truth table for XOR/AND is given as

N

a|bla®blanb
0/0 O 0
011] 1 0
110] 1 0
111} 0 1

(v) In the computational basis, express the general form of a two-qubit symmetric eigen-
state of the SWAP operator and count the real degrees of freedom. Repeat this for
anti-symmetric eigenstates (e.g. SWAP|¢) = —|v)).

(vi) Using the notation from (iii) above, find a value for ¢ to show that the two-site quantum
Heisenberg model Jo, - o, can be written as Z ((o; + 0,)? — ¢1) and show that [U*) =
|01) £ |10) are energy eigenstates.



HAMILTONIAN AND STATE SYMMETRY, DUALITY AND
REPRESENTATIONS

Symmetric quantum states are invariant under permutation (SWAP) of any pair of par-
ticles. Examples are the three qubit GHZ-state |GHZ) = %(|OOO> + [111)) and the three
qubit W-state W) = %(|001) +010) + |100). Note: a general n qubit quantum system has
the 2" orthonormal basis vectors {|00...00),|00...01),...,|11...11)}. For the subspace of
symmetric n qubit states, an orthonormal basis is given by the n 4+ 1 symmetric basis states
{150),151), -, |Sn) }- They are defined as:

50=(}) " 010} 0, i< [1) @)

perm k

We can therefore write |W) = |S;) and |GHZ) = W(|SO> +|53)).
By means of the so-called Majorana Representation every symmetric state of n qubits
|1)s) can be unambiguously represented by n single qubit states |¢;):

|[s) = |9p)) ® |Pp2) @ ® |ppm)) (3)
\/— 1;1 M (n)

i) = cos §10) + e~ sin § 1) (4)

The above sum is performed over all permutations P : {1,...,n} — {1,...,n}, and the

normalisation factor K is in general different for different |¢)5). The |¢;) can be visualised
by points on the Bloch sphere — called the Majorana Points (MP).

(i) Verify by direct calculation that |[W) = —= (|001) 4 |010) + |100)) is composed of the
Ps: |p1) = 10), |¢p2) = |0) and |¢3) 1) and that |GHZ) = \%(\OO@ + |111)) is
composed of the MPs: |¢;) = %(|O> 1)), |¢2) = %(|O> + €273(1)) and |¢3) =

L ([0} + 1))

7‘

(ii) Find a matrix M of kets, e.g.
M= [' ) 0 ] (5)

such that |GHZ) = TrM? = 2(+|M?3+) and a matrix of kets Q and states 1) := |1) and
= |0) such that |W) = 2(¢|@Q3¢), where the internal matrix product is interpreted
as tensor .

(iii) (Operator and Hamiltonian symmetry) By considering the Pauli-algebra, calculate
(0°R0°R0*®0*)(0"®c"®1®1)(0° R0 R 0" R c?) (6)

(0P®R0FRo*R0)(1®c"®c"®1)(0°®0°®o* Qo) (7)



(C"®0FRFRI)(1®1I®0" ®o")(0c°R®0o*®0"®o7) (8)

and repeat the calculation by making the replacement o” +— o¥. Consider the 1D
XY-model with open boundary conditions

1—|—fyxx 1—
HXY:_Z(? Oj+1 T 75— jyiy )_)‘ZU (9)

j=1

where the real parameter A\ is the intensity of the magnetic field applied in the z-
direction and the parameter v determines the degree of anisotropy of the spin-spin
interaction. Hence, using the results in (iii) above or otherwise, show that the XY-
model is invariant under conjugation by H 10} as

(I 0%) Hxy (11, 07) (10)
and hence show that [II'_ 0%, Hyy] = 0.

(iv) By considering real symmetric states and the duality induced by the linear maps

ni= >l @ ) (1)

€= (i|® i (12)
show that the product induced by 3-qubit states (e.g. C* ® C* — C?) is commutative
and associative. Depict these properties using string diagrams.

(v) Find the units for the product induced by |GHZ) and |W), and hence show that these
products form commutative monoids. Depict the iteration of these two products (e.g.
the interaction of W- and GHZ-products) diagrammatically by joining two legs. This
joining gives rise to a linear map C? — C? — give it’s explicit Schmidt form and
determine the rank.

ENTANGLEMENT AND MAJORANA POINTS

The Geometric Measure of Entanglement Eg is defined as the maximal overlap of a
quantum state |¢)) with all product states |A) = [A\1) ® -+ ® |\,):

Bo(0) = ~og, ( max [(10)7) (13
[N €eHsep

If |¢) is a symmetric state with only positive valued coefficients, then the expression |(A|¢))]
is maximized by a product state |A\) which is also symmetric and has positive coefficients:
IA) = [o)®" with |o) = cos % |0) + sin2[1). We call the single qubit state |o) a Closest



Product Point (CPP).

Note: It was proved only very recently that if |¢) is symmetric, then there exists a
closest product state |A) which is symmetric itself. From this it is easy to show that if |)
is symmetric and positive, then |\) is also symmetric and positive.

This result means that we can visualize the MPs as well as the CPPs on the Bloch
sphere. Note that an n qubit symmetric state has exactly n undistinguishable MPs (which
can coincide), while the number of CPPs is not fixed. By definition there is at least one
CPP. See Figure [I] for examples.

FIG. 1. The MPs (white dots) and CPPs (crosses) of the three qubit (a) W-state and (b) GHZ-state
on the Bloch sphere.

(i) Determine the positive CPP of |W). For this, use the ansatz |o) = cos 2|0) + sin 5|1)
and determine the maximum from Equation (I3]).

(ii) A given symmetric state can have more than one CPP. Show that for |GHZ) there are
two positive CPPs, namely |oy) = |0) and |og) = |1).

(iii) Calculate the geometric entanglement Eg of |W) and |GHZ).

(iv) Find the MPs and the positive CPP of the two qubit Bell state |[¥+) = %(|Ol> +110))
and visualize them on the Bloch sphere. Determine the geometric entanglement Eg of
W),

HAMILTONIANS, EVOLUTIONS, ENTANGLEMENT
The two-site Hubbard model with cyclic boundary conditions is given by
H = t(CJ{TCQT + CLCu + C;TCH + C;¢Cli) + U(annu + nnggi) (14)

where
ngt = Chcy (15)

nﬂ = CLCﬂ (16)



and where the Fermi-operators C}T’ c} 1» Cjts ¢4 obey the anti-commutation relations
{cher cin} = i1 (17)

{ij Cins '} =A{ci cjw} =0 (18)

This Hamiltonian commutes with the total number operator N and the total spin operator
S, in the z direction

2
N =Y (e +clien) (19)

j=1

= (e —clyein) (20)

Jj=1

[

(i) Consider the subspace (Fock space) with N = 2 electrons and S, = 0. Consider the
two particle total spin-zero basis as |s) 1= CJ{TCJ{¢|O>, |sg) := CITC£¢|O>, |s3) = C2T61¢|O>
and |s;) == chcg 110). Find the matrix representation of H in this basis.

(ii) Asin (i) above, express the Hamiltonian in the basis given by

9%) = (cl,cly10) + el 10) (21)
T+ = %(cucmm BT (22)
#7) = —s(elycll0) = cuclo) (23)
W) 1= (el o) = eyl o) (24)

and by considering the Bell-basis show that it can be written as a direct sum (&) of 2
by 2 matrices.

(iii) Show that the two point Hubbard model admits a discrete symmetry under particle
exchange 2 — 1, 1 — 2. Hence or otherwise, consider the irreducible representations
of the finite two element group and identify two invariant subspaces.

(iv) Find the time evolution of the initial state |p(0)) = %(chc;HO) + cgicm())) and cal-
culate the geometric entanglement Eg of this state as a function of time.
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