SHEET 1*
 THE QUANTUM THEORY OF INFORMATION AND COMPUTATION - Trinity Term 2010 \downarrow

[^0]
QUANTUM CIRCUITS, SYMMETRY AND EIGENSTATES

(i) Let $\underline{P} \cdot \underline{\sigma}:=p_{0} X+p_{1} Y+p_{2} Z$ where $|P|=1$ and show that $\exp \left(-i \frac{\theta}{2} \underline{P} \cdot \underline{\sigma}\right)=\mathbf{1} \cos (\theta / 2)-$ $i(\underline{P} \cdot \underline{\sigma}) \sin (\theta / 2)$ and find the values of θ, \underline{P} to recover the Hadamard gate, up to a phase factor. Give a Hamiltonian and prescribed time of evolution to remove this global phase factor.
(ii) Find the time of the evolution of the Hamiltonian $|11\rangle\langle 11|$ to create a CZ-gate, then write down a quantum circuit in terms of H and CZ to create a CNOT-gate. What are the input states needed to use the CNOT-gate to prepare the singlet state $\left|\Psi^{-}\right\rangle=$ $|01\rangle-|10\rangle$?
(iii) Show that the SWAP operator $\frac{1}{2}\left(\mathbf{1}+\underline{\sigma}_{A} \cdot \underline{\sigma}_{B}\right)$ permutes the values of bits A and B as

$$
\begin{equation*}
\operatorname{SWAP}\left|i_{A}\right\rangle\left|i_{B}\right\rangle=\left|i_{B}\right\rangle\left|i_{A}\right\rangle \tag{1}
\end{equation*}
$$

where the notation $\underline{\sigma}_{A} \cdot \underline{\sigma}_{B}$ stands for the scalar and tensor product.
(iv) Express the logic function on bits A, B, C implemented by the following circuit

where the truth table for XOR/AND is given as

a	b	$a \oplus b$	$a \wedge b$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(v) In the computational basis, express the general form of a two-qubit symmetric eigenstate of the SWAP operator and count the real degrees of freedom. Repeat this for anti-symmetric eigenstates (e.g. SWAP $|\psi\rangle=-|\psi\rangle$).
(vi) Using the notation from (iii) above, find a value for q to show that the two-site quantum Heisenberg model $J \underline{\sigma}_{1} \cdot \underline{\sigma}_{2}$ can be written as $\frac{J}{2}\left(\left(\underline{\sigma}_{1}+\underline{\sigma}_{2}\right)^{2}-q \mathbf{1}\right)$ and show that $\left|\Psi^{ \pm}\right\rangle=$ $|01\rangle \pm|10\rangle$ are energy eigenstates.

HAMILTONIAN AND STATE SYMMETRY, DUALITY AND REPRESENTATIONS

Symmetric quantum states are invariant under permutation (SWAP) of any pair of particles. Examples are the three qubit GHZ-state $|G H Z\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$ and the three qubit W -state $|\mathrm{W}\rangle=\frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle$. Note: a general n qubit quantum system has the 2^{n} orthonormal basis vectors $\{|00 \ldots 00\rangle,|00 \ldots 01\rangle, \ldots,|11 \ldots 11\rangle\}$. For the subspace of symmetric n qubit states, an orthonormal basis is given by the $n+1$ symmetric basis states $\left\{\left|S_{0}\right\rangle,\left|S_{1}\right\rangle, \ldots,\left|S_{n}\right\rangle\right\}$. They are defined as:

$$
\begin{equation*}
\left|S_{k}\right\rangle=\binom{n}{k}^{-\frac{1}{2}} \sum_{\text {perm }} \underbrace{|0\rangle|0\rangle \cdots|0\rangle}_{n-k} \underbrace{|1\rangle|1\rangle \cdots|1\rangle}_{k} \tag{2}
\end{equation*}
$$

We can therefore write $|\mathrm{W}\rangle=\left|S_{1}\right\rangle$ and $|\mathrm{GHZ}\rangle=\frac{1}{\sqrt{2}}\left(\left|S_{0}\right\rangle+\left|S_{3}\right\rangle\right)$.
By means of the so-called Majorana Representation every symmetric state of n qubits $\left|\psi_{\mathrm{s}}\right\rangle$ can be unambiguously represented by n single qubit states $\left|\phi_{i}\right\rangle$:

$$
\begin{gather*}
\left|\psi_{\mathrm{s}}\right\rangle=\frac{1}{\sqrt{K}} \sum_{\text {perm }}\left|\phi_{P(1)}\right\rangle \otimes\left|\phi_{P(2)}\right\rangle \otimes \cdots \otimes\left|\phi_{P(n)}\right\rangle \tag{3}\\
\left|\phi_{i}\right\rangle=\cos \frac{\theta_{i}}{2}|0\rangle+e^{-i \varphi_{i}} \sin \frac{\theta_{i}}{2}|1\rangle \tag{4}
\end{gather*}
$$

The above sum is performed over all permutations $P:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$, and the normalisation factor K is in general different for different $\left|\psi_{s}\right\rangle$. The $\left|\phi_{i}\right\rangle$ can be visualised by points on the Bloch sphere - called the Majorana Points (MP).
(i) Verify by direct calculation that $|\mathrm{W}\rangle=\frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle)$ is composed of the MPs: $\left|\phi_{1}\right\rangle=|0\rangle,\left|\phi_{2}\right\rangle=|0\rangle$ and $\left|\phi_{3}\right\rangle=|1\rangle$ and that $|\mathrm{GHZ}\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$ is composed of the MPs: $\left|\phi_{1}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle),\left|\phi_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i 2 \pi / 3}|1\rangle\right)$ and $\left|\phi_{3}\right\rangle=$ $\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i 4 \pi / 3}|1\rangle\right)$.
(ii) Find a matrix M of kets, e.g.

$$
M=\left[\begin{array}{cc}
| \rangle & 0 \tag{5}\\
0 & | \rangle
\end{array}\right]
$$

such that $|\mathrm{GHZ}\rangle=\operatorname{Tr} M^{3}=2\left\langle+\mid M^{3}+\right\rangle$ and a matrix of kets Q and states $\psi:=|1\rangle$ and $\phi:=|0\rangle$ such that $|\mathrm{W}\rangle=2\left\langle\phi \mid Q^{3} \psi\right\rangle$, where the internal matrix product is interpreted as tensor \otimes.
(iii) (Operator and Hamiltonian symmetry) By considering the Pauli-algebra, calculate

$$
\begin{align*}
& \left(\sigma^{z} \otimes \sigma^{z} \otimes \sigma^{z} \otimes \sigma^{z}\right)\left(\sigma^{x} \otimes \sigma^{x} \otimes \mathbf{1} \otimes \mathbf{1}\right)\left(\sigma^{z} \otimes \sigma^{z} \otimes \sigma^{z} \otimes \sigma^{z}\right) \tag{6}\\
& \left(\sigma^{z} \otimes \sigma^{z} \otimes \sigma^{z} \otimes \sigma^{z}\right)\left(\mathbf{1} \otimes \sigma^{x} \otimes \sigma^{x} \otimes \mathbf{1}\right)\left(\sigma^{z} \otimes \sigma^{z} \otimes \sigma^{z} \otimes \sigma^{z}\right) \tag{7}
\end{align*}
$$

$$
\begin{equation*}
\left(\sigma^{z} \otimes \sigma^{z} \otimes \sigma^{z} \otimes \sigma^{z}\right)\left(\mathbf{1} \otimes \mathbf{1} \otimes \sigma^{x} \otimes \sigma^{x}\right)\left(\sigma^{z} \otimes \sigma^{z} \otimes \sigma^{z} \otimes \sigma^{z}\right) \tag{8}
\end{equation*}
$$

and repeat the calculation by making the replacement $\sigma^{x} \mapsto \sigma^{y}$. Consider the 1D XY-model with open boundary conditions

$$
\begin{equation*}
H_{X Y}:=\sum_{j=1}^{N}\left(\frac{1+\gamma}{2} \sigma_{j}^{x} \sigma_{j+1}^{x}+\frac{1-\gamma}{2} \sigma_{j}^{y} \sigma_{j+1}^{y}\right)-\lambda \sum_{j=1}^{N} \sigma_{j}^{z} \tag{9}
\end{equation*}
$$

where the real parameter λ is the intensity of the magnetic field applied in the z direction and the parameter γ determines the degree of anisotropy of the spin-spin interaction. Hence, using the results in (iii) above or otherwise, show that the XYmodel is invariant under conjugation by $\Pi_{j=1}^{N} \sigma_{j}^{z}$ as

$$
\begin{equation*}
\left(\Pi_{j=1}^{N} \sigma_{j}^{z}\right) H_{X Y}\left(\Pi_{j=1}^{N} \sigma_{j}^{z}\right) \tag{10}
\end{equation*}
$$

and hence show that $\left[\Pi_{j=1}^{N} \sigma_{j}^{z}, H_{X Y}\right]=0$.
(iv) By considering real symmetric states and the duality induced by the linear maps

$$
\begin{align*}
& \eta:=\sum_{i}|i\rangle \otimes|i\rangle \tag{11}\\
& \epsilon:=\sum_{i}\langle i| \otimes\langle i| \tag{12}
\end{align*}
$$

show that the product induced by 3 -qubit states (e.g. $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$) is commutative and associative. Depict these properties using string diagrams.
(v) Find the units for the product induced by $|G H Z\rangle$ and $|W\rangle$, and hence show that these products form commutative monoids. Depict the iteration of these two products (e.g. the interaction of W- and GHZ-products) diagrammatically by joining two legs. This joining gives rise to a linear map $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2} —$ give it's explicit Schmidt form and determine the rank.

ENTANGLEMENT AND MAJORANA POINTS

The Geometric Measure of Entanglement E_{G} is defined as the maximal overlap of a quantum state $|\psi\rangle$ with all product states $|\lambda\rangle=\left|\lambda_{1}\right\rangle \otimes \cdots \otimes\left|\lambda_{n}\right\rangle$:

$$
\begin{equation*}
E_{G}(|\psi\rangle)=-\log _{2}\left(\max _{|\lambda\rangle \in \mathcal{H} \mathrm{SEP}}|\langle\lambda \mid \psi\rangle|^{2}\right) . \tag{13}
\end{equation*}
$$

If $|\psi\rangle$ is a symmetric state with only positive valued coefficients, then the expression $|\langle\lambda \mid \psi\rangle|$ is maximized by a product state $|\lambda\rangle$ which is also symmetric and has positive coefficients: $|\lambda\rangle=|\sigma\rangle^{\otimes n}$ with $|\sigma\rangle=\cos \frac{\vartheta}{2}|0\rangle+\sin \frac{\vartheta}{2}|1\rangle$. We call the single qubit state $|\sigma\rangle$ a Closest

Product Point (CPP).
Note: It was proved only very recently that if $|\psi\rangle$ is symmetric, then there exists a closest product state $|\lambda\rangle$ which is symmetric itself. From this it is easy to show that if $|\psi\rangle$ is symmetric and positive, then $|\lambda\rangle$ is also symmetric and positive.

This result means that we can visualize the MPs as well as the CPPs on the Bloch sphere. Note that an n qubit symmetric state has exactly n undistinguishable MPs (which can coincide), while the number of CPPs is not fixed. By definition there is at least one CPP. See Figure 1 for examples.

FIG. 1. The MPs (white dots) and CPPs (crosses) of the three qubit (a) W-state and (b) GHZ-state on the Bloch sphere.
(i) Determine the positive CPP of $|\mathrm{W}\rangle$. For this, use the ansatz $|\sigma\rangle=\cos \frac{\vartheta}{2}|0\rangle+\sin \frac{\vartheta}{2}|1\rangle$ and determine the maximum from Equation (13).
(ii) A given symmetric state can have more than one CPP. Show that for $|G H Z\rangle$ there are two positive CPPs, namely $\left|\sigma_{1}\right\rangle=|0\rangle$ and $\left|\sigma_{2}\right\rangle=|1\rangle$.
(iii) Calculate the geometric entanglement E_{G} of $|\mathrm{W}\rangle$ and $|\mathrm{GHZ}\rangle$.
(iv) Find the MPs and the positive CPP of the two qubit Bell state $\left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$ and visualize them on the Bloch sphere. Determine the geometric entanglement E_{G} of $\left|\Psi^{+}\right\rangle$.

HAMILTONIANS, EVOLUTIONS, ENTANGLEMENT

The two-site Hubbard model with cyclic boundary conditions is given by

$$
\begin{equation*}
H=t\left(c_{1 \uparrow}^{\dagger} c_{2 \uparrow}+c_{1 \downarrow}^{\dagger} c_{2 \downarrow}+c_{2 \uparrow}^{\dagger} c_{1 \uparrow}+c_{2 \downarrow}^{\dagger} c_{1 \downarrow}\right)+U\left(n_{1 \uparrow} n_{1 \downarrow}+n_{2 \uparrow} n_{2 \downarrow}\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
n_{j \uparrow} & :=c_{j \uparrow}^{\dagger} c_{j \uparrow} \tag{15}\\
n_{j \downarrow} & :=c_{j \downarrow}^{\dagger} c_{j \downarrow} \tag{16}
\end{align*}
$$

and where the Fermi-operators $c_{j \uparrow}^{\dagger}, c_{j \downarrow}^{\dagger}, c_{j \uparrow}, c_{j \downarrow}$ obey the anti-commutation relations

$$
\begin{gather*}
\left\{c_{i \kappa}^{\dagger}, c_{j \kappa^{\prime}}\right\}=\delta_{\kappa \kappa^{\prime}} \delta_{i j} \mathbf{1} \tag{17}\\
\left\{c_{i \kappa}^{\dagger}, c_{j \kappa^{\prime}}^{\dagger}\right\}=\left\{c_{i \kappa}, c_{j \kappa^{\prime}}\right\}=0 \tag{18}
\end{gather*}
$$

This Hamiltonian commutes with the total number operator \hat{N} and the total spin operator \hat{S}_{z} in the z direction

$$
\begin{align*}
& \hat{N}=\sum_{j=1}^{2}\left(c_{j \uparrow}^{\dagger} c_{j \uparrow}+c_{j \downarrow}^{\dagger} c_{j \downarrow}\right) \tag{19}\\
& \hat{S}_{z}=\sum_{j=1}^{2}\left(c_{j \uparrow}^{\dagger} c_{j \uparrow}-c_{j \downarrow}^{\dagger} c_{j \downarrow}\right) \tag{20}
\end{align*}
$$

(i) Consider the subspace (Fock space) with $N=2$ electrons and $S_{z}=0$. Consider the two particle total spin-zero basis as $\left|s_{1}\right\rangle:=c_{1 \uparrow}^{\dagger} c_{1 \downarrow}^{\dagger}|0\rangle,\left|s_{2}\right\rangle:=c_{1 \uparrow}^{\dagger} \uparrow_{2 \downarrow}^{\dagger}|0\rangle,\left|s_{3}\right\rangle:=c_{2 \uparrow}^{\dagger} c_{1 \downarrow}^{\dagger}|0\rangle$ and $\left|s_{1}\right\rangle:=c_{2 \uparrow}^{\dagger} c_{2 \downarrow}^{\dagger}|0\rangle$. Find the matrix representation of H in this basis.
(ii) As in (i) above, express the Hamiltonian in the basis given by

$$
\begin{align*}
& \left|\Phi^{+}\right\rangle:=\frac{1}{\sqrt{2}}\left(c_{1 \downarrow}^{\dagger} c_{1 \uparrow}^{\dagger}|0\rangle+c_{2 \downarrow}^{\dagger} c_{2 \uparrow}^{\dagger}|0\rangle\right) \tag{21}\\
& \left|\Psi^{+}\right\rangle:=\frac{1}{\sqrt{2}}\left(c_{1 \downarrow}^{\dagger} c_{2 \uparrow}^{\dagger}|0\rangle+c_{2 \downarrow}^{\dagger} c_{1 \uparrow}^{\dagger}|0\rangle\right) \tag{22}\\
& \left|\Phi^{-}\right\rangle:=\frac{1}{\sqrt{2}}\left(c_{1 \downarrow}^{\dagger} c_{1 \uparrow}^{\dagger}|0\rangle-c_{2 \downarrow}^{\dagger} c_{2 \uparrow}^{\dagger}|0\rangle\right) \tag{23}\\
& \left|\Psi^{-}\right\rangle:=\frac{1}{\sqrt{2}}\left(c_{1 \downarrow}^{\dagger} c_{2 \uparrow}^{\dagger}|0\rangle-c_{2 \downarrow}^{\dagger} c_{1 \uparrow}^{\dagger}|0\rangle\right) \tag{24}
\end{align*}
$$

and by considering the Bell-basis show that it can be written as a direct sum (\oplus) of 2 by 2 matrices.
(iii) Show that the two point Hubbard model admits a discrete symmetry under particle exchange $2 \mapsto 1,1 \mapsto 2$. Hence or otherwise, consider the irreducible representations of the finite two element group and identify two invariant subspaces.
(iv) Find the time evolution of the initial state $|p(0)\rangle=\frac{1}{\sqrt{2}}\left(c_{1 \downarrow}^{\dagger} c_{2 \uparrow}^{\dagger}|0\rangle+c_{2 \downarrow}^{\dagger} c_{1 \uparrow}^{\dagger}|0\rangle\right)$ and calculate the geometric entanglement E_{G} of this state as a function of time.

[^0]: * Course homepage: http://www.comlab.ox.ac.uk/activities/quantum/course/
 \dagger Thanks to Martin Aulbach (http://www.martinaulbach.net/en/physics/research) for providing problems and solutions used in this sheet!

