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QUANTUM CIRCUITS, SYMMETRY AND EIGENSTATES

(i) Let P.σ := p0X+p1Y +p2Z where |P | = 1 and show that exp(−iθ
2
P.σ) = 1 cos(θ/2)−

i(P .σ) sin(θ/2) and find the values of θ, P to recover the Hadamard gate, up to a phase

factor. Give a Hamiltonian and prescribed time of evolution to remove this global phase

factor.

(ii) Find the time of the evolution of the Hamiltonian |11〉〈11| to create a CZ-gate, then

write down a quantum circuit in terms of H and CZ to create a CNOT-gate. What

are the input states needed to use the CNOT-gate to prepare the singlet state |Ψ−〉 =
|01〉 − |10〉?

(iii) Show that the SWAP operator 1
2
(1+ σA · σB) permutes the values of bits A and B as

SWAP|iA〉|iB〉 = |iB〉|iA〉 (1)

where the notation σA · σB stands for the scalar and tensor product.

(iv) Express the logic function on bits A, B, C implemented by the following circuit

where the truth table for XOR/AND is given as

a b a⊕ b a ∧ b
0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

(v) In the computational basis, express the general form of a two-qubit symmetric eigen-

state of the SWAP operator and count the real degrees of freedom. Repeat this for

anti-symmetric eigenstates (e.g. SWAP|ψ〉 = −|ψ〉).

(vi) Using the notation from (iii) above, find a value for q to show that the two-site quantum

Heisenberg model Jσ1 ·σ2 can be written as J
2
((σ1 + σ2)

2 − q1) and show that |Ψ±〉 =
|01〉 ± |10〉 are energy eigenstates.
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HAMILTONIAN AND STATE SYMMETRY, DUALITY AND

REPRESENTATIONS

Symmetric quantum states are invariant under permutation (SWAP) of any pair of par-

ticles. Examples are the three qubit GHZ-state |GHZ〉 = 1√
2
(|000〉 + |111〉) and the three

qubit W-state |W〉 = 1√
3
(|001〉+ |010〉+ |100〉. Note: a general n qubit quantum system has

the 2n orthonormal basis vectors {|00 . . .00〉, |00 . . .01〉, . . . , |11 . . .11〉}. For the subspace of

symmetric n qubit states, an orthonormal basis is given by the n+1 symmetric basis states

{|S0〉, |S1〉, . . . , |Sn〉}. They are defined as:

|Sk〉 =
(
n

k

)− 1

2 ∑

perm

|0〉|0〉 · · · |0〉
︸ ︷︷ ︸

n−k

|1〉|1〉 · · · |1〉
︸ ︷︷ ︸

k

(2)

We can therefore write |W〉 = |S1〉 and |GHZ〉 = 1√
2
(|S0〉+ |S3〉).

By means of the so-called Majorana Representation every symmetric state of n qubits

|ψs〉 can be unambiguously represented by n single qubit states |φi〉:

|ψs〉 =
1√
K

∑

perm

|φP (1)〉 ⊗ |φP (2)〉 ⊗ · · · ⊗ |φP (n)〉 (3)

|φi〉 = cos θi
2
|0〉+ e−iϕi sin θi

2
|1〉 (4)

The above sum is performed over all permutations P : {1, . . . , n} → {1, . . . , n}, and the

normalisation factor K is in general different for different |ψs〉. The |φi〉 can be visualised

by points on the Bloch sphere — called the Majorana Points (MP).

(i) Verify by direct calculation that |W〉 = 1√
3
(|001〉+ |010〉+ |100〉) is composed of the

MPs: |φ1〉 = |0〉, |φ2〉 = |0〉 and |φ3〉 = |1〉 and that |GHZ〉 = 1√
2
(|000〉 + |111〉) is

composed of the MPs: |φ1〉 = 1√
2
(|0〉 + |1〉), |φ2〉 = 1√

2
(|0〉 + ei2π/3|1〉) and |φ3〉 =

1√
2
(|0〉+ ei4π/3|1〉).

(ii) Find a matrix M of kets, e.g.

M =

[

| 〉 0

0 | 〉

]

(5)

such that |GHZ〉 = TrM3 = 2〈+|M3+〉 and a matrix of kets Q and states ψ := |1〉 and
φ := |0〉 such that |W〉 = 2〈φ|Q3ψ〉, where the internal matrix product is interpreted

as tensor ⊗.

(iii) (Operator and Hamiltonian symmetry) By considering the Pauli-algebra, calculate

(σz ⊗ σz ⊗ σz ⊗ σz)(σx ⊗ σx ⊗ 1⊗ 1)(σz ⊗ σz ⊗ σz ⊗ σz) (6)

(σz ⊗ σz ⊗ σz ⊗ σz)(1⊗ σx ⊗ σx ⊗ 1)(σz ⊗ σz ⊗ σz ⊗ σz) (7)
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(σz ⊗ σz ⊗ σz ⊗ σz)(1⊗ 1⊗ σx ⊗ σx)(σz ⊗ σz ⊗ σz ⊗ σz) (8)

and repeat the calculation by making the replacement σx 7→ σy. Consider the 1D

XY-model with open boundary conditions

HXY :=
N∑

j=1

(
1 + γ

2
σx
j σ

x
j+1 +

1− γ

2
σy
jσ

y
j+1

)

− λ
N∑

j=1

σz
j (9)

where the real parameter λ is the intensity of the magnetic field applied in the z-

direction and the parameter γ determines the degree of anisotropy of the spin-spin

interaction. Hence, using the results in (iii) above or otherwise, show that the XY-

model is invariant under conjugation by ΠN
j=1σ

z
j as

(
ΠN

j=1σ
z
j )HXY

(
ΠN

j=1σ
z
j ) (10)

and hence show that [ΠN
j=1σ

z
j , HXY ] = 0.

(iv) By considering real symmetric states and the duality induced by the linear maps

η :=
∑

i

|i〉 ⊗ |i〉 (11)

ǫ :=
∑

i

〈i| ⊗ 〈i| (12)

show that the product induced by 3-qubit states (e.g. C2 ⊗ C2 → C2) is commutative

and associative. Depict these properties using string diagrams.

(v) Find the units for the product induced by |GHZ〉 and |W〉, and hence show that these

products form commutative monoids. Depict the iteration of these two products (e.g.

the interaction of W- and GHZ-products) diagrammatically by joining two legs. This

joining gives rise to a linear map C2 → C2 — give it’s explicit Schmidt form and

determine the rank.

ENTANGLEMENT AND MAJORANA POINTS

The Geometric Measure of Entanglement EG is defined as the maximal overlap of a

quantum state |ψ〉 with all product states |λ〉 = |λ1〉 ⊗ · · · ⊗ |λn〉:

EG(|ψ〉) = − log2

(

max
|λ〉∈HSEP

|〈λ|ψ〉|2
)

. (13)

If |ψ〉 is a symmetric state with only positive valued coefficients, then the expression |〈λ|ψ〉|
is maximized by a product state |λ〉 which is also symmetric and has positive coefficients:

|λ〉 = |σ〉⊗n with |σ〉 = cos ϑ
2
|0〉 + sin ϑ

2
|1〉. We call the single qubit state |σ〉 a Closest
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Product Point (CPP).

Note: It was proved only very recently that if |ψ〉 is symmetric, then there exists a

closest product state |λ〉 which is symmetric itself. From this it is easy to show that if |ψ〉
is symmetric and positive, then |λ〉 is also symmetric and positive.

This result means that we can visualize the MPs as well as the CPPs on the Bloch

sphere. Note that an n qubit symmetric state has exactly n undistinguishable MPs (which

can coincide), while the number of CPPs is not fixed. By definition there is at least one

CPP. See Figure 1 for examples.

(a)

|φ1〉 |φ2〉

|φ3〉

|σ〉
ϑ

(b)

|φ1〉

|φ2〉

|φ3〉

|σ1〉

|σ2〉

FIG. 1. The MPs (white dots) and CPPs (crosses) of the three qubit (a) W-state and (b) GHZ-state

on the Bloch sphere.

(i) Determine the positive CPP of |W〉. For this, use the ansatz |σ〉 = cos ϑ
2
|0〉 + sin ϑ

2
|1〉

and determine the maximum from Equation (13).

(ii) A given symmetric state can have more than one CPP. Show that for |GHZ〉 there are

two positive CPPs, namely |σ1〉 = |0〉 and |σ2〉 = |1〉.

(iii) Calculate the geometric entanglement EG of |W〉 and |GHZ〉.

(iv) Find the MPs and the positive CPP of the two qubit Bell state |Ψ+〉 = 1√
2
(|01〉+ |10〉)

and visualize them on the Bloch sphere. Determine the geometric entanglement EG of

|Ψ+〉.

HAMILTONIANS, EVOLUTIONS, ENTANGLEMENT

The two-site Hubbard model with cyclic boundary conditions is given by

H = t(c†1↑c2↑ + c†1↓c2↓ + c†2↑c1↑ + c†2↓c1↓) + U(n1↑n1↓ + n2↑n2↓) (14)

where

nj↑ := c†j↑cj↑ (15)

nj↓ := c†j↓cj↓ (16)
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and where the Fermi-operators c†j↑, c
†
j↓, cj↑, cj↓ obey the anti-commutation relations

{c†iκ, cjκ′} = δκκ′δij1 (17)

{c†iκ, c†jκ′} = {ciκ, cjκ′} = 0 (18)

This Hamiltonian commutes with the total number operator N̂ and the total spin operator

Ŝz in the z direction

N̂ =
2∑

j=1

(c†j↑cj↑ + c†j↓cj↓) (19)

Ŝz =

2∑

j=1

(c†j↑cj↑ − c†j↓cj↓) (20)

(i) Consider the subspace (Fock space) with N = 2 electrons and Sz = 0. Consider the

two particle total spin-zero basis as |s1〉 := c†1↑c
†
1↓|0〉, |s2〉 := c†1↑c

†
2↓|0〉, |s3〉 := c†2↑c

†
1↓|0〉

and |s1〉 := c†2↑c
†
2↓|0〉. Find the matrix representation of H in this basis.

(ii) As in (i) above, express the Hamiltonian in the basis given by

|Φ+〉 := 1√
2
(c†1↓c

†
1↑|0〉+ c†2↓c

†
2↑|0〉) (21)

|Ψ+〉 := 1√
2
(c†1↓c

†
2↑|0〉+ c†2↓c

†
1↑|0〉) (22)

|Φ−〉 := 1√
2
(c†1↓c

†
1↑|0〉 − c†2↓c

†
2↑|0〉) (23)

|Ψ−〉 := 1√
2
(c†1↓c

†
2↑|0〉 − c†2↓c

†
1↑|0〉) (24)

and by considering the Bell-basis show that it can be written as a direct sum (⊕) of 2

by 2 matrices.

(iii) Show that the two point Hubbard model admits a discrete symmetry under particle

exchange 2 7→ 1, 1 7→ 2. Hence or otherwise, consider the irreducible representations

of the finite two element group and identify two invariant subspaces.

(iv) Find the time evolution of the initial state |p(0)〉 = 1√
2
(c†1↓c

†
2↑|0〉 + c†2↓c

†
1↑|0〉) and cal-

culate the geometric entanglement EG of this state as a function of time.
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