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Overview

The models and problems physicists are interested in.
Strong correlations and quantum phase transitions.
Difficulties in simulating many-body quantum systems.

Part I – Quantum many-body systems

Part II – Tensor network formalism
Tensors, contractions and diagrams.
Introducing matrix product states for 1D systems.
Approximating stationary states and time-evolution.

Part III – Extensions and generalizations
Simulating tree and network geometries.
Evolving with mixed states, thermal states and operators.
Going to 2D systems and beyond.



Part I – The many body problem



Consequences of strong correlations …

Interplay between interactions and external influences:
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Quantum many body systems

High-temperature superconductivity

Major interest in many-body problem focuses on lattice systems.

Quantum Hall effect

Understanding quantum properties of electrons in materials:

What is the physical 
mechanism behind it?

What are the topological 
properties of fractional QH 
states?



Quantum lattice models

Try to devise and study simpler models believed to capture the 
essential physics of these complex systems …

Despite the simpler models much is still completely unknown.

Hubbard model in 2D
Quantum magnets

Competition between interactions – no single dominant contribution.

Quantum “wire”

1D chains



Cold atoms in optical lattices

Simple models now physically realizable – quantum simulators

Lasers

BEC

Optical Lattice

Superfluid : Mott-Insulator :

“Quantum
Phase Transition”

Bose-Hubbard model

Laser intensity

Time of flight imaging:

Atoms delocalised over the lattice Atoms pinned to a lattice site



The many body problem

Having identified a model Hamiltonian     for our system we would 
now like to solve the following problems

(1) Solve the time-independent Schrodinger equation.

(2) Solve the time-dependent Schrodinger 
equation – simulate the real time dynamics.

Hermitian matrix

=
Gap vs. no gap

Complex vector

Real eigenvalue - energy
Often interested in the ground state 
and lowest lying excited states.

Understanding and  manipulating 
coherent dynamics of quantum 
systems becoming more important.

formal solution



Excitations and correlations

Given       we want to know what correlations it contains, e.g.

Entanglement properties of 

How does it decay?

How does the gap and correlation length depend on an external 
parameter, like a magnetic field?

Critical points usually coincide with a vanishing gap and
a diverging correlation length – scale invariance.

e.g. the Ising model 
with a transverse field

How entangled is a block of L spins to the rest of the system?

Does it saturate or 
diverge with L?



The “curse of dimensionality”

Classically simulating many-body quantum systems seems to be hard :

But can we solve a 
more useful “small”
system?

10 x 10

Direct approach extremely limited. New methods are needed …

Could solve  1 x 10

# cfgs = 1,267,650,600,228,229,401,496,703,205,376

# cfgs = 1024

Description
Computational effort

Scale exponentially with size

NO !



Physical states – interactions

The kinds of models which appear in nature have special structure 
and it is not clear a priori that the full Hilbert space is accessible. 
Specifically interactions are: 

local, i.e. decay sufficiently quickly,
involve only a few bodies, typically just two.

These properties put serious constraints on the states which are accessible 
and in fact shows that almost all states in are non-physical

Key text for these lectures - F. Verstraete et al Adv. Phys. 57,143 (2008) 

Lower bound on the time required for a local Hamiltonian to evolve             
to       is found to be exponential in N. For N = 20 this is already longer than 
the age of the universe.

Random state



Physical states – “area laws”

Conclusion: the fraction of states in this exponentially large Hilbert 
space that are physical is in fact exponentially small.

Entanglement is concentrated around 
the boundary:

Ground state and low-lying excitations 
have very little entanglement …

“Area laws”

L

A

(off-critical) (critical)Results:

2D

1D

Key text for these lectures - F. Verstraete et al Adv. Phys. 57,143 (2008) 



Summary for Part I

Interested in quantum lattice problems – numerous applications.

To simulate quantum many-body system we need to parameterize 
physical states in such a way as to exploit these properties.

Simulation of quantum many-body system appears to be 
exponentially difficult …

but, nature prefers local few-body interactions, 

and such systems display an “area law” for entanglement.

Take home message   

so physical states occupy only a small part of the Hilbert space,



Part II – Tensor network formalism



Tensors, contractions and diagrams

For our purposes “tensor” is a fancy name for a multi-dimensional 
array of complex numbers.

A rank 1 tensor is simply a vector: 
A rank 2 tensor is simply a matrix:

Two basic operations – reshape and contraction:

The essential mathematical content of tensor methods actually boils 
down to using standard methods from linear algebra of matrices.

or



Aim of tensor methods in a nutshell

An arbitrary quantum state for an N site system can be expanded as

A HUGE tensor of 
complex amplitudes

Approximate by factorizing this tensor into a network of smaller tensors.

…
1 N

2N

in terms of cfgs basis

Primary aim = encode with a polynomial number of parameters. 

But we also need to be able to …

(1) find and evolve this approximation efficiently.
(2) efficiently calculate physical quantities from the representation.

Physical leg or index

Degree of freedom



Aim of tensor methods in a nutshell

The simplest approach possible is to describe each site (physical 
leg) by its own independent tensor

2Nd2

…
1 N

One possible way to proceed is to elevate the site tensors to rank 3 by 
adding some internal legs of given fixed dimension d.

Contract all internal legs 
to form a comb network.

This approach is a very common technique called mean-field theory.

Equivalent to a product 
state approximation. 

[See problem sheet for application of this in describing the SF-MI transition in the BHM] 

How might we generalize this trivial tensor network?

Physical leg

Internal legs

2N

…
1 N =

j

Rank 1 tensor gives an 
state for each site

Cannot describe correlations 0
Contains no entanglement.

Internal legs describe correlations Manifestly 1D network geometry.



A zoo of tensor networks

1-D

Can physically motivate a variety of tensor networks structures:

2-D

All aim to provide accurate near-lossless compression of physical states.



Matrix product states

A state       described exactly by “comb”-like tensor network is called a 
a matrix product state since it is equivalent to an expansion:

Parameterizes the amplitudes as sequences of matrix products
which collapses to a scalar via the boundary vectors.

matrix

Note: can absorb the vectors 
into the boundary tensors 
making them rank 2 instead.

Product states (translationally invariant)

A 1 x 1 “matrix” for each local state



Some less trivial examples …

GHZ state (antiferromagnetic)

GHZ state (ferromagnetic)

Since                          there are only 2 non-zero amplitudes:   

with

( )… ( )…

Some familiar states built from identical         matrices for all sites: 

Use matrices: 

Use matrices: with

Again only 2 non-zero amplitudes since   



Another way to expand an MPS

W state

Only the N amplitudes associated with the translated spin-flip are 
non-zero since: 

Use matrices: with

No flips One flip Multiple flips

Another helpful way of viewing this type of expansion is to absorb the
physical leg inside of the A matrix making its elements vectors:

Multiplication of these matrices induces tensor products of the vectors:  

e.g. for the W state                            with  

Boundary vectors select the 
bottom left state. 

Physical states of a lattice site 2 x 2 matrix of N site state vectors



Translational invariance and PBC

We could have formulated our comb-like tensor network slightly 
differently by joining the two boundary legs together as:

Lets examine some physical interpretations of an MPS …

Results in an MPS which can share the translational symmetries of the 
state it describes - periodic boundary conditions (PBC). 

This formulation is often convenient theoretically (can define states 
with definite momentum) but comes with complications numerically.

Trace collapses matrix product to a scalar

1 2 N/2

N N/2+1N-1

N/2-1

N/2+2

cyclic perm.
Given identical A matrices for all sites 
then the state is manifestly translationally 
invariant. 



Sequential generation of an MPS

An OBC MPS can be seen as the conditional output of a special type 
of quantum circuit:

Can enforce w.l.o.g. unitary interactions V and decoupling of the 
ancilla at the end, i.e. no measurement so deterministic preparation.

Input state of d dimensional 
quantum ancilla.

Measure ancilla to be in final state
(probabilistic preparation)“Interacts” sequentially with

each physical system.

The ancilla correlates each site with the next and its ability to do so 
will clearly depend heavily on its dimension d – more on this shortly.

Read off MPS form from circuit:

[k] =



Sequential generation cont …

Consider the class of all states generated by a staircase sequence of 
arbitrary nearest-neighbour unitary gates:  

Such states are in fact d = 2 MPS since the circuit is equivalent to a 
sequential preparation with a qubit ancilla.

Another example – 1D cluster state

Can rearrange circuit as a staircase 
thus it has d = 2. Read-off matrices. 

Exercise for the audience …



MPS from Projected Entangled Pairs

Can view an MPS as being generated from maximally entangled 
qudit ancillae shared between neighbouring sites with all the ancillae
on one site being “projecting” down to a physical site:

Shows that MPS obey an area law  by construction. The 
entanglement of any block limited by the ancillae dimension 

Matrices define arbitrary linear maps 



The corresponding entropy                                       then quantifies the 
entanglement.

Schmidt decomposition

We need to introduce an important tool from quantum information 
theory – the Schmidt decomposition:

…
1 N

Reshape tensor of amplitudes as a conventional matrix:

Suppose we split the system into 
two pieces after site :

L R

Now SVD this matrix
U D VC

=

Normalization implies                          while            for qubits.



Determining an exact OBC MPS 

Given any state we can find an exact MPS representation of it with 
OBC by repeatedly using the Schmidt decomposition:

.

.

.

Determine the Schmidt decomposition for each
contiguous bipartition of the system: 

Recursively expand left Schmidt states.

Insert each expansion into the final 
one spanning the entire system. 
Obtain a MPS representation of any 
state.



What was the point of that?

It seems like we have gained nothing from this because the matrices 
obtained can have a dimension scaling exponentially with N.

But … low-lying eigenstates of 1D quantum systems the Schmidt 
spectrum            which decays very quickly as a function of 

We can truncate our matrices to some small dimension     and incur 
an overall 2-norm error   

20

-10

A manifestation of the “area law” in 1D. 

States are very weakly entangled. 

Only a small number of relevant d.o.f.

Can compress our description of the state 
and retain extremely high fidelity.

Has been demonstrated numerically for many systems and proven analytically for several different models.



Some technicalities of MPS

A MPS representation of a state is not unique – it is invariant to any 
transformation of the internal legs via square invertible matrix : 

Exploiting this gauge freedom is crucial for the numerical stability of 
MPS algorithms. Key property is orthonormality …

Consider splitting an MPS into two and the resulting left states:

…

…

From our exact Schmidt expansion 
these left states are Schmidt states

The partial product defines a set of states indexed by         over the subsystem.

and are an orthonormal set:



Orthonormality and MPS

The scalar product of the left subsystem states is given by: 

…

…

Scalar product of two states is equivalent 
to the contraction of all the physical legs.

Recall that: Orthonormality implies that this rank-2 
tensor is simply the identity matrix.

Thus assuming that                              this means that:

Complex conjugate tensor components 
when flipping physical legs upwards.

The A matrices 
obey the constraint:

Identity matrix

Or graphically:



Orthonormality and MPS cont.

Applying this recursively forces                                for 

What if we had done everything with 
the right states? 

The exact Schmidt MPS expansion using left states in fact makes all 
the matrices obey this constraint.

…

…

…

Now all the A matrices obey the constraint:

Or



Establishing an orthonormal MPS

Given an MPS, like the examples earlier that obey no constraints, 
how can we gauge transform it to be orthonormal?

Continuing this process until the last site left orthonormalizes all the 
matrices. Could have done an analogous process from the right 
boundary resulting in all right orthonormalized matrices.  

=Start with the left 
boundary tensor:

SVD

=Left unitary (or isometry) satisfies the orthonormality
constraint automatically. Use this as the new A matrix.

Always combine the rest of the 
SVD (which involves only internal 
legs) into a gauge transform and 
pass on to next step.

(1)

(2)

Move to the next A tensor with the X, combine 
the left internal leg and physical leg and SVD. =

=
SVD

Again use left unitary as the new 
left orthonormalized A matrix



Orthonormal Schmidt form MPS 

If we work from the left and right up to site    then we obtain 
orthonormal left and right states:

……

Remains of the SVD’s from left 
and right

Put the MPS into a Schmidt form via an SVD (again!) of    :

=

Equivalent to an expansion of the 
state in some orthonormal basis

==

Use the unitaries to transform the left and right bases:

Same as absorbing U and V into the adjacent A matrices.

The MPS is said to have a twist in its handedness at   .  

Diagonal gives Schmidt coefficients



Matrix product operators - digression

To answer this we apply the matrix product ansatz to operators:

and

Many useful operators have a 
very small     . 

We now make a small but important digression which will help us 
answer some useful questions:

(i) What expectation values can be computed efficiently from an MPS?

Again the simplest example is a product operator where 

with

… Includes n-point correlations operators , e.g.



sum of all translates of (                                      )
For longer strings                              boundary vectors select the

Matrix product operators cont.

Can understand MPO’s “analytically” using the lower-triangular form:

Examples:

where

Matrix multiplication results in the tensor product of the operators:

I.P. McCulloch J. Stat. Mech. P10014 (2007) and arxiv:0804.2509

Wrap physical legs into the matrix elements

Single site operators

c.f. W state earlier

Ising HamiltonianSum of Z mag.



Computing expectation values

Calculating an expectation value can 
be viewed as a tensor network:

In contrast for an MPS and an MPO this contraction is efficient due to 
the internal tensor structure: 

…1 N

…Must deal with huge structureless tensors. 
Have no choice but to contract vertically

Can contract vertically on local pieces and 
then contract horizontally across the system 
dealing at most with a          tensor. 

Moreover any density matrices for a tractable sized subsystem are 
efficiently accessible:
Partial tracing is equivalent to contracting 
physical legs together. Contract horizontally 
the local tensors. Physical legs of relevant 
sites are left uncontracted giving   

=



Decay of correlations in an MPS

Recall that we were interested in long-range correlations:

Can still model a power-law decay as a sum of exponential decays.

For an MPS this boils down to a contraction of the form:

MPS manifestly have exponentially 
decaying correlations given by:

“Transfer” matrix

eigenvalues

correlation 
lengths:



Variational minimization of an MPS

We now come to the second question:

One strategy is to minimize w.r.t. one A matrix at a time, keeping all 
others fixed, and then alternate over all matrices.   

(ii) Can we efficiently find an MPS approximation to a ground state?

Want to variationally minimize over the class of MPS with a fixed 
dimension   :   

Start by picking one A matrix, say    , and remove it from the tensor networks defining energy and normalization:   

Contraction of remaining tensors defines two matrices sandwiched by A matrices (after reshaping them as a vector).   



Variational minimization cont.

We are then left with a quadratic minimization problem of the form: 

It follows that     is hermitian and      is positive, thus    is real and the 
minimum is determined by a generalized eigenvalue equation:

One issue is that     can be ill-conditioned. This can be circumvented 
by ensuring that the twist in the MPS is always located at 

The A matrix reshaped as a vector.   

……

Orthonormality makes             and reduces the problem to 

All matrices frozen to the left and 
right are appropriately constrained 
so that the left and right bases are 
orthonormal   



Variational minimization cont.

Having solved the eigenvalue problem we now constrain the solution 
so that the updated A matrix is appropriately orthonormalized:  

Common DMRG approach is to minimize two A matrices at a time.

=
SVD

Combine the new A matrix and part of 
Hamiltonian MPO with an accumulated 
left environment tensor     .

When sweeping from left to right combine 
physical leg to the left and use the left unitary as 
the new A matrix. 

Move to site         and use this updated 
environment to form        . Analogous 
actions for right to left sweep.

Can discard the rest 
since the next sites A
matrix will be updated 
anyhow.

Algorithm is essentially density matrix 
renormalization group.

Sweep left to right



Time evolution of an MPS

Consider a 1D Hamiltonian with 
nearest-neighbour interactions:

Want discretize the time evolution

Better strategy “Trotterize” the exponential …

= two-site gate    

Storing let alone computing this many-
body unitary operator is infeasible.

where     

Have broken the evolution into a sequence of gates.  



Applying a two-site gate to an MPS

We now need to apply a sequence of two-site n.n. gates to the MPS: 

(i) Apply local “gate” by contracting it 
with the relevant physical legs.

(ii) Resulting merged tensor now needs 
to be broken up.

(iii) Reshape tensor into a matrix.

(iv) Factorize the matrix via an SVD.

(v) Truncate the inner dimension and 
extract new A matrices. 

Most expensive step numerically is the SVD whose cost scales as 
for each gate.



Optimality of MPS truncation

What does the truncation of the local SVD mean physically?

So long as all legs are orthonormal optimal truncation for the state is 
solved by the SVD of the local tensor.    

Resulting two-site tensor is a set of expansion coefficients for

Want to factorize and truncate inner dimension to     optimally by 
solving:      

The SVD is already the optimal solution to the problem:      

Note that we do not need to 
assume that      is unitary. To 
ensure optimality we need 
only that the left and right 
bases are orthonormal.

……



Real and imaginary time evolution

Can determine the ground state via imaginary time-evolution:

Can efficiently simulate real-time unitary dynamics of 1D quantum 
lattice systems with this method (time-evolving block decimation).  

Remains accurate for short time – breaks down due to dynamical 
entanglement production so          no longer decay rapidly.  

Gates are now non-unitary (not a problem).

Works since excitation are exponentially 
suppressed: 

So long as  



Part III – Extensions & Generalizations



For Markovian noise the evolution of the system is modelled by a 
master equation:

Open quantum systems

We have so far concentrated on the ground state and the temperature 
T = 0 coherent dynamics of 1D quantum systems.  

Can also simulate dissipative, incoherent evolution of a systems
density matrix by representing          as an MPO. 

“local” Lindblad jump operators.Hamiltonian for the system.

Example: XYZ spin-chain subject to bulk spin damping noise:
Hamiltonian:

Lindblad Noise::



where      is a the full superoperator.

Master equation evolution

Can apply “gates” representing two-site 
superoperator evolution via TEBD:

“Trotterize” the exponentials as before so long as operators are local:

M. Zwolak and G. Vidal, PRL 93, 207205 (2004)
F. Verstraete, J.J. Garcia-Ripoll and J.I. Cirac, PRL 93, 207204 (2004)

Coherent

Thermal

Formal solution to master equation evolution is:

Incoherent

Form commutator superoperator:

Form anti-commutator superoperator:

Important special cases:



A first step beyond 1D

The most general geometry in which the concept 
of a Schmidt decomposition remains is a tree:

Can generalize slightly to networks with loops and remain efficient so 
long as the so-called tree-width is small:

The network has no loops and so for any n.n. pair we can always 
divide the system into two halves with only that bond connecting the 
subsystems (i.e. governing entanglement) as in 1D.

So long as the tree-width is limited the network remains efficiently 
contractible and all the algorithms presented carry over.

Y. Shi, L. Duan and G. Vidal, PRA 74, 022320 (2006)

Here the tree-width = 2 since at a minimum 2 
vertices had to be merged to form a tree network.



Going to 2D with PEPS

A direct generalization of MPS to 2D is a tensor network following a 
regular lattice. This picture is motivated by the PEPS construction:

Two problems immediately present themselves:

(i) The 2D tensor network is not efficiently contractible (growing tree-width).

(ii) Multiple bonds connecting regions prevents gauge transformations and 
concepts like orthonormality from being applicable.



Variational minimization in 2D

Putting contractibility aside for the moment we can see that PEPS 
provide a direct generalization of DMRG to 2D quantum systems:
Can attempt to variationally minimize one tensor at a time, as in 1D, 
by solving the generalized eigenvalue problem for each tensor: 



Approximate contraction via MPS

Viewing the “double” layered network from above an approximate 
scheme for contracting the network can be devised using MPS:

…

…

…

…

…

This method can be used to efficiently evaluate       and       required 
for the variational minimization.  

Reduces to a sequence of MPS contractions with an MPO. Can 
truncate to a new MPS with similar algorithms to those discussed.   

…

Form MPS from the top and bottom rows. Other 
rows form MPO’s sandwiched between them. 

Sequentially apply each MPO to the top MPS and 
find the best MPS approximation with some fixed 
dimension to the result. Finish with a contraction:



Kadanoff’s spin blocking    (1966)

block

coarse-
graining

effective
spin 

critical system scale invariance leading intuition:

Real space renormalization methods

A final approach we shall discuss is the so-called multi-scale 
entanglement renormalization ansatz (MERA).

Nicely combines condensed matter and quantum information ideas.



Wilson’s real space RG  (1971)

block

K K

K K

K K

K K

K

K

K

K

K

K

K

K

coarse-
graining

effective
Hilbert space 

'K 'K'K

'K

'K

leading intuition: ground state                   low energy  

blockH 'K
keep low

energy subspace

How to coarse-grain? - Wilson 

Physically intuitive to use the low-energy eigenstates of a block to 
define a coarse-graining projection.



White’s density matrix RG  (1992)

block

coarse-
graining

effective
Hilbert space 

K K

K K

K K

K K

K

K

K

K

K

K

K

K

'K 'K'K

'K

'K

leading intuition: target the local support of the global ground state

'KρΨ

How to coarse-grain? - White 

Dramatic improvements in 1D where found when the density matrix 
itself was used to define the coarse-graining – so called DMRG:



Entanglement renormalization

Recent advances use quantum information concepts precisely in the 
form of a tensor network approximation:

'H

H

w

1s H
2s

's
'H

w

1u 2u

H
1s H

2r
H

1r H
2s

's

leading intuition: attempt to disentangle the block before projecting it

Vidal’s Entanglement RG  (2005)



Entanglement renormalization cont.

We can illustrate the purpose of this new step with cartoon examples:

U

completely disentangled

partially disentangled

no disentanglement

U

U

Here the dots connected by 
lines signify entangled pairs. 

A unitary is applied between 
the outer spins of the two 
subsystems.

An appropriately chosen unitary 
can disentangle pairs only 
between the outermost spins. 

Any long-ranged entangled 
pairs cannot be disentangled 
by a local unitary.



The MERA tensor network

Attempt to “disentangle” as much as possible at each level, and 
hope to remove longer-ranged entanglement at larger scales:

The MERA hierarchical tensor network aims to completely 
disentangle a many-body quantum state        to a product state. 

Tensor components have very special properties:

The 1D case:



MERA as a quantum circuit

The MERA tensor network can be viewed as a peculiar quantum 
circuit in which a trivial product state is unitarily mapped to a highly 
non-trivial many-body state:

Causal cone has a bounded width due to 
the isometries.

Contrast this to a simple circuit composed of layers of 
nearest-neighbour gates. The causal cone spreads back 
over the entire system.



Efficient contraction of MERA

The structure of MERA and isometric + unitary properties of the 
tensors permits reduced density matrices to be computed efficiently:

annihilate

Can use these properties to perform variational minimization of the 
MERA circuit. The scale invariant structure permits violations of the 
area law and is thus a promising approach to critical systems.



Conclusions and outlook

Strongly correlated systems
Remarkably we seem to have found good ways of encoding the physically 
relevant “corner” of the Hilbert space.
In 1D MPS have proven to be extremely accurate:

For ground and excited state variational calculations (DMRG)
For real and imaginary time-evolution (TEBD) 

Extensions
Can apply TEBD to incoherent evolution of mixed and thermal states.
Can readily extend TEBD to networks with limited tree-width.

Generalizations
The PEPS construction naturally generalizes DMRG to 2D systems.
Finally the MERA approach provides a physically intuitive renormalization 
algorithm which can handle a wider – area law violating – class of states.


