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Distance measures and process tomography are important concepts in quantum

information theory. We did not have enough time to cover these topics in lectures,

but the basic ideas are fairly simple and important enough to warrent study. This

short note is designed to introduce the ideas needed to follow some of the derivations

we have used, in particular Vlatko Vedral will assume readers would have exposure

to these ideas durring his lecture on many-body entanglement theory (6/15).
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I. BACKGROUND

A review of the properties of operation elements is given in Ch. 3 of the 1998 PhD Thesis

by Nielsen8. For experimental use of these ideas see for example3. Chapter 8 in2 has an

introduction to state and process tomography, which differs from the presentation here.

II. QUANTUM TOMOGRAPHY

Promted by experimental needs, in the mid to late 90’s a method of black box charac-

terization known as quantum process tomography1 was developed. A quantum process is

described as a map between input and output quantum states, e.g.

ρout = E(ρin) =
∑

j

EjρinE
†
j (1)

where the map E is a quantum operation (we consider
∑

j EjE
†
j = 1) and the operators Ej

are called operation elements. Process tomography is a procedure used to reconstruct the

behavior of a quantum network by performing state tomography on a set of initial states ρi

that form an operator basis for the system in question.

The input states and measurement projectors in each form a basis for the set of n−qubit

density matrices requiring d2 = 22n elements in each set, where d is the dimension of the

Hilbert space. For a two-qubit gate d2 = 16, resulting in 256 different settings of input

states and measurement projectors.

One of many possible input combinations (adapted from the optics experiment in3) form-

ing an operator basis needed to characterize the space of two-qubit circuits is the following:?

{|00〉, |01〉, |10〉, |11〉, |0+〉, |0y−〉, |1y−〉, |1+〉,

|++〉, |y+y−〉, |y++〉, |+ y+〉, |+ 1〉,

|y+1〉, |+ 0〉, |y+0〉}. (2)

Of course there are many possible choices for such a basis. In general however, for a system

of n qubits the computational basis states |0〉, ..., |2n−1〉 and superpositions (|q〉 ± |r〉)/
√
2

are prepared, where q 6= r4.

Given many copies of a sample state, state tomography is a procedure allowing one to

reconstruct an arbitrary quantum state to a given accuracy. It can be done given a set of



3

simple measurement operators that are products of Pauli matrices. The method relies on

creating a set of orthogonal measurements and using the Hilbert-Schmidt inner product to

expand the state of ρ based on the average outcome of each measurement. A single qubit

may be reconstructed as the following density matrix:

ρ =
tr(ρ)σi + tr(σxρ)σx + tr(σyρ)σy + tr(σzρ)σz

2
. (3)

Expressions like tr(σxρ) in Eqn. 3 refer to an average measurement outcome where σx is an

observable.

A similar expansion to that of Eqn. 3 applies to n–qubit systems. For example, recon-

struction of any two-qubit operator requires a total of 22n = 16 measurement observables:

{σi ⊗ σi, σi ⊗ σx, σi ⊗ σy, σi ⊗ σz , σx ⊗ σi, σx ⊗ σx, σx ⊗ σy, σx ⊗ σz, σy ⊗ σi, σy ⊗ σx,

σy ⊗ σy, σy ⊗ σz, σz ⊗ σi, σz ⊗ σx, σz ⊗ σy, σz ⊗ σz}. (4)

A difficulty associated with quantum process tomography is that in experimental prac-

tice, the observables are not easily realized. A system with d dimensions requires 16d − 4d

independent parameters to uniquely describe the process, where d = 2n. The useful method

of quantum process tomography was developed out of a need for black box characterization.

III. DISTANCE MEASURES BETWEEN QUANTUM STATES

Distance measures between quantum states are now reviewed. First we recall the well

known Fidelity measure between quantum states.

Definition III.1. The Fidelity between density matrices ρ and σ is defined as:

F (ρ, σ) ≡ tr

(

√√
ρσ

√
ρ

)2

(5)

When ρ = |ψ〉〈ψ| is a pure state the fidelity has an easy interpretation as the overlap between

ρ and σ, reducing to:

F (ψ, σ) = 〈ψ|σ|ψ〉.

Furthermore, the Fidelity evaluates to zero when two pure states being compared are or-

thogonal, it evaluates to one when two states being compared are identical, and is not a

metric. Two common ways of turning the Fidelity into a metric are the Bures metric,

B(ρ, σ) ≡
√

2− 2
√

F (ρ, σ) (6)
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and the angle,

A(ρ, σ) ≡ arccos
(

√

F (ρ, σ)
)

(7)

a very comprehensive discussion of these details can be found in Ref.5. The discussion can

be extended to include an operational interpretation of the Fidelity for a mixed state.

A second common distance measure is the Trace Distance between quantum states.

Definition III.2. The Trace Distance between density matrices ρ and σ is defined as:

D(ρ, σ) ≡ 1

2
tr|ρ− σ| (8)

where |Z| =
√
Z†Z and 0 ≤ D ≤ 1. The trace distance is a genuine metric on quantum

states2,5 as the following three properties hold:

i : D(ρ, σ) ≥ 0 with D(ρ, σ) = 0 iff σ = ρ

ii : Symmetry: D(ρ, σ) = D(σ, ρ)

iii : The Triangle Inequality:

D(E(ρ),G(ρ)) ≤ D(E(ρ),F(ρ)) +D(F(ρ),G(ρ)) (9)

The Trace Distance represents the statistical distribution between quantum states with re-

spect to measurement. The Trace Distance has the property of contractivity,D(E(ρ), E(σ)) ≤
D(ρ, σ) whenever E is a trace-preserving quantum operation. This just means that acting

on arbitrary quantum states ρ and σ both with operation E will never increase how well one

can distinguish these states with respect to measurements2,5.

The Trace Distance and Fidelity are complementary measures and should be considered

equally important when comparing two quantum states5. Distance measures may also be

used to compare and contrast a real process F and an ideal process E , such that ∆(F , E)
defines an error metric on a quantum process5.

Definition III.3. The S-Fidelity between real quantum process F and ideal quantum

process E is defined as:

∆F
min(F , E) ≡ min

|ψ〉
∆(F(ψ), E(ψ)) (10)

where the minimum is over all possible pure state inputs and ∆ is a Fidelity measure on

quantum states.
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Definition III.4. The S-Distance between real quantum process F and ideal quantum

process E is defined as:

∆D
max(F , E) ≡ max

|ψ〉
∆(F(ψ), E(ψ)) (11)

where the maximum is over all possible pure state inputs and ∆ is a Distance metric on

quantum states.

It is instructive to restrict our thinking to a set of inputs needed to form a complete

operator basis for the system in question. In this case, experimentally determining the S-

Distance and S-Fidelity amounts to performing state tomography on this complete operator

basis input set while keeping track of both the worst Trace Distance (8) and the worst

Fidelity (5) between the reconstructed state and that of the ideal. Ref.5 stated that, “...the

S-Distance and S-Fidelity are the two best error measures, and should be used as the basis

for comparison of real quantum information processing experiments to the theoretical ideal.”
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