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I. INTRODUCTION

This lecture started with a review of what we did in the first lecture and then went

on to show a few examples of how diagrammatic methods can help do things that would

otherwise be much more difficult. There is not full overlap with these and the lectures —

e.g. we covered a bit about density matrices which I did not include here. There is also

more in these notes than what we talked about in class. I am sure there are still lots of

typos left — If you find any, please email me.

II. DIAGRAMMATICS

Diagrammatic methods in quantum information science have a long history. Perhaps the

first to note their importance was Oxford Professor David Deutsch, who’s Paul Dirac Prize

in Physics citation states, “For developing... quantum logic gates in quantum networks”.

Methods to manipulate quantum circuits are taught in nearly all quantum information

courses, and are presented in nearly all books on the subject. Quantum circuit methods

have provided a useful tool to study algorithms, and complexity theory, as well as other

things.

It turns out that Category Theory provides the exact arena of mathematics concerned

with diagrammatic reasoning. It is more general than graph theory, but graphs can be

manipulated as well. These diagrams capture mathematical properties of how maps, or

arrows compose.

• The graphs we know of as quantum circuits are only a subclass (planar and directed

acyclic) of the types of graphs constructable in a Monoidal Category.

For instance, by dropping temporality during diagrammatic manipulation, one can reason

about quantum circuits in new ways, and then translate the network back into a machine

readable quantum circuit, to construct implementable quantum processes, depending on the

specific application.

To begin with, consider the following diagram showing the 1-1 correspondence between

the NOT gate, the singlet, and it’s costate:

Two concerns have been brought to my attention when presenting this diagram. The first is

that we write quantum circuits as time-dependent diagrams, such that time moves from left

to right on the page, depending on convention. This wire is the NOT map, and it clearly has

time-direction as it transforms the state of a qubit ψ at some time into σxψ at a later time.

The second concern is that a single qubit quantum circuit is a map on qubit states (e.g.

a map to and from the single qubit Hilbert space σx : C2 → C2), whereas a two particle

singlet state resides in the Hilbert space of two qubits (the joint state C2⊗C2). People have
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asked me, “how can we get two particles from one?” This is not the point, but with minimal

effort we can of course realise these cups and caps as Bell states/measurements. Cups are

Bell states and caps are measurements in the Bell basis with simplistic correction.

Remark II.1. (Bending quantum circuit wires) Bends in quantum circuit wires correspond

to dropping temporality during diagrammatic manipulation. This allows one to reason about

quantum circuits and quantum information in new ways. We can always translate the net-

work back into a machine readable quantum circuit, to construct implementable quantum

processes, depending on the specific application.

This work attempts to be self contained. For those interested in the graphical language

of string diagrams outside the area of quantum mechanics, Peter Selinger’s survey offers

an excellent starting place. The mathematical insight behind using pictures to represent

tensor networks dates back to Oxford Professor Penrose and in quantum circuits, to Oxford

Professor David Deutsch. The mathematics behind the category theory is based largely

on a completeness result (originally proved by Joyal and Street) about the kinds of string

diagrams we consider here.

Theorem II.2. Coherence for monoidal categories: The geometric picture calculus

in the plane faithfully represents calculations in monoidal categories.

Samson Abramsky and Bob Coecke provided a categorical model of quantum information

processing. A lot of OUCL and outside work built on different aspects of their model. In

particular, Bob Coecke and Ross Duncan made an early attempt towards a categorical model

of quantum theory applicable to problems in quantum information and computation.

A. Reminder Lecture 1 Notes — Compactness

FIG. 1. Showing that the compact structure of the product ⊕ is the same as the compact structure

of the product •. Here the compact structure of the black-dot is used in the lower picture to recover

the plus-dot. The compact structure of both dots produce the same cup as Φ+ = |00〉 + |11〉 =

|++〉+ | − −〉 that is, Φ+ is invariant under a Hadamard transform.

Remark II.3. (Bell Basis) Using compactness and single qubit gate operations one is able

to generate diagrammatic representations of the remaining three states in the Bell basis (the

forth state is generated by acting on the top with a NOT-gate, or by acting on the bottom

with a Z-gate).
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III. COPY CONSTRUCTS: ‘DOTS’

A fundamental requirement of universality in computation is the ability to copy bits

of data. In the case of reversible and quantum computation, the situation is no different.

However, the quantum no-cloning theorem limits the types of copying possible to processes

that copy any single basis. In this way, copy is defined as a linear map

copy :: |i〉 → |i, i〉 (1)

ranging over some basis {|i〉} such as the basis of a non-degenerate observable. Diagram-

matically, copy is given by a dot with three legs and a specific color, where the color is

notation meant to represent the basis (e.g. • for σz and ⊕ for σx). The copy operation is

clearly invariant if one exchanges the values after performing copy, which diagrammatically

is invariance under twist or swap.

We will now examine the two copy constructs that arise as sub-components of the CN-gate:

the observable σz is given as • and for σx as ⊕, and these are related by a Hadamard

transform. We will then generalize the copy operation to any basis in Section IIID.

A. Z-copy

As |0〉 and |1〉 are eigenstates of σz, Z-copy is defined by considering the map that copies

these eigenstates:

Z-copy : C2 → C
2 ⊗ C

2 ::

{

|0〉 7→ |00〉
|1〉 7→ |11〉

This map can be written as

Z-copy : |00〉〈0|+ |11〉〈1| (2)

and under braket duality (on the right bra) this state becomes a GHZ-state as

ψGHZ = |000〉+ |111〉 (3)
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and finally, the σz copy construct is given diagrammatically as

B. X-copy

Figure III B depicts X-copy. X-copy spans the truth table for XOR as follows. If we

consider f(a, b) = a⊕b then f = 0 corresponds to (a, b) = (0, 0), (1, 1) and f = 1 corresponds

to (a, b) = (1, 0), (0, 1), where the truth table is given as

a b a⊕ b

0 0 0

0 1 1

1 0 1

1 1 0

Under braket duality, the state defined by X-copy is given as
∑

ab |a〉|b〉|f(a, b)〉 =

ψ⊕ := |000〉+ |110〉+ |011〉+ |101〉 (4)

which is in the GHZ-class — see Section IIIC. The X-copy operation is defined on a basis

as

X-copy : C2 → C
2 ⊗ C

2 ::

{

|0〉 7→ |00〉+ |11〉
|1〉 7→ |10〉+ |01〉

or equivalently

{

|+〉 7→ |++〉
|−〉 7→ | − −〉

FIG. 2. The copy construct on the σ
x basis is given by a change of basis from the copy construct

on the σ
z basis — see the next Section (IIIC).

C. Dot-duality: Hadamard transforms between Z- and X-copy

By dot-duality, the Z- and X-copy constructs are related by a Hadamard transform,

applied to all of the dot’s legs to transform a Z- into an X-copy and vise versa. This can be

captured diagrammatically in the slightly different form
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which clarifies several applications. For instance, it provides elegant Diagrammatic justifi-

cation for the circuit identity allowing the control and target of a CZ-gate to be exchanged

One can consider a generating set of dots as follows. We will take {•, 〈+|} and its

dual under the dagger which can construct any diagram with only black dots. Adding the

Hadamard gate allows one to arrive at the generators

{•, ⊕, 〈+|, 〈0|} (5)

which is a complete set to express any classical linear circuit. Alternatively, one can start

from the CN-gate and together with the units for • and ⊕ to arrive at the set (5) see Figure 3.

FIG. 3. Z- and X-copy constructs from the CNOT-gate.

D. General copy constructs: a dot of arbitrary color

It is of course desirable to extend the definitions of copy to arbitrary basis. This can be

done in general, and it turns out that the cases given above are both special cases of the

more general framework we will now describe.

We will focus on the case of qubits, and then present an extension to finite dimensions

in Section III F. Say you have an orthonormal basis {|ψ〉, |ψ⊥〉}, which we will call B and

you wish to have a copy construct (a dot of this color B) to copy this basis as |ψ〉 7→ |ψ, ψ〉
and |ψ⊥〉 7→ |ψ⊥, ψ⊥〉. To represent such a dot diagrammatically, let us introduce the

diagrammatic notation follows as:

Building such dots using local unitary maps is shown to be possible in the next Section.
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E. Transforming one dot into another

To transform the copy construct defined by the black dot into an arbitrary copy operation,

define the unitary

U =
∑

i

|i〉〈φi| (6)

where {φi}i and {i}i are bases for the same space such that 〈φi|φj〉 = δij and 〈i|j〉 = δij.

The map U is unitary as

U †U = (
∑

i

|φi〉〈i|)(
∑

j

|j〉〈φj|) =
∑

j

|φi〉δij〈φj| = 1 (7)

and the diagrammatic representation of the copy operation for B is given as

Remark III.1. (non-Hermitian Unitary) It is easy to consider a case where one wishes to

copy a basis only a small angle away from the computational basis. In this case, multiple

applications of U will continue to move the basis further and further away, whereas for any

state φ, and any U = U † then U2φ = φ ruling out Hermitian Unitaries in general for a

change of basis. In general, a change of basis from A to A′ is given as A′ = UAU †. This

means that U † will need to be placed on the right of the black dots, as U 6= U †.

F. Arbitrary colors and dimensions

The general construction for dots of any colors and any finite dimension is as follows.

Let V be a Hilbert space with dim(V) = d finite and let |i〉 index a basis for V, such that

〈i|j〉 = δij. It can be shown that U = −2
∑d

i=1
|i〉〈i|+ 1 is self-adjoint and unitary as

P 2 = (
∑

i

|i〉〈i|)(
∑

j

|j〉〈j|) =
∑

ij

|i〉δij〈j| =
∑

i

|i〉〈i| = P (8)

The construction then follows as in Section IIID given a copy construct on the computational

basis in this dimension d.

IV. APPLICATIONS

A. GHZ-state circuits

In the lectures, we showed how to build a GHZ-sate using the following circuit:
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The simplication from left to right first uses the self-duality of the H-gate, and then the

compact structures of the dots (allowing them to transform into bent wires).

On the other hand, one could realise this circuit by considering the braket-duality of the

copy operation found from letting a CN-gate act on |0〉. Diagrammatically this provides

backwards justification of the circuit as follows

B. W-state circuits

We consider

|001〉+ |010〉+ |100〉 = σx
1 (|101〉+ |110〉+ |000〉) (9)

and so

ψW = |101〉+ |110〉+ |000〉 (10)

becomes our representative of the W-class. And hence, as described, the W-product forms

a map as follows

W : C2 → C2 ⊗ C2 ::

{

|0〉 7→ |00〉
|1〉 7→ |01〉+ |10〉

and so as a first step we wish to find a unitary U and a fixed state ψ such that

U |0〉 ⊗ |ψ〉 = |0〉 ⊗ |0〉 (11)

U |1〉 ⊗ |ψ〉 = |01〉+ |10〉

we let ψ := |0〉 and with a little trial and error note that the map U factors into a quantum

circuit as follows

where the open control on the CNOT-gate is controlled on |0〉 and we have ignored the

normalization condition. We note that the map indeed sends |0〉 to |00〉 and likewise it

sends |1〉 to |01〉+ |10〉.
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One will then naturally attempt to dualise the circuit by bending the top wire. This

however fails as follows. The input state to the circuit is now (|00〉+ |11〉)|0〉 the controlled
H-gate takes this to

|000〉+ 1√
2
(|111〉+ |110〉) (12)

and then the CN-gate takes this to

|000〉+ 1√
2
(|101〉+ |110〉) (13)

which does give the correct bit pattern, but the wrong normalisation as all states should

have the same weights.

The solution is to consider a new cup. Normalisation can now be accounted for by

constructing the generalised cup, which realises the following state:

cos(α)|00〉+ sin(α)|11〉 (14)

for cos(θ) =
√

2/3. This can be realized by the following sequence

(Ry(α)⊗ 1)(CNOT)|00〉 = cos(α)|00〉+ sin(α)|11〉 (15)

which is given diagrammatically as

FIG. 4. Circuit realisation of a map from the state (|00〉+|11〉)⊗|0〉 to |001〉+|010〉+|100〉, graphical
circuit language depiction and W-state vector, from left to right across the page respectively.

Remark IV.1. W is stabilised by −σzσzσz and only has one Pauli stabiliser.

1. Scaling of implementation

Exercise IV.2. Construct a general circuit to realize the state |0....1〉+ |0...01〉+ ...+ |1...0〉
on n-qubits.
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Exercise IV.3. Give explicit gate counts as functions of n for the exercise above.

V. REMARKS

That concluded the second lecture.

• Course homepage: http://www.comlab.ox.ac.uk/activities/quantum/course/

• See also the tablet PC generated notes from the lecture!

• If you see any typos please let me know.

VI. SELF-STUDY

A. A stabiliser theory for dots

Viewed in light of braket duality, Stabiliser Theory becomes vividly applicable to states

and linear maps as both are on equal footing in the Categorical Quantum Circuit Model.

We consider P = {1, σx, σy, σz} as the Pauli group. This forms a complete operator basis

for the space of operators acting on single qubits. We consider the power functor, P n as the

set of n-fold tensor products taken from the Pauli alphabet. This forms an operator basis

for the space of n-qubit linear operators.

A Unitary matrix U stabilizes a quantum state ψ if Uψ = ψ. Stabilizers of ψ form a

group. Here are some standard examples

• σx stabilises |+〉 = |0〉+ |1〉 and −σx stabilises |−〉 = |0〉 − |1〉

• σy stabilises |y+〉 = |0〉+ i|1〉 and −σy stabilises |y−〉 = |0〉 − i|1〉

• σz stabilises |0〉 and −σz stabilises |1〉
Example VI.1. (Heisenberg pictures and the evolution of operators) If Nψ = ψ and Mψ =

ψ then MNψ = NMψ = ψ. Now if we consider Uψ this then equals UNψ which can be

written as UNU †Uψ so U takes N to UNU † and MN to (UMU †)(UNU †).

Definition VI.2. (Pauli Stabilisers) If ψ can be produced from the all-|0〉 state by just

CNOT, Hadamard, and phase gates, then ψ is stabilized by 2n tensor products of Pauli

matrices or their sign opposites (where n is the number of qubits). This means that the

stabilizer group is generated by log(2n) = n such tensor products. The state ψ is then the

stabilizer state uniquely determined by these generators.

Example VI.3. (Stabilisers of the black-dot) Under braket-duality, the black dot becomes a

GHZ-state which has stabiliser generators σx
1 ⊗σx

2 ⊗σx
3 and σz

i ⊗σz
j which uniquely determine

ψGHZ = |000〉+ |111〉 and result in the following set of Stabilisers

{σxσxσx,−σxσyσy,−σyσxσy,−σyσyσx, 1⊗ σz ⊗ σz, σz ⊗ 1⊗ σz, σz ⊗ σz ⊗ 1, 1} (16)

Diagrammatically these relations are given in Figure 5.
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FIG. 5. (Top) Diagrammatic depiction of the stabiliser equation σ
z
i σ

z
j (|000〉+|111〉) = |000〉+|111〉.

(Bottom) Uses the Stabiliser identity together with σ
2
z = 1 to show that the σz commutes with the

black-dot (this is a special case of the phase group property). (Middle) Diagrammatic depiction

of the stabilizer equation σ
x
1 ⊗ σ

x
2 ⊗ σ

x
3 (|000〉 + |111〉) = |000〉 + |111〉. (Bottom) Diagrammatic

depiction (up to a sign) of the stabilizer equation −σ
x
i ⊗ σ

y
j ⊗ σ

y
k(|000〉 + |111〉) = |000〉 + |111〉.

Exercise VI.4. (Gottesman-Knill theorem) Provide a graphical rewrite proof (by bounding

the number of rewrites) of the Gottesman-Knill theorem. Show that it follows by considering

the action of the black and plus dots on σz and σx. Gottesman’s paper can be found on

aXriv.org here http://arxiv.org/abs/quant-ph/9807006.

B. The GHZ- and W-products

In the Categorical Model of Quantum Circuits, every quantum state of three or more

systems forms a product. By this it means that the measurement outcomes have a math-

ematical structure which can be viewed as a type of multiplication. For instance, if one

measures the first bit of a GHZ-state in the σx-basis and recovers +1, the state of the system

is left in a Bell state, which under braket duality is an identity wire. There is an elegant

reason for this. We will see that the state |+〉 is a unit for the multiplication formed by

the GHZ-state. Let’s begin with the following depiction of the state induced GHZ- and

W-products.

Here one typically considers the numbers a, b, c, d to be amplitudes of a quantum state after

measurement, e.g. measuring a state in σy and recovering a −1 would result in |y−〉, that is
(a, b) = (1,−i), etc. This will be made precise below.
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The GHZ state has the nice property that it is symmetric under particle exchange —

meaning the induced product is associative. Diagrammatically, the full symmetry of this

state is given as

By composition of the GHZ-state with one of the cap operators, one constructs the operator

|00〉〈0|+ |11〉〈1| : C2 → C
2 ⊗ C

2 :: |i〉 7→ |i, i〉 (17)

which we already know acts as a copy operation on the basis |0〉, |1〉, for i ∈ {0, 1}. Now we

will explain the above diagram (the induced product structure of the GHZ-state) in more

detail. Consider again the map given by

|0〉〈00|+ |1〉〈11| : C2 → C :: (a|0〉+ b|1〉)⊗ (c|0〉+ d|1〉) 7→ ac|0〉+ bd|1〉 (18)

which is readily verified by considering the action of the map on states with amplitude

coefficients (a, b) and (c, d). Hence, the GHZ product forms a monoid (M, ., e) as follows.

Here M is the space C2, and e is given by the |+〉 now the product becomes

GHZ : C2 ⊗ C
2 7→ C

2 :: (a, b).(c, d) 7→ (ac, bd) (19)

with unit (1, 1). Again we note that these amplitudes are measurement outcomes, and so

one can think of postselection as being built into the induced product structure presented

here.

Definition VI.5. (GHZ-product) The GHZ-product for the state |000〉+ |111〉 is given as

GHZ : C2 ⊗ C
2 7→ C

2 :: (a, b).G(c, d) 7→ (ac, bd) (20)

where (a, b), (c, d) represent the complex amplitudes of a state after measurement. The unit

of the multiplication is |+〉.
Definition VI.6. (W-product) The W-product for the state |000〉+ |1〉(|01〉+ |10〉) is given
as

W : C2 ⊗ C
2 7→ C

2 :: (a, b).W (c, d) 7→ (ac, ad+ bc) (21)

The unit of the multiplication is |0〉.
Theorem VI.7. The GHZ-product has subgroup {|+〉, |−〉, |y+〉, |y−〉} which can be verified

by direct calculation.

Theorem VI.8. The W-product forms a commutative monoid with unit |0〉, given diagr-

mamatically as
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