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I. INTRODUCTION

In quantum theory, one predicts experiments by performing calculations involving the

processes that transform the mathematical representative of a quantum system, such as

operators on a state space or an observable. This mathematical structure has proven very

rich, and consequently well studied. The premise of this course is to return to the basics of

the field of ‘Quantum Information’ and to present this theory based on what we know now.

For instance, the theory of categories gives the precise description for the mathematical

structures used in quantum information processing. We will use some ideas from Category

Theory and Higher Algebra in the course, and it is assumed that those attending will have

had no exposure to these topics.

Category Theory is useful for us as it allows one to study the mathematical structure

formed by the composition of processes themselves. The wealth of information gained

through this new viewpoint will be developed in this course — leading to the calculus

of tensor networks states as a new description of the ground states of physical systems. In

this new setting, states are viewed as linear maps, and states can be composed. States

and observables themselves are typically not viewed in a way that emphasizes their own

compositional structure, giving a categorical model of quantum computation the prospect

of providing many new insights. To get a feeling for the types of insights possible, let’s

consider the following digression which will be made precise in the main text.

Consider the two classical single-bit operations: the identity operator, which is repre-

sented as a wire in a quantum circuit diagram, and the NOT operation, represented as a ⊕
on top of a wire. In quantum computation, the identity operator on a single qubit is given

as a map: 12 = |0〉〈0|+ |1〉〈1|, and NOT is given as σx := |0〉〈1| + |1〉〈0|. These are maps

taking state vectors in the two-qubit Hilbert space C2 back to the two-qubit Hilbert space

C
2. Viewed in this way, both σx and 1 are arrows with the same domain and codomain,

that is arrows: C2 σx

−−→ C
2 and C

2 1−−→ C
2.

Now let’s consider the states Φ+ = |00〉+ |11〉 and Ψ+ = |01〉+ |10〉. In which ways are

these states considered maps? It is claimed that in the most elementary case these states

are maps from the complex numbers into the Hilbert space of two qubits C2 ⊗ C2, that is

they are arrows C
Φ+

−−−→ C
2 ⊗ C

2 and C
Ψ+

−−−→ C
2 ⊗ C

2. To see this, simply pick a number

k ∈ C. Now Φ+ acting on k is given as Φ+(k) = k · Φ+ ∈ C2 ⊗ C2, so Φ+ took the arbitary

number k into the Hilbert space C2⊗C2, and is thus an arrow C
Φ+

−−−→ C2⊗C2 (by linearity,

k = 1 uniquely determines the state).

It turns out to be general (for states/maps etc.) that the following canonical isomorphisms

are true (illustrated with the identity 1)

C2 → C2 ↔ C→ C2 ⊗ C2 ↔ C2 ⊗ C2 → C

|0〉〈0|+ |1〉〈1| ↔ |00〉+ |11〉 ↔ 〈00|+ 〈11|.

meaning that every single map in a finite Hilbert space from C2 → C2 gives rise to exactly

one map C→ C2 ⊗ C2, but we already saw that maps from C into C2 ⊗ C2 are themselves

state vectors. (For a second, one might wrongly suspect that the left hand side above is the
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result of a partial trace, but we could have equally well illustrated this isomorphism with

|000〉+ |111〉 ↔ |00〉〈0|+ |11〉〈1|, etc.)
Every map of type C2 → C2 gives rise to one state in C2 ⊗ C2 and likewise, every map

C
2 → C

2 gives rise to exactly one costate, which is a map of type C
2 ⊗ C

2 → C. This was

named braket-duality during a talk in Clarendon Laboratory.

Although the Categorical Algebra gives rigorous justification to statements of map-state

and braket-duality, depending on one’s own background, readers may wish to first see the

power and beauty behind these methods, before devoting the needed time to understand

the details of the proofs. On the other hand, readers who have traditionally worked in

Categorical Quantum Theory will be interested to see how the appropriate changes and

additions to their approach can produce a tool applicable to quantum information science.

A. Quantum Theory Notation and Background

• We are attempting to write across disciplines, so our presentation attempts to be

minimal but also complete.

• Those attending the course who would like to go over more details related to any part

of this document are encouraged to contact us.

We do assume readers to be familiar with qubit states ψ which are equivalently rep-

resented as state vectors |ψ〉, where the bracket | 〉 is linear in ψ (e.g. |cψ〉 = c|ψ〉 and
|ψ + φ〉 = |ψ〉+ |φ〉), and one defines an inner product conjugate linear in it’s first argument

as 〈ψ, φ〉 =
∑n

i=1
ψiφi — called a Hermitian form. In the physics literature, |φ〉|ψ〉, |φ, ψ〉,

|φ〉 ⊗ |ψ〉, |φψ〉 and φ ⊗ ψ are used to mean the same thing. Unitary maps U , such that

UU † = 1, transform states leaving inner products and hence angles between states |ψ〉, |φ〉
and |Uψ〉, |Uφ〉 unchanged. These statements become a special case of something more

general when given precise Categorical meaning.

Each unitary map acting on a qubit state space can be represented by the complex

image under the exponential map (exp) of a Hermitian matrix generated by linear real

sums of tensor products of Pauli matrices (see below) — this Hermitian matrix is called the

Hamiltonian.

The time dependence of state |ψ〉 is given by Schrodinger’s equation: i~
d

dt
|ψ〉 = H|ψ〉,

where the (real valued) spectrum of the Hamiltonian operator H = H† is the set of possible

outcomes when one measures the systems total energy. Some Hamiltonian is always acting

on the state of a quantum system, and so Schrodinger’s equation must be solved to find the

time-dependence of the evolution.

For instance, if one prepares a system into an energy eigenstate of H , such that H|ψ0〉 =
E0|ψ0〉, then |ψ0(t)〉 = exp[−iE0t]|ψ0(0)〉 and the evolution of the state makes a circle in the

Argand plane with angular frequency 2πE0. In what follows, we let ~ = 1 making exp[−itH ]

dimensionless for H in units of angular frequency.

Typically, in quantum information theory, we consider an idealised Hamiltonian such as
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the Ising Model with Transverse Field

H =
∑

i

hi(t)σz
i +

∑

i

∆i(t)σx
i +

1

2

∑

i,j

Jij(t)σ
z
i σ

z
j (1)

where each hi(t), ∆i(t) and Jij(t) is any function of time we choose. Under the Lie braket

[A,B] = AB − BA, (1) forms a basis for a real vector space, and hence the terms in H

generate the full Lie algebra u(2n) and the complex image under exp generates the full

Unitary group U(2n). We will provide explicit examples of this when we time Hamiltonians

to generate quantum circuit representations of the string diagrams possible in Monoidal

Categories.

Definition I.1. Recall from angular momentum representation the familiar Pauli Matrices.

We let σ1 ≡ σx, σ2 ≡ σy and σ3 ≡ σz which satisfy (i) [σi, σj ] = 2iǫijkσk, (ii) complex

conjugation is generated by σj ∀w ∈ {i, j, k} as σjσ∗
wσj = −σw for i 6= j and (iii) Tr(σiσj) =

2δij. Note that it is common to change subscripts to superscripts σx ≡ σx to distinguish

powers of operators σ2
x from operators acting on specific indices σx

3 — that is, σx acting on

the third qubit and not σx cubed. This should be evident from context.

These familiar operators from quantum mechanics form a Geometric Algebra (a.k.a.

Clifford Algebra — here this algebra arises as a property of the basis). Consider {σl
i} as a

basis for a real left and right distributive vector space (that is, a left and right C-module):

such that

σ2
x = σ2

y = σ2
z = 1 = −iσxσyσz (2)

Then consider the product

σiσj = δij1+ iǫijkσk (Geometric product of vectors). (3)

It is clear that for i 6= j

{σl
i, σ

l
j} = 0 (4)

meaning that the vectors anti-commute viz.

σl
iσ

l
j = −σl

jσ
l
i. (5)

We also note that

{σi, σj} = 2δij1. (6)

Exercise I.2. Verify Equations 3, 4, 5 and 6.

Up to an energy scale, the Hamiltonians acting on the Hilbert space C2 can be expanded

in terms of a dot product of a polarisation vector P := (p1, p2, p3), ∀i, pi ∈ R, and a sigma

vector σ := (σ1, σ2, σ3) as

σ.P = piσ
i = p1σ

1 + p2σ
2 + p3σ

3. (7)
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This is of course not a complete basis for the space of linear operators L : C2 → C2 since

we left out the span of the centre of the algebra 12.

Clearly the vectors P are in the vector space R3. We can elevate this vector space to a

Hilbert space by defining an inner product between vectors — that is a map (−,−) taking
two elements from the vector space (in this case Hamiltonians on C2) and producing a scalar

in the underlining field C.

(−,−) : (C2 → C
2)× (C2 → C

2)→ C :: (σ.A, σ.B) 7→ Tr[(σ.A).(σ.B)] = A.B. (8)

Straight forward calculation also yields

(σ.A, σ.B) = AiBi + iǫijkσ
k = A.B + iσ(A ∧B). (9)

which readers should check as an exercise.

Exercise I.3. Verify that for A = B the (geometric) wedge product vanishes and so we note

that the eigenvalues of (A.σ) are ±|A|, where both roots appear as A.σ is traceless.

It is standard to express a quantum state in terms of observables, by expanding in a basis

of measurement outcomes (e.g. the eigenvalues of a Hermitian operator such as A.σ). We

consider the complex amplitudes c0 and c1 and any state ψ in C2 can be written as

ψ = c0|+ |A|〉+ c1| − |A|〉, (10)

where for normalized A one recovers ψ = c0|+ 1〉+ c1| − 1〉. For a bipartite system formed

from C2 ⊗ C2. Here the possible values the spin variable si can take after measurement

is inside the ket. If we then introduce binary indicator variables xi (in this case a single

indicator variable will do), we can relate them to spin variables as si = 1 − 2xi. In the

standard basis, si is replaced with the matrix σz and xi is a projector onto |0〉, and the state

becomes ψ = c0|0〉+ c1|1〉.
Consider the expansion of an arbitrary Hamiltonian acting on a single qubit state space,

that is the complex Hilbert space C2. Here H2 = p01+ P .σ gives a general form where

exp[−it/~H2] = exp[−ip0t/~] exp[−it/~P .σ]. (11)

The term p01 corresponds to an energy reference. Mathematically it is the centre of the

algebra: −it1 maps under exp to the centre of the Unitary group. It thus corresponds to

the so called global phase and is safely ignored for our purposes. Now the complex image of

P under exp becomes

RP (θ) := e−iθP .σ = 1 cos(θ)− iP .σ sin(θ) (12)

which is understood as a rotation about the unit vector P .
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Exercise I.4. Show that whenever A2 = 1, exp[−iAθ] = 1 cos θ − iA sin θ by using

exp(A) =

∞∑

k=0

1

k
Ak (13)

Remark I.5. (Projective nature of Hilbert space) As measurements on quantum states are

projections in Hilbert space, normalization constants are only used when they aid in the

presentation. In the present paper, most often they are safely omitted.

Remark I.6. (Basis) Whenever we talk about a basis {|i〉} we mean a finite set of kets |i〉
with index i such that 〈i|j〉 = δij.

II. FROM ABSTRACT HAMILTONIAN MECHANICS TO GRAPHICAL

CALCULUS

The first lecture deals in part with constructing implementable quantum processes. We

will continue by showing the pictures to represent quantum states as follows:

Other states are represented by changing the internal label inside the triangle, and costates

(e.g. 〈0|, 〈+| etc.) are represented by reflecting across the vertical of the page (using the †
functor), so the triangle instead points to the right.

Because we have included what would be considered as atemporal quantum networks, we

will consider the direction of the states important when trying to implement them as a quan-

tum process, but when doing reasoning and calculation the direction of circuit components

is relaxed.

By considering the duality between states and maps, we will see that one can consider

composition of not just maps, but states as well. This allows us to take advantage of more

than just the isomorphism |00〉 + |11〉 ↔ |0〉〈0|+ |1〉〈1| ↔ 〈00| + 〈11|. In fact, we are able

to consider this bijection for any quantum state and any quantum map—see Table II.

ψ ∈ C2 ⊗ C2 ↔ ψ ∈ C2 → C2 ↔ ψ ∈ (C2 ⊗ C2)†

|00〉+ |11〉 ↔ 1 = |0〉〈0|+ |1〉〈1| ↔ 〈00|+ 〈11|
|01〉+ |10〉 ↔ σx = |0〉〈1|+ |1〉〈0| ↔ 〈01|+ 〈10|
|01〉 − |10〉 ↔ iσzσx = |0〉〈1| − |1〉〈0| ↔ 〈01| − 〈10|
|00〉 − |11〉 ↔ σz = |0〉〈0| − |1〉〈1| ↔ 〈00| − 〈11|

|00〉+ |01〉+ |10〉 − |11〉 ↔ H = 1√
2
(σx + σz) ↔ 〈00|+ 〈01|+ 〈10| − 〈11|

FIG. 1. Illustrates the bijection between states, maps and costates for the Bell basis and the

Hadamard gate. Normalisation constants are omitted.
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In the sections that follow, we will outline different aspects of our model by building on

examples. The examples will help build intuition into how a categorical model of quantum

circuits can be used.

1. Identity wires revisited

In the Introduction, we already mentioned by example how states are maps, and how

maps are states. We have also seen how identity wires relate to Bell states. There is still

much room for further abstraction.

Remark II.1. (Defining identity as a composition of linear maps) More formally, we con-

sider a Hilbert space H with orthonomal basis {|i〉} and introduce the linear operators to

prove the following theorem (II.2)

η :=
∑

i

|i〉 ⊗ |i〉 (14)

ǫ :=
∑

i

〈i| ⊗ 〈i| (15)

Theorem II.2. (Bracket-Duality) There exists an isomorphism Ω sending

|ψ〉 ←→ 〈ψ| (16)

Proof. We first provide a map between a state/map |ψ〉 and its transpose.

ǫ(1⊗ |ψ〉) =
∑

i

〈i|1† ⊗ 〈i|ψ〉 =
∑

i

〈i|ψ〉〈i| = 〈ψ| (17)

(〈ψ| ⊗ 1)η =
∑

i

〈ψ|i〉 ⊗ |i〉 = |ψ〉 (18)

Now we consider linear extension of the invertable map

overline(−) : C→ C
∗ :: k 7→ k (19)

now using this map which defines complex conjugation together with the maps defined

above gives Ω, (note that they commute) which establishes the isomorphism we call bracket-

duality.

This so-called bra-ket duality, allows one to define the identity morphism by considering

duality of the appropriate bra/ket of ǫ/η.
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2. Compactness: From identity wires to Bell states as cups and caps

We have already mentioned in the last Section (II 1) that identity wires are in 1-1 corre-

spondence with the Bell states (e.g. |00〉+ |11〉), and costates (〈00|+ 〈11|), where we again

note that the relation to identity is not by considering the reduced density matrix. Typically

any Bell state is realised by letting the circuit

act on the complete basis {|0〉, |1〉}2, where

H := σ.P = (σ1, σ2, σ3).(
1√
2
, 0,

1√
2
) =

1√
2
(σx + σz), (20)

and the Controlled NOT-gate maps |a, b〉 7→ |a, a⊕ b〉 for a, b ∈ {0, 1}. The standard

symmetric Bell state is thus given by letting this circuit act on |00〉. One of our goals is

to examine each component of a quantum circuit, and hence to examine these different two

(e.g. maps and wires) and three-legged (e.g. dots) parts under map-state duality. We will

soon justify that:

(i): The copy operation given by a black dot (•) in a circuit with three connected wires can,

under map-state duality be viewed as a multiplication taking elements from C2 →
C2 ⊗ C2 or equivalently as a GHZ-state.

(ii): The unit (identity) of the multiplication • is given as |+〉 := 1√
2
(|0〉+ |1〉) and for the

multiplication ⊕ as |0〉.

(iii): Likewise from (ii), the dot (⊕) meant to represent XOR addition, under map state

duality, defines a multiplication as well a GHZ-state, but this time in the |±〉 basis,
instead of the |0/1〉 basis for •.

It is easy to verify in the circuit language that, under map state duality, the unit for the

multiplication for ⊕ generates the Bell-state when applied to • and vise-versa (see Figure 2).

Likewise, when considering the unit for • under map-state duality, one generates the same

Bell state. This is called a compact structure in category theory, and hence these multipli-

cations, • and ⊕, share the same compact structure, and so the categorical quantum circuit

algebra has the following graphical rewrites shown in Figure 2:

Remark II.3. (Bell Basis) Using compactness and single qubit gate operations one is able

to generate diagrammatic representations of the remaining three states in the Bell basis (the

forth state is generated by acting on the top with a NOT-gate, or by acting on the bottom

with a Z-gate).
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FIG. 2. Showing that the compact structure of the product ⊕ is the same as the compact structure

of the product •. Here the compact structure of the black-dot is used in the lower picture to recover

the plus-dot. The compact structure of both dots produce the same cup as Φ+ = |00〉 + |11〉 =
|++〉+ | − −〉 that is, Φ+ is invariant under a Hadamard transform.

III. GATES

Readers would have already had some exposure to quantum gates. In what follows, we

will explain a general method to construct controlled two-qubit gates. This is important as

it could be presented as ‘machine code’ to several types of quantum computers — including

NMR Quantum Computation (JA Jones in Oxford Physics).

A. From Hamiltonians to the CN-gate

The Controlled NOT-gate is fundamental to many universal quantum processor proposals.

The map performs

CN : C2 ⊗ C
2 → C

2 ⊗ C
2 :: |a〉 ⊗ |b〉 7→ |a〉 ⊗ |a⊕ b〉 (21)

with a, b ∈ {0, 1}. The CN gate is self inverse, Hermitian and hence has a spectrum in ±1.
It is possible to realize the unitary CN gate by exponentiating the Hamiltonian

HCN = |1〉〈1| ⊗ σx + |0〉〈0| ⊗ 1 (22)

as H2
CN

= 1 using

exp[−itHCN] = 1 cos(t)− iHCN sin(t) (23)
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for t = π/2. The phase factor −i1 commutes with all elements of the group and can safely be

ignored when considering a two-qubit system. However, the phase factor becomes relevant

when the CN-gate acts on a component of a larger composite system.

It is typically the case that one must realise CN as a sequence of Unitaries, generated by

timing a Hamiltonian (such as (1)) to sequence gates, as quantum processors will not have a

Hamiltonian with all controllable couplings (particularly σzσx) and hence won’t be capable

of realising HCN as the evolution of a single Hamiltonian. By using the standard factorisation

of Unitary maps via the Schur decomposition, we will describe a general method to realise

any controlled two-qubit gate, of which the CN-gate becomes a special case.

Let CU be a controlled unitary and then U = PDP † where P is a unitary change of

basis, and D is diagonal as U is normal. We then write

CU = |1〉〈1| ⊗ PDP † + |0〉〈0| ⊗ 1 (24)

P acts on the single qubit state space C2 and so can be realized by an evolution P =

exp[−itσ.A]. By finding the logarithm a suitable polarisation vector A can be found, and P

can be realised up to a global phase factor.

Alternatively, it is well known in the theory of Lie groups that any element in the group

U(2) can be written as a product

∀U ∈ U(2), ∃α, β, γ ∈ R, such that U = exp[−iασi] exp[−iβσj ] exp[−iγσi] (25)

where i 6= j ∈ {x, y, z}, and where we have neglected the global phase term exp[−iκ].
What remains is to realize the Hermitian term

|1〉〈1| ⊗D + |0〉〈0| ⊗ 1 (26)

which is diagonal is the computational basis and hence can be generated by a controllable

Hamiltonian with an Ising type interaction

HI =
∑

i

hiσ
z
i +

1

2

∑

i,j

Jijσ
z
i σ

z
j (27)

For instance, a term such as |0〉〈0|
1
⊗ 1 can be generated by exponentiating 1

2
(1 + σz

1) and

for D = diag(λ0, λ1), straightforward calculation yields

λ0 + λ1
4

(1− σz
1) +

λ1 − λ0
4

σz
2 +

λ1 − λ0
4

σz
1σ

z
2 (28)

and hence we can read of the values for the coupling matrix (Jij)ij and the coupling vector

(hi)i. Since the terms in (IIIA) all commute, any sequence of the gates realising each term

will realise the operator.

Example III.1. (Preparing Bell states) In the present Section (IIIA), we have described

a general method to construct any general controlled gate acting on the two-qubit Hilbert

space C2 ⊗C2. Realisation of the symmetric Bell state |00〉+ |11〉 can be done by preparing
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a state into the product eigenstate |0〉 ⊗ |0〉 of observable σzσz and then acting on it by a

Hamiltonian σxσx. Since σxσx|00〉 = |11〉 we can guess that the Bell state will be in the

single parameter subgroup generated by this Hamiltonian. In other words,

exp[−itσx
1σ

x
2 ]|00〉 ≈ [1− itσx

1σ
x
2 + o(t2)]|00〉 (29)

has overlap with the target state of interest (similarly, exp[−itσzσz]|+〉|+〉 = |00〉 + |11〉 +
o(t2)). Clearly, this Hamiltonian squares to identity and hence from (IA) we find

exp[−itσx
1σ

x
2 ] = 1 cos(t)− iσx

1σ
x
2 sin(t) (30)

and on choosing t = π/2 one recovers the desired Bell state, up to a phase factor which can

be removed, or safely ignored, depending on application.

Exercise III.2. Construct a single qubit unitary map and corresponding Hamiltonian to

map 30 into |00〉+ |11〉.

B. Transforming atemporal graphs into casually connected quantum processes

As we have mentioned, quantum circuits are acyclic directed diagrams, where by conven-

tion time passage is typically considered as moving from left to right on the page. In such

diagrams, the wires from left to right on the page are the qubits, whereas the wires going up

and down on the page are logical connections (see Figure III B). These logical connections

can be replaced with qubits, and we call such wires, virtual qubits. In the categorical model,

the three networks are considered equivalent in terms of string diagrams. They can be re-

alised as a casually connected set of operations on a quantum computer. This is illustrated

in Figure III B.

Placing cups at the start of a quantum circuit (on the left) can be accomplished by

preparing Bell states. The caps at the ends (on the right) of a circuit appear to be diagrams

that are directed backwards in time — see Figure III B. As the figure shows, they can be

constructed sequentially in time by preforming a Bell basis measurements with correction

(dependent on outcome) or by post-selection.

FIG. 3. The atemporality circuit rewrite rule allows one to transform quantum circuits in non-

standard ways. Using bra-ket duality, temporality can always be restored and hence, the quantum

state corresponding to any of the networks we consider in this work can always be realised by a

quantum process.



12

FIG. 4. Atemporality can result in several equivalent physical realisations of the same network.

Because there are maps from two qubits into a single qubit state space, the circuit on the left

must be transformed for realisation on a quantum processor. The equivalent circuit on the right is

casually connected, provided all of the operations are preformed from left to right, including the

Bell-basis measurement with correction.

Remark III.3. Typically in quantum circuits, at each time slice (that is vertically divided

between gates), one will factor the network into a sequence of gates, each of which is unitary.

In the general networks considered here, although each time-slice is a valid quantum process,

each slice does not always represent a unitary map.

IV. GRAPHICAL TRANSPOSE OF A LINEAR MAP

A common theme in this course is duality of states and maps. Here we will present some

nice examples of these concepts.

We can consider a map U which can be written as

U =
∑

ij

uij|i〉〈j| (31)

we recall the linear maps

η =
∑

i

|i〉 ⊗ |i〉 (32)

ǫ =
∑

i

〈i| ⊗ 〈i| (33)

and consider the Hilbert space H1 ⊗H2 ⊗H3. Consider the map U acting on H2. We can

then act with η and ǫ to bend the wires of U and hence construct a map from C → H1⊗H2

or C → H2 ⊗ H3 depending on which wire of U we wish to bend and which Hilbert space

we let η or ǫ act. Consider

ǫ12 ◦ U =
∑

ijk

ujk〈i|〈i|j〉〈k| =
∑

ijk

ujk〈i|δij〈k| =
∑

jk

ujk〈j|〈k| (34)

which is simply a costate representation of the map U , whereas the following amount to
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taking a transpose before performing the costate representation:

ǫ23 ◦ U =
∑

ijk

ujk〈i|j〉〈k|〈i| =
∑

jk

ujk〈k|〈j| = ǫ12 ◦ U⊤ (35)

We have delt above with costates, the graphical calculus version of these properties on states

are as follows

A. Example: Duality of the CV-gate

This example was not in the lectures. Let Un be a unitary operator meant to act on a

register of n-qubits, depending on the state of some other register. This general setup is a

straightforward extension of the controlling register being a single qubit.

CUit = |1〉〈1|i ⊗ Ut + |0〉〈0|i ⊗ 1t, (36)

where index i designates the controlling qubit and index t the target.

Consider the gate V = 1

2
((1 + i)σx + (1− i)1) such that V2 = NOT. The controlled V

gate has received a lot of interest as it provided one of the first factorisations of universal

quantum circuits. Consider the logical XOR operation expressed over the reals, x ⊕ y =

x + y − 2xy. Now raise unitary U to the power of this expression as Ux⊕y = Ux+y−2xy,

rearranging yields U2xy = U−x⊕yUx+y, hence NOTxy = (V†)x⊕yVxVy provides a factorisation

of the Toffoli gate, where x, y become logical qubit states and the gate realises the function

|x, y, z〉 7→ |x, y, x ∧ y ⊕ z〉.
Let us then consider map state duality applied to the CV gate

CV =
1

2
|1〉〈1|i ⊗ ((1 + i)σx + (1− i)1) + |0〉〈0|i ⊗ 1 (37)

We want to express this as a state in Hilbert space. First, the unit for the control is |+〉.
Letting this gate act on |+〉 ⊗ 1 where we use compactness results in the map

7→ 1

2
|1〉 ⊗ ((1 + i)(|0〉〈1|+ |1〉〈0|) + (1− i)(|0〉〈0|+ |1〉〈1|)) + |0〉 ⊗ (|0〉〈0|+ |1〉〈1|). (38)

We then want to flip the direction of the bra 〈 |, in the bracket | 〉〈 |. This can be done by

using a cup ⊃, which is represented by the Bell state |00〉+ |11〉 acting on the second qubit

state space.
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FIG. 5. A figure showing several rewrite rules applied to the controlled V-gate, starting with

compactness of the black-dot. The duality rewrite rule one from the rightmost (e.g. bending a

wire) is equivalent to preparing a Bell state and is justified by considering the action of the linear

map ǫ :=
∑

i 〈i| ⊗ 〈i|. The rightmost duality is justified in Section IV.

V. VIOLATION OF BELL’S INEQUALITY

In the lectures we presented a violation of Bell’s inequality. The calculation was made

trivial uses some of the mathematical tricks we presented during the first half of the class.

We considered the singlet state

Φ− = |01〉 − |10〉 (39)

We showed that with A2 = B2 = 1 and if

〈Φ−|(A⊗B)Φ−〉 = 〈Φ−|(A⊗ 1)Φ−〉〈Φ−|(1⊗B)Φ−〉 (40)

then this implies that

〈Φ−|(A1 ⊗B1)Φ
−〉+ 〈Φ−|(A1 ⊗B2)Φ

−〉+ 〈Φ−|(A2 ⊗B1)Φ
−〉 − 〈Φ−|(A2 ⊗B2)Φ

−〉 ≤ 2

(41)

where we will express these observables as polarisation vectors

A1 = (A1, A2, A3).(σ
x, σy, σz) (42)

B1 = (B1, B2, B3).(σ
x, σy, σz) (43)

are observables representing spin projections along two vectors.

We will then consider

σz
1σ

x
1 (|00〉+ |11〉) = |01〉 − |10〉 (44)

The general expectation value 〈Φ−|(A⊗B)Φ−〉 is given diagramatically as

The operators σz and σx are self adjoint and so slide on boxes unchanged. They then
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evalulate their action on the basis of (A1, A2, A3).(σ
x, σy, σz) as

σzσx(σx, σy, σz)σxσz (45)

Now recalling that

σiσjσi = −σj (46)

whenever i 6= j (if i = j this map acts trivially). With this definition, we see that σx takes

the basis to

σz(σx,−σy,−σz)σz (47)

and finally, σz takes this basis to

(−σx, σy,−σz) (48)

which diagramatically becomes

and to evalulate the product, we will need to ‘slide’ one of the operators around the wires to

interact with the other. This is done by considering transpose duality. Sliding a box around

a wire takes a transpose in this case, which is given diagrammatically as

The crux of the matter is that the product (using the results from Section IA) then becomes

A.B = cos θ (49)

Exercise V.1. Using the definitions of η and ǫ or otherwise, show that the following diagram

gives zero for any polarisation vector B
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VI. REMARKS

That concluded the first lecture.

• Course homepage: http://www.comlab.ox.ac.uk/activities/quantum/course/

• See also the tablet PC generated notes from the lecture!

• If you see any typos please let me know. Thanks to Shane Mansfield for doing just

that!
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