Solving the FMO

Here is the Hamiltonian describing a single excitation in the FMO complex from the latest work by Fleming: A. Ishizaki and G. R. Fleming, Proc. Natl. Acad. Sci. U.S.A. 106, 17255 (2009).

I. THE FMO HAMILTONIAN FROM PROC. NATL. ACAD. SCI. U.S.A. 106, 17255 (2009)

The units are wavenumbers, i.e. cm^{-1}.

$$
\left.\begin{array}{l}
V=\left(\begin{array}{ccccccc}
12410 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 12530 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 12210 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 12320 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 12480 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 12630 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 12440
\end{array}\right) \\
K
\end{array} \begin{array}{c}
\text { 0 } \\
0
\end{array} \begin{array}{ccccccc}
07.7 & -5.5 & 5.9 & -6.7 & 13.7 & 9.9 \tag{1}\\
87.7 & 0 & -30.8 & -8.2 & -0.7 & -11.8 & -4.3 \\
-5.5 & -30.8 & 0 & 53.5 & 2.2 & 9.6 & -6.0 \\
5.9 & -8.2 & 53.5 & 0 & 70.7 & 17.0 & 63.3 \\
-6.7 & -0.7 & 2.2 & 70.7 & 0 & -81.1 & 1.3 \\
13.7 & -11.8 & 9.6 & 17.0 & -81.1 & 0 & -39.7 \\
9.9 & -4.3 & -6.0 & 63.3 & 1.3 & -39.7 & 0
\end{array}\right)
$$

$$
X=\left(\begin{array}{ccccccc}
-0.2713781 & 0.4351370 & 0.1155647 & -0.0691068 & -0.1655553 & 0.8267552 & 0.0891404 \\
0.2052872 & 0.6427755 & -0.5419359 & 0.4112510 & 0.2403535 & -0.0998430 & -0.1188969 \\
-0.6613888 & -0.2678740 & -0.0013524 & 0.6699533 & 0.0359892 & 0.0090086 & -0.2014764 \\
0.3611684 & -0.3199886 & 0.0562502 & 0.3630684 & 0.4654431 & 0.3438680 & 0.5452517 \\
0.2988589 & 0.1865958 & 0.7071748 & 0.2002269 & 0.2491240 & 0.0240024 & -0.5225318 \\
0.4316540 & -0.3916357 & -0.3371893 & 0.1443333 & -0.4043355 & 0.3766622 & -0.4694742 \\
-0.2017213 & -0.1874828 & -0.2756656 & -0.4295554 & 0.6865415 & 0.2138464 & -0.3828575
\end{array}\right)
$$

$$
\operatorname{diag}(\lambda)=\left(\begin{array}{lllllll}
-143.85474 & -92.22032 & -42.55453 & 0.95012 & 54.82277 & 94.65536 & 128.20133
\end{array}\right)
$$

A. units

In spectroscopy, the wavenumber $\tilde{\nu}$ of electromagnetic radiation is defined as

$$
\begin{equation*}
\tilde{\nu}=1 / \lambda \tag{2}
\end{equation*}
$$

where λ is the wavelength of the radiation in a vacuum. The wavenumber has dimensions of inverse length and SI units of reciprocal meters $\left(m^{-1}\right)$. A wavenumber can be converted into quantum-mechanical energy E in J or regular frequency ν in Hz according to

$$
\begin{gather*}
E=h c \tilde{\nu}=1.9865 \times 10^{-23} \mathrm{~J} \mathrm{~cm} \times \tilde{\nu}=1.2398 \times 10^{-4} \mathrm{eV} \mathrm{~cm} \times \tilde{\nu}, \tag{3}\\
\nu=c \tilde{\nu}=2.9978 \times 10^{10} \mathrm{~Hz} \mathrm{~cm} \times \tilde{\nu} \tag{4}
\end{gather*}
$$

Note that here wavenumber and the speed of light are in cgs units.

B. plot

We are interested in the population of the localized sites, given some starting state.

$$
\begin{equation*}
U(t)=X e^{-i t \lambda} X^{\dagger} \tag{5}
\end{equation*}
$$

Let ψ_{q} be the localized wave function for the $q^{\text {th }} \mathrm{BChl}$ in the particle basis and let

$$
\begin{equation*}
\Pi_{i} \psi_{q}=\delta_{i q} \tag{6}
\end{equation*}
$$

We start the system in particle basis ψ_{i} and want the probability of finding the particle in the $q^{\text {th }} \mathrm{BChl}$

$$
\begin{equation*}
\operatorname{Prob}_{q}(t)=\operatorname{Tr}\left(\Pi_{q}\left|U(t) \psi_{i}\right\rangle\left\langle\psi_{i} U(t)\right|\right)=\operatorname{Tr}\left(\Pi_{q} U(t) \Pi_{i} U^{\dagger}(t)\right)=\left|\left\langle\psi_{q} \mid U(t) \psi_{i}\right\rangle\right|^{2} \tag{7}
\end{equation*}
$$

Time evolution of the population at each BChl of the FMO complex

FIG. 1: Time evolution with initial state BChl-1 |1>.

