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Abstract e Each variablev; should be assigned a value that is as

Lo close as possible /2.
Many optimization problems can be expressed us- . . . i
ing some form of soft constraints, where different e Each pair of variables;, vz; should be assigned a pair
measures of desirability are associated with differ- of values that are as similar as possible.
ent combinations of domain values for specified To model this situation we might impose the following soft
subsets of variables. In this paper we identify a constraints:
class of soft binary constraints for which the prob- e A unary constraint on eaeh specified by a functiop;,
lem of finding the optimal solution is tractable. In wherey; (z) = |z — i/2|" for somer > 1.
other words, we show that for any given set of } . ) i
such constraints, there exists a polynomial time al- e A binary constraint on each pait;, vy; specified by a
gorithm to determine the assignment having the functiond,, wheres, (z,y) = |z — y|" for somer > 1.
best overall combined measure of desirability. This We would then seek an assignment to all of the variables
tractable class includes many commonly-occurring which minimizes the sum of these constraint functions,
soft constraints, such as “as near as possible” or “as om n
soon as possible after”, as well as crisp constraints . o
such as “greater than”. ; vivi) + ; Or(vi, v2i).

(|

1 Introduction _ - o o
The constraint satisfaction framework is widely acknowI-The cost of allowing additional flexibility in the specification
X o f constraints, in order to model requirements of this kind, is
edged as a convenient and efficient way to model and solve & J . : s !
wide variety of problems arising in Artificial Intelligence, in- gene_rally an increase In computational dlfﬁculty. In the case
cluding planning and scheduling, image processing and natt?—f crisp constraints there has_ been ponS|derabIe progress in
ral language understanding ' identifying classes of constraints which dractable in the
In the standard frameworknstraintis usually taken to sense t}? aththere exists a pﬁlyn_om|afl time algorlt?m 0 deit1er-
. - s . __mine whether or not any collection of constraints from such a
be a predicate, or relation, specifying the allowed combina- ; ; X
. y . . : . -“class can be simultaneously satisfieéder and Vardi, 1998;
tions of values for some fixed collection of variables: we will Jeavonset al, 1997. In the case of soft constraints there

refer to such constraints here assp constraints. A num- ; . . o
ber of authors have suggested tha’? the usefulness of the colj@S Peen a detailed investigation of the tractable cases for
straint satisfaction framework could be greatly enhanced b ololeaFCpr(_)blems (\I'theorg]]e%(:h vana}_blle has just 2 posfsmle
extending the definition of a constraint to include atsiit r?ues) rgallgnoueta 2 | ' uta/erya!tte |nvehst|gar§|ot? 0
constraints, which allow different measures of desirability to;rg3 t:r?;:rt_]a ; %?Efsn?vrirsuelltrgei:] tﬁ? Iilmreilguzrg %ung C(Emebriia-
be associated with different combinations of vall@istarelli ; y sign . X
. . torial optimization which are clearly relevant to this ques-

et al, 1999. In this extended framework a constraint can tion [Nemhauser and Wolsey, 1988
be seen as function mapping each possible combination of In this paper we make usey(’)f the idea siimodular func-
values to a measure of desirability or undesirability. Findin ion [Nerghguser and Wolsey, 1988; Topkis, 1PT8 iden-
a solution to a set of constraints then means finding an as, ' L ' .
signment of values to all of the variables which has fqhe bes ity 6} gene_ra}l plass olf S.Oﬁ anstrslntsgokr) Wh('jChl th;are exists

: P a polynomial time solution algorithm. Submodular functions
overall combined desirability measure. are usually defined as real-valued functions on Boolean tu-

Example 1.1 For example, consider an optimization prob- ples Esets)Nemhauser and Wolsey, 1988ut we consider

lem where we haven variables, vy, vs, ..., v2n, and we The only previous work we have been able to find on non-
wish to assign each variable an integer value in the ranggoolean tractable soft constraints [i€hatib et al, 2001, which
1,2,...,n, subject to the following restrictions: describes a family of tractable soft temporal constraints.



the more general case of functions on tuples over an arbitrarlfor our purposes in this paper we require the same proper-
finite domain. We also allow our functions to take infinite ties as the valued CSP approach, with the additional require-
values. By establishing a new decomposition result for thignent that the aggregation operator has a partial inverse (so
general class of binary submodular functions (Theorem 4.4Yhat any evaluation can be “subtracted” from any larger eval-
we obtain a cubic time algorithm to find the optimal assign-uation). For concreteness, we shall simply assume through-
ment for any set of soft constraints defined by such functions.out this paper that the set of evaluatidfiss either the set of

We give a number of examples to illustrate the many dif-non-negative integers together with infinity, or else the set of
ferent forms of soft constraint that can be defined using binon-negative real numbers together with infinity. Hence, for
nary submodular functions, and we also show that this class iany two evaluationg;, p» € FE, the aggregation gf; andp,
maximal in the sense that no other form of binary constraintis given byp; + p2 € E, and whenp; > py we also have

can be added without sacrificing tractability. p1 — p2 € E. (Note that we seto — 0o = 0).
The elements of the sdt will be used to represent dif-
2 Definitions ferent measure of undesirability, penalties associated with

. . . i different combinations of values. This allows us to complete
Toidentify a tractable class of soft constraints we will need tohq gefinition of a soft constraint satisfaction problem with

restrict the set of functions that are used to specify constraintgye fo|lowing simple definition of a solution to an instance.
Such arestricted set of possible functions will be called a soft

constrainfanguage Definition 2.3 For any soft constraint satisfaction problem
o ] ) instanceP = (V, D, C), anassignmenfor P is a mapping
language overD with evaluations inE is defined to be a set ®p(t), is given by the sum (i.e., aggregation) of the evalua-

of functions,T', such that each € I is a function fromD"  ions for the restrictions of onto each constraint scope, that
to E, for somek € N, wherek is called the arity of. is,

For any given choice of soft constraint languabewe define Op(t) = Z B(t(v1), t(va), ..., t(vp)).
an associated soft constraint satisfaction problem, which we , o
will call sCSP(T"), as follows. (on0zvn) 0)€
A solutionto P is an assignment with the smallest possible
Definition 2.2 Let I" be a soft constraint language ovBr ~ €valuation, and the question is to find a solution.
with evaluations inE. An instanceP of sCSP(T") is a triple
(V,D,C), where: Example 2.4 For any standard constraint satisfaction prob-
e V is a finite set ofvariables which must be assigned lem instgnceP with C“SP cons.traint.s, We can d,e‘cmeAa. cor-
values from the sep. responding soft constraint satisfaction problem instghde
which the range of the evaluation functions of all the con-
straints is the seft0, co}. For each crisp constrainof P, we

define a corresponding soft constrainf P with the same
scope; the evaluation function 8fmaps each tuple allowed
by ¢ to 0, and each tuple disallowed byo oc.

Note that, for any constraint= (o, ¢}, the arity of the con- In this case the evaluation of an assignmieiuir P equals
straint is given bylo|, the length of the constraint scope. The the minimal possible evaluation, 0, if and only gatisfies all
evaluation functionp will be used to specify some measure of the crisp constraints i. 0

of desirability or undesirability associated with each possible .. .
tuple of values oves. Note that the problem of finding a solution to a soft con-

To complete the definition of a soft constraint satisfac-Straint satisfaction problem is an NP optimization problem,
tion problem we need to define how the evaluations obtainetl@t is. it lies in the complexity class NPO (sk@reignou
from each evaluation function are combined and comparectt &l 2007 for a formal definition of this class). If there
in order to define what constitutes an optimal overall solu-€XiSts & polynomial-time algorithm which finds a solution to

tion. Several alternative mathematical approaches to this i€l instances ofCSP(I'), then we shall say thaCSP(T) is
sue have been suggested in the literature: tractable On the other hand, if there is a polynomial-time re-

. . . duction from some NP-complete problemsdSP(T"), then
o In the semiring based approaliistarelliet al, 1999,  \ve shall say thatCSP(T") is NP-hard
the set of possible evaluations, is assumed to be an

algebraic structure equipped with two binary OperaﬂonSExample 2.5Let T be a soft constraint language ov;

satisfying the axioms of a semiring. where|D| = 2. In this casesCSP(T) is a class of Boolean

e Inthe valued CSP approatBistarelliet al, 1999, the  soft constraint satisfaction problems.
set of possible evaluations is assumed to be a totally  If we restrictI" even further, by only allowing functions
ordered algebraic structure with a top and bottom elewith range{0, oo}, as in Example 2.4, thesCSP(I") corre-
ment and a single monotonic binary operation known asponds precisely to a standard Boolean crisp constraint sat-
aggregation isfaction problem. Such problems are sometimes known as

e ('is a set ofoft constraintsEache € C is a pair(o, ¢)
where:o is a list of variables, called thecopeof ¢; and
¢ is an element of of arity |o|, called theevaluation
functionof c.



GENERALIZED SATISFIABILITY problemdSchaefer, 1978  for somea,b € D and some € E. Such a function will be

The complexity ofsCSP(T") for such restricted setE has denoted7[’; 0

been completely characterised, and the six tractable cases ’

have been identifieSchaefer, 1978; Creignaai al.,, 2001. We can explain the choice of name for these functions by con-
Alternatively, if we restrictl" by only allowing functions  sidering the unary functiong, , (z, ). This function returns

with range{0, 1}, thensCSP(I") corresponds precisely to a the valuep if and only if its argument lies in the intervél, b];

standard Boolean maximum satisfiability problem, in whichoutside of this interval it returns the value 0.

the aim is to satisfy the maximum number of crisp constraints. \We shall writeI';; to denote the set of all generalized in-

Such problems are sometimes known Max-SAT prob-  terval functions onD, whereD = {1,2,..., M} with the

lems[Creignouet al, 2001. The complexity ofsCSP(T") usual ordering.

for such restricted sefs has been completely characterised, The main result of this section is Corollary 3.6, which

and the three tractable cases have been identified (see Thefates thatCSP(I';) is tractable. To establish this result we

rem 7.6 ofCreignouet al., 2001). first define a weighted directed gréphssociated with each
We note, in particular, that whencontains just the single instance o6CSP(T'g;).

binary functiong x o g defined by

0 ifz#y Definition 3.2 Let P = (V,{1,..., M}, C) be an instance
¢x0r(T:Y) = 1 otherwise of sCSP(I'¢r). We define the weighted directed gragh
as follows.

thensCSP(T") corresponds to thMAX -SAT problem for the .
exclusive-or predicate, which is known to be NP-hard (see ¢ The vertices ofzp are as follows:

Lemma 7.4 of[Creignouet al., 2001). O (STYU{va|v eV, de{0,1,...,M}).
Example 2.6 Let I' be a soft constraint language over, « The edges ofi» are defined as follows:
where|D| > 3, and assume thdt contains just the set of P , )
all unary functions, together with the single binary function - \'/:V%ri;r‘]itCh{ € V, there is an edge frorsi to v, with
¢rq defined by ©0,
0 ifr—y — For eachv € V, there is an edge fromy to T with
¢pQ(x,y) = { 1 otherwise. weightoo;
o . _ — For eachw € V and eachl € {1,2,..., M — 2},
Even in this very simple case it can be shown #@$P(T") there is an edge fromy, t0 va.1 with weightoo;

is NP-hard[Cohenet al, 2003, by reduction from the _ For each constrain{v, w),n’ , ) € C, there is an

MINIMUM MULTITERMINAL CUT problem[Dahlhauset al,, 7 asb]
1994. O edge fromw; to v,_1 with weightp. These edges

are called “constraint edges”.

The examples above indicate that generalizing the constraint
satisfaction framework to include soft constraints does indeeéxample 3.3 Let P = ({z,y, 2}, {1,2,3,4},C) be an in-
increase the computational complexity, in general. For examstance oCSP(I'¢;) with the following four constraints:
ple, the standar@-SATISFIABILITY problem is tractable, but
the soft constraint satisfaction problem involving only the sin- c1 = ((y, ), i 4) c3 = ((2,9), 1], 3
gle binary Boolean function) x o r, defined at the end of Ex- co = ({y, 2), 77[4,3]> cs = ({2, 2), 77[02074]>
ample 2.5, is NP-hard. Similarly, the standard constraint sat- i ) i ) )
isfaction problem involving only crisp unary constraints and I Ne corresponding weighted directed grapp, is shown in
equality constraints is clearly trivial, but the soft constraintFigure 1. o
satisfaction problem involving only soft unary constraints and
a soft version of the equality constraint, specified by the func-
tion ¢ g defined at the end of Example 2.6, is NP-hard.

However, in the next two sections we will show that it
is possible to identify a large class of functions for which
the corresponding soft constraint satisfaction problem is s
tractable.

3 Generalized interval functions

We begin with a rather restricted class of binary functions,
with a very special structure.

Figure 1: The grapli:p associated with the instan¢e de-

Definition 3.1 Let D be a totally ordered set. A binary func- fined in Example 3.3,

tion, ¢ : D? — E will be called ageneralized interval func-
tion on D if it has the following form:

(y) = 0 fe<aVvy>b; 2This construction was inspired by a similar construction for cer-
olwy) = p otherwise tain Boolean constraints described ithannaet al,, 2004.



corresponding to a constraint froij, and so the edges

Any set of edge<” in the graphGp whose removal leaves
corresponding to the séf form a cut inG'p. Further-

the verticesS andT" disconnected will be called eut If
every edge irC is a constraint edge, ther will be called a more, by the choice oK', the weight of this cut is equal
proper cut Theweightof a cutC' is defined to be the sum of to the evaluation of.

the weights of all the edges . 0

Hence, by using a standard efficient algorithm for kex-
IMUM WEIGHTED CuT problem [Goldberg and Tarjan,
1984, we can find an optimal assignment in cubic time.

Example 3.4 Consider the graplizp shown in Figure 1.
The set{(ys, 20)} is a proper cut inGp with weight
7, which is minimal with respect to inclusion. The set
{{z4,92), (z3,93)} is a proper cut inGp with weight 5,

Corollary 3.6 The time complexity ofsCSP(I’ is
which is again minimal with respect to inclusion. O Y Xty o (Tar)

O(n3|D|?), wheren is the number of variables.
Proposition 3.5 Let P be any instance ofCSP(I'¢;), and
let Gp be the corresponding weighted directed graph.

1. For each minimal proper cut it with weight®, there
is an assignment fgP with evaluation®.

2. For each assignmeritfor P with evaluation®, there is
a proper cut inGp with weight®.

4 Submodular functions
In this section we will consider a rather more general class of
functions, as described [Topkis, 1978.

Definition 4.1 Let D be a totally ordered set. A function,
¢ : D* — E is asubmodular functioron D if, for all

Proof: {ai,...,ax), {b1,...,by) € D*, we have
1. Let C be any minimal proper cut of the graighp, and ¢(min(az,b1),..., min(ax, b)) +d(max(a1, b), ..., max(ax, b))
let Cs be the component aofip \ C connected taS. < élar,...,ax) + ¢(bi, ..., by).

Define the assignment as follows:
te(v) = min{d | vy € Cs}

(Note thattc is well-defined becaus€'s always con-
tainsv,, and never containg,, by construction.)

By the construction of+p, it follows that:
te(v) >d e vy & Cs

Itis easy to check that all unary functions and all generalized
interval functions are submodular. For binary functions, the
definition of submodularity can be simplified, as follows.

Remark 4.2 Let D be a totally ordered set. A binary func-
tion, ¢ : D?> — E is submodular if and only if, for all
u<uz,v<y € D,wehave:

P(u,v) + oz, y) < d(u,y) + o(x, v)

Example 4.3 Let D be the se{1,2,..., M} with the usual
ordering, and consider the binary functian,;, defined by
T (2,y) = M? — xy.

Note that, for any: < z,v < y € D, we have:

Now consider any constraimt = <<U»w>,77[pa,b}> of P,
and its associated edgein Gp. By the definition
of generalized interval constraint and the choice ©f
77[’;7})] (tc(v),tc(w)) = pifand only ifv, 1 ¢ Cs and
wy, € Cg, and hence if and only i joins a vertex inCg
to a vertex not inC's. SinceC' is minimal, this happens
if and only ife € C. Hence, the total weight of the cut 7, (u, v) + 7 (2, y)
C'is equal to the evaluation o§.

2. Conversely, let be an assignment 8, and letK be the <
set of constraints if? with a non-zero evaluation an - _ _
Now consider any path froms to 7' in Gp. If we ex- Hence, by Remark 4.2, the functian, is submodular. O
amine, in order, the constraint edges of this path, anql,[
assume that each of the corresponding constraints evqjﬁ
uates to 0, then we obtain a sequence of assertions of tf]:

= 2M27uv7my
2M? —uy — zv — (x — u)(y — v)

v (u, y) + T (T, v).

follows from Definition 4.1 that the sum of any two sub-

odular functions is submodular. This suggests that in some

following form:

(Uio > M) vV (’Ui1 < al)

(vi, >b2) V (v, <ag) forsomebs > ay
(Vip_, >bk) V (v, <ay) forsomeb, > ap_1
(Vi > bry1) Vo (vi,, <1) forsomebyy > ax

fses it may be possible to express a submodular function as
a sum of simpler submodular functions. For example, for any
unary functiony : D — E we have

Y(w) =Y i (@, 2).
deD

The main result of this section is Theorem 4.4, which states
that anybinary submodular function can also be expressed as

Since the second disjunct of each assertion contradicts sum of generalized interval functions.
the first disjunct of the next, these assertions cannot all
hold simultaneously, so one of the corresponding conTheorem 4.4 Let D be a totally ordered finite set. A binary

straints must in fact give a non-zero evaluation ton

function,s : D? — E is submodular if and only if it can be

Hence, every path frorfi to 7" includes at least one edge expressed as a sum of generalized interval function®on



Proof: By the observations already made, any function Proof: The proof is by reduction fromCSP({¢xor})

which is equal to a sum of generalized interval functions isto sCSP(I" U {¢}), where ¢xor is the binary function

clearly submodular. defined in Example 2.5. It was pointed out in Example 2.5

To establish the converse, we use induction ontifjiet-  thatsCSP({¢xor}) corresponds to th® Ax-SAT problem

nessof ¢, thatis, the number of tuples for which the value of for the exclusive-or predicate, which is known to be NP-

¢ is non-zero. Details are given [Cohenetal, 2003. O  hard[Creignouet al,, 200]. HencesCSP(I"' U {«}) is also
NP-hard. Details of the reduction are given@ohenet al.,
2004. 0

Example 4.5 Consider the binary functiom;; on D =

{1,2,..., M}, defined in Example 4.3. Whel = 3, the

values ofr are given by the following table: 5 Applications

In this section we give a number of examples to illustrate
the wide range of soft constraints which can be shown to be
tractable using the results obtained in the previous sections.

Definition 5.1 For anyk-ary relationR on a setD, we define

Notethat: 1 o 1 anassociated functionp, : D* — E, as follows:
8 7 6 6 6 6 0 0 0 0 if (z,x ) €R
@7 5 3sA=@0 0 0AL@3 3 3AL ¢R(x1,x2,...,mk):{ 1, T2, .., Tk
6 3 0 0 0 0 0 0 0 o0 OtherW|Se.
o 2.0 0 1 0 01 0 1 0 0 0 0 1 By Corollary 4.6, any collection of crisp constraints, where
@2 0 0A+@0 1 0AL@1 1 0A+ each constraint is specified by a relatiGhfor which ¢
2 00 0 1 0 1 10 is unary or binary submodular, can be solved in polynomial
O 0 0 o i 0 00 o 1 0 00 o 1 time, even when combined with other soft constraints that are
@1 0 0AL@0 0 0AL@0 0 0A. also unary or binary submodular.
L oo Lro L oo Example 5.2 The constraint programming language CHIP
Hence, incorporates a number of constraint solving techniques for
m(z,y) = nfay () + nihg(z,2) + arithme_tic and other const_raints. In parti<_:u|ar, it pro_vides a
5 1 1 constraint solver for a restricted class of crisp constraints over
M1 (YY) + 22y (U Y) + iz (2,9) + natural numbers, referred tolaasic constraint§van Henten-
n[lm (z,y) + +m13,2](x,y) + 7][13,1] (z,y). ryck et al, 1994. These basic constraints are of two kinds,

which are referred to as “domain constraints” and “arithmetic
constraints”. The domain constraints describefivan Hen-
M-1 M(M—d) M M-1 . tenrycket al,, 1992 are unary constraints which restrict the
Z Mg, (z,z) + Nid,d] (y,y) + Z Mid+1,e] (z,9) value of a variable to some specified finite subset of the nat-
d=1 e=1 ural numbers. The arithmetic constraints describefizam

We remark that this decomposition is not unique - other deHentenrycletal, 1993 have one of the following forms:

In general, for arbitrary values éff, we havery,(x,y) =

compositions exist, including the symmetric decomposition aX #b aX <bY +¢
(2, y) = Ty (2, y) + 7y (y, 2), wherer), (2, y) = aX =bY +c aX >bY +c
M=1 /2 g2 1 d-1 where variables are represented by upper-case letters, and
Z (”[d,df (z,z) + 77[2d+1,d] (z,y) + Z n[ldJrLe] (z, y)> constants by lower case letters, all constants are non-negative
d=1 e=1 real numbers and is non-zero.
0 For each of these crisp constraints the associated func-

tion given by Definition 5.1 is unary or binary submodular,

Combining Theorem 4.4 with Corollary 3.6, gives: hence, by Corollary 3.6, any problem involving constraints of

this form can be solved in cubic time. Moreover, any other
Corollary 4.6 For any finite soft constraint languagéon a  soft constraints with unary or binary submodular evaluation
finite totally ordered seD, if I" contains only unary or binary  functions can be added to such problems without sacrificing
submc;duI%r functions, then the time complexity@$P(I')  tractability (including the examples below). O
s O(n”|DF"). Now assume, for simplicity, thad = {1,2,..., M }.
The next result shows that the tractable class identified in
Corollary 4.6 is maximal. Example 5.3 Consider the binary linear functiok defined

by A(z,y) = az + by + ¢, wherea, b € RT.
Theorem 4.7 LetI be the set of all binary submodular func-  This function is submodular and hence, by Corollary 3.6,
tions on a totally ordered finite sé, with |D| > 2. any collection of such binary linear soft constraints over the

For any binary function) ¢ T, sCSP(I'U{«}) is NP-hard.  discrete seD can be solved in polynomial time. O



Example 5.4 The Euclidean length functio/x2 + y? is One of the several possible cuts with this weight is indi-
submodular, and can be used to express the constraint theaited by the gray line across the graph, which corresponds to
a 2-dimensional poinfz, y) is “as close to the origin as pos- the solutionv; = 1, vy =1, v3 = 2, v4 = 2, v5 = 3, v5 = 3.
sible”. 0 O
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