
A Maximal Tractable Class of Soft Constraints

David Cohen
Computer Science Department

RHUL, UK

d.cohen@rhul.ac.uk

Martin Cooper
IRIT

University of Toulouse III, France

cooper@irit.fr

Peter Jeavons
OUCL

University of Oxford, UK

p.jeavons@comlab.ox.ac.uk

Andrei Krokhin
Computer Science Department

University of Warwick, UK

ak@dcs.warwick.ac.uk

Abstract

Many optimization problems can be expressed us-
ing some form of soft constraints, where different
measures of desirability are associated with differ-
ent combinations of domain values for specified
subsets of variables. In this paper we identify a
class of soft binary constraints for which the prob-
lem of finding the optimal solution is tractable. In
other words, we show that for any given set of
such constraints, there exists a polynomial time al-
gorithm to determine the assignment having the
best overall combined measure of desirability. This
tractable class includes many commonly-occurring
soft constraints, such as “as near as possible” or “as
soon as possible after”, as well as crisp constraints
such as “greater than”.

1 Introduction
The constraint satisfaction framework is widely acknowl-
edged as a convenient and efficient way to model and solve a
wide variety of problems arising in Artificial Intelligence, in-
cluding planning and scheduling, image processing and natu-
ral language understanding.

In the standard framework aconstraintis usually taken to
be a predicate, or relation, specifying the allowed combina-
tions of values for some fixed collection of variables: we will
refer to such constraints here ascrisp constraints. A num-
ber of authors have suggested that the usefulness of the con-
straint satisfaction framework could be greatly enhanced by
extending the definition of a constraint to include alsosoft
constraints, which allow different measures of desirability to
be associated with different combinations of values[Bistarelli
et al., 1999]. In this extended framework a constraint can
be seen as afunction, mapping each possible combination of
values to a measure of desirability or undesirability. Finding
a solution to a set of constraints then means finding an as-
signment of values to all of the variables which has the best
overall combined desirability measure.

Example 1.1 For example, consider an optimization prob-
lem where we have2n variables,v1, v2, . . . , v2n, and we
wish to assign each variable an integer value in the range
1, 2, . . . , n, subject to the following restrictions:

• Each variablevi should be assigned a value that is as
close as possible toi/2.

• Each pair of variablesvi, v2i should be assigned a pair
of values that are as similar as possible.

To model this situation we might impose the following soft
constraints:

• A unary constraint on eachvi specified by a functionψi,
whereψi(x) = |x− i/2|r for somer ≥ 1.

• A binary constraint on each pairvi, v2i specified by a
functionδr, whereδr(x, y) = |x− y|r for somer ≥ 1.

We would then seek an assignment to all of the variables
which minimizes the sum of these constraint functions,

2n∑

i=1

ψi(vi) +
n∑

i=1

δr(vi, v2i).

The cost of allowing additional flexibility in the specification
of constraints, in order to model requirements of this kind, is
generally an increase in computational difficulty. In the case
of crisp constraints there has been considerable progress in
identifying classes of constraints which aretractable, in the
sense that there exists a polynomial time algorithm to deter-
mine whether or not any collection of constraints from such a
class can be simultaneously satisfied[Feder and Vardi, 1998;
Jeavonset al., 1997]. In the case of soft constraints there
has been a detailed investigation of the tractable cases for
Boolean problems (where each variable has just 2 possible
values)[Creignouet al., 2001], but very little investigation of
the tractable cases over larger domains1, even though there
are many significant results in the literature on combina-
torial optimization which are clearly relevant to this ques-
tion [Nemhauser and Wolsey, 1988].

In this paper we make use of the idea of asubmodular func-
tion [Nemhauser and Wolsey, 1988; Topkis, 1978] to iden-
tify a general class of soft constraints for which there exists
a polynomial time solution algorithm. Submodular functions
are usually defined as real-valued functions on Boolean tu-
ples (≡sets)[Nemhauser and Wolsey, 1988], but we consider

1The only previous work we have been able to find on non-
Boolean tractable soft constraints is[Khatib et al., 2001], which
describes a family of tractable soft temporal constraints.

the more general case of functions on tuples over an arbitrary
finite domain. We also allow our functions to take infinite
values. By establishing a new decomposition result for this
general class of binary submodular functions (Theorem 4.4),
we obtain a cubic time algorithm to find the optimal assign-
ment for any set of soft constraints defined by such functions.

We give a number of examples to illustrate the many dif-
ferent forms of soft constraint that can be defined using bi-
nary submodular functions, and we also show that this class is
maximal, in the sense that no other form of binary constraint
can be added without sacrificing tractability.

2 Definitions
To identify a tractable class of soft constraints we will need to
restrict the set of functions that are used to specify constraints.
Such a restricted set of possible functions will be called a soft
constraintlanguage.

Definition 2.1 Let D andE be fixed sets. Asoft constraint
language overD with evaluations inE is defined to be a set
of functions,Γ, such that eachφ ∈ Γ is a function fromDk

to E, for somek ∈ N, wherek is called the arity ofφ.

For any given choice of soft constraint language,Γ, we define
an associated soft constraint satisfaction problem, which we
will call sCSP(Γ), as follows.

Definition 2.2 Let Γ be a soft constraint language overD
with evaluations inE. An instanceP of sCSP(Γ) is a triple
〈V, D, C〉, where:

• V is a finite set ofvariables, which must be assigned
values from the setD.

• C is a set ofsoft constraints. Eachc ∈ C is a pair〈σ, φ〉
where:σ is a list of variables, called thescopeof c; and
φ is an element ofΓ of arity |σ|, called theevaluation
functionof c.

Note that, for any constraintc = 〈σ, φ〉, the arity of the con-
straint is given by|σ|, the length of the constraint scope. The
evaluation functionφ will be used to specify some measure
of desirability or undesirability associated with each possible
tuple of values overσ.

To complete the definition of a soft constraint satisfac-
tion problem we need to define how the evaluations obtained
from each evaluation function are combined and compared,
in order to define what constitutes an optimal overall solu-
tion. Several alternative mathematical approaches to this is-
sue have been suggested in the literature:

• In the semiring based approach[Bistarelli et al., 1999],
the set of possible evaluations,E, is assumed to be an
algebraic structure equipped with two binary operations,
satisfying the axioms of a semiring.

• In the valued CSP approach[Bistarelli et al., 1999], the
set of possible evaluationsE is assumed to be a totally
ordered algebraic structure with a top and bottom ele-
ment and a single monotonic binary operation known as
aggregation.

For our purposes in this paper we require the same proper-
ties as the valued CSP approach, with the additional require-
ment that the aggregation operator has a partial inverse (so
that any evaluation can be “subtracted” from any larger eval-
uation). For concreteness, we shall simply assume through-
out this paper that the set of evaluationsE is either the set of
non-negative integers together with infinity, or else the set of
non-negative real numbers together with infinity. Hence, for
any two evaluationsρ1, ρ2 ∈ E, the aggregation ofρ1 andρ2

is given byρ1 + ρ2 ∈ E, and whenρ1 ≥ ρ2 we also have
ρ1 − ρ2 ∈ E. (Note that we set∞−∞ = ∞).

The elements of the setE will be used to represent dif-
ferent measure of undesirability, orpenalties, associated with
different combinations of values. This allows us to complete
the definition of a soft constraint satisfaction problem with
the following simple definition of a solution to an instance.

Definition 2.3 For any soft constraint satisfaction problem
instanceP = 〈V, D,C〉, anassignmentfor P is a mapping
t from V to D. Theevaluationof an assignmentt, denoted
ΦP (t), is given by the sum (i.e., aggregation) of the evalua-
tions for the restrictions oft onto each constraint scope, that
is,

ΦP (t) =
∑

〈〈v1,v2,...,vk〉,φ〉∈C

φ(t(v1), t(v2), . . . , t(vk)).

A solution to P is an assignment with the smallest possible
evaluation, and the question is to find a solution.

Example 2.4 For any standard constraint satisfaction prob-
lem instanceP with crisp constraints, we can define a cor-
responding soft constraint satisfaction problem instanceP̂ in
which the range of the evaluation functions of all the con-
straints is the set{0,∞}. For each crisp constraintc of P, we
define a corresponding soft constraintĉ of P̂ with the same
scope; the evaluation function ofĉ maps each tuple allowed
by c to 0, and each tuple disallowed byc to∞.

In this case the evaluation of an assignmentt for P̂ equals
the minimal possible evaluation, 0, if and only ift satisfies all
of the crisp constraints inP.

Note that the problem of finding a solution to a soft con-
straint satisfaction problem is an NP optimization problem,
that is, it lies in the complexity class NPO (see[Creignou
et al., 2001] for a formal definition of this class). If there
exists a polynomial-time algorithm which finds a solution to
all instances ofsCSP(Γ), then we shall say thatsCSP(Γ) is
tractable. On the other hand, if there is a polynomial-time re-
duction from some NP-complete problem tosCSP(Γ), then
we shall say thatsCSP(Γ) is NP-hard.

Example 2.5 Let Γ be a soft constraint language overD,
where|D| = 2. In this casesCSP(Γ) is a class of Boolean
soft constraint satisfaction problems.

If we restrictΓ even further, by only allowing functions
with range{0,∞}, as in Example 2.4, thensCSP(Γ) corre-
sponds precisely to a standard Boolean crisp constraint sat-
isfaction problem. Such problems are sometimes known as

GENERALIZED SATISFIABILITY problems[Schaefer, 1978].
The complexity ofsCSP(Γ) for such restricted setsΓ has
been completely characterised, and the six tractable cases
have been identified[Schaefer, 1978; Creignouet al., 2001].

Alternatively, if we restrictΓ by only allowing functions
with range{0, 1}, thensCSP(Γ) corresponds precisely to a
standard Boolean maximum satisfiability problem, in which
the aim is to satisfy the maximum number of crisp constraints.
Such problems are sometimes known asMAX -SAT prob-
lems [Creignouet al., 2001]. The complexity ofsCSP(Γ)
for such restricted setsΓ has been completely characterised,
and the three tractable cases have been identified (see Theo-
rem 7.6 of[Creignouet al., 2001]).

We note, in particular, that whenΓ contains just the single
binary functionφXOR defined by

φXOR(x, y) =
{

0 if x 6= y
1 otherwise

thensCSP(Γ) corresponds to theMAX -SAT problem for the
exclusive-or predicate, which is known to be NP-hard (see
Lemma 7.4 of[Creignouet al., 2001]).

Example 2.6 Let Γ be a soft constraint language overD,
where|D| ≥ 3, and assume thatΓ contains just the set of
all unary functions, together with the single binary function
φEQ defined by

φEQ(x, y) =
{

0 if x = y
1 otherwise.

Even in this very simple case it can be shown thatsCSP(Γ)
is NP-hard [Cohen et al., 2002], by reduction from the
M INIMUM MULTITERMINAL CUT problem[Dahlhauset al.,
1994].

The examples above indicate that generalizing the constraint
satisfaction framework to include soft constraints does indeed
increase the computational complexity, in general. For exam-
ple, the standard2-SATISFIABILITY problem is tractable, but
the soft constraint satisfaction problem involving only the sin-
gle binary Boolean function,φXOR, defined at the end of Ex-
ample 2.5, is NP-hard. Similarly, the standard constraint sat-
isfaction problem involving only crisp unary constraints and
equality constraints is clearly trivial, but the soft constraint
satisfaction problem involving only soft unary constraints and
a soft version of the equality constraint, specified by the func-
tion φEQ defined at the end of Example 2.6, is NP-hard.

However, in the next two sections we will show that it
is possible to identify a large class of functions for which
the corresponding soft constraint satisfaction problem is
tractable.

3 Generalized interval functions
We begin with a rather restricted class of binary functions,
with a very special structure.

Definition 3.1 Let D be a totally ordered set. A binary func-
tion, φ : D2 → E will be called ageneralized interval func-
tion onD if it has the following form:

φ(x, y) =
{

0 if x < a ∨ y > b;
ρ otherwise

for somea, b ∈ D and someρ ∈ E. Such a function will be
denotedηρ

[a,b].

We can explain the choice of name for these functions by con-
sidering the unary functionηρ

[a,b](x, x). This function returns
the valueρ if and only if its argument lies in the interval[a, b];
outside of this interval it returns the value 0.

We shall writeΓGI to denote the set of all generalized in-
terval functions onD, whereD = {1, 2, . . . , M} with the
usual ordering.

The main result of this section is Corollary 3.6, which
states thatsCSP(ΓGI) is tractable. To establish this result we
first define a weighted directed graph2 associated with each
instance ofsCSP(ΓGI).

Definition 3.2 Let P = 〈V, {1, . . . , M}, C〉 be an instance
of sCSP(ΓGI). We define the weighted directed graphGP
as follows.

• The vertices ofGP are as follows:

{S, T} ∪ {vd | v ∈ V, d ∈ {0, 1, . . . ,M}}.
• The edges ofGP are defined as follows:

– For eachv ∈ V , there is an edge fromS to vM with
weight∞;

– For eachv ∈ V , there is an edge fromv0 to T with
weight∞;

– For eachv ∈ V and eachd ∈ {1, 2, . . . , M − 2},
there is an edge fromvd to vd+1 with weight∞;

– For each constraint〈〈v, w〉, ηρ
[a,b]〉 ∈ C, there is an

edge fromwb to va−1 with weightρ. These edges
are called “constraint edges”.

Example 3.3 Let P = 〈{x, y, z}, {1, 2, 3, 4}, C〉 be an in-
stance ofsCSP(ΓGI) with the following four constraints:

c1 = 〈〈y, x〉, η3
[3,4]〉 c3 = 〈〈z, y〉, η7

[1,3]〉
c2 = 〈〈y, z〉, η2

[4,3]〉 c4 = 〈〈z, z〉, η∞[2,4]〉
The corresponding weighted directed graphGP , is shown in
Figure 1.

x4 x3 x2 x1 x0

y4 y3 y2 y1 y0

z4 z3 z2 z1 z0

3

72

�

S T

Figure 1: The graphGP associated with the instanceP de-
fined in Example 3.3.

2This construction was inspired by a similar construction for cer-
tain Boolean constraints described in[Khannaet al., 2000].

Any set of edgesC in the graphGP whose removal leaves
the verticesS and T disconnected will be called acut. If
every edge inC is a constraint edge, thenC will be called a
proper cut. Theweightof a cutC is defined to be the sum of
the weights of all the edges inC.

Example 3.4 Consider the graphGP shown in Figure 1.
The set {〈y3, z0〉} is a proper cut inGP with weight
7, which is minimal with respect to inclusion. The set
{〈x4, y2〉, 〈z3, y3〉} is a proper cut inGP with weight 5,
which is again minimal with respect to inclusion.

Proposition 3.5 Let P be any instance ofsCSP(ΓGI), and
let GP be the corresponding weighted directed graph.

1. For each minimal proper cut inGP with weightΦ, there
is an assignment forP with evaluationΦ.

2. For each assignmentt for P with evaluationΦ, there is
a proper cut inGP with weightΦ.

Proof:

1. Let C be any minimal proper cut of the graphGP , and
let CS be the component ofGP \ C connected toS.
Define the assignmenttC as follows:

tC(v) = min{d | vd ∈ CS}
(Note thattC is well-defined becauseCS always con-
tainsvM , and never containsv0, by construction.)
By the construction ofGP , it follows that:

tC(v) > d ⇔ vd 6∈ CS

Now consider any constraintc = 〈〈v, w〉, ηρ
[a,b]〉 of P,

and its associated edgee in GP . By the definition
of generalized interval constraint and the choice oftC ,
ηρ
[a,b](tC(v), tC(w)) = ρ if and only if va−1 6∈ CS and

wb ∈ CS , and hence if and only ife joins a vertex inCS

to a vertex not inCS . SinceC is minimal, this happens
if and only if e ∈ C. Hence, the total weight of the cut
C is equal to the evaluation oftC .

2. Conversely, lett be an assignment toP, and letK be the
set of constraints inP with a non-zero evaluation ont.
Now consider any path fromS to T in GP . If we ex-
amine, in order, the constraint edges of this path, and
assume that each of the corresponding constraints eval-
uates to 0, then we obtain a sequence of assertions of the
following form:

(vi0 > M) ∨ (vi1 < a1)
(vi1 > b2) ∨ (vi2 < a2) for someb2 ≥ a1

...
(vik−1 > bk) ∨ (vik

< ak) for somebk ≥ ak−1

(vik
> bk+1) ∨ (vik+1 < 1) for somebk+1 ≥ ak

Since the second disjunct of each assertion contradicts
the first disjunct of the next, these assertions cannot all
hold simultaneously, so one of the corresponding con-
straints must in fact give a non-zero evaluation ont.
Hence, every path fromS to T includes at least one edge

corresponding to a constraint fromK, and so the edges
corresponding to the setK form a cut inGP . Further-
more, by the choice ofK, the weight of this cut is equal
to the evaluation oft.

Hence, by using a standard efficient algorithm for theM IN-
IMUM WEIGHTED CUT problem [Goldberg and Tarjan,
1988], we can find an optimal assignment in cubic time.

Corollary 3.6 The time complexity ofsCSP(ΓGI) is
O(n3|D|3), wheren is the number of variables.

4 Submodular functions
In this section we will consider a rather more general class of
functions, as described in[Topkis, 1978].

Definition 4.1 Let D be a totally ordered set. A function,
φ : Dk → E is a submodular functionon D if, for all
〈a1, . . . , ak〉, 〈b1, . . . , bk〉 ∈ Dk, we have

φ(min(a1, b1), . . . , min(ak, bk))+φ(max(a1, b1), . . . , max(ak, bk))

≤ φ(a1, . . . , ak) + φ(b1, . . . , bk).

It is easy to check that all unary functions and all generalized
interval functions are submodular. For binary functions, the
definition of submodularity can be simplified, as follows.

Remark 4.2 Let D be a totally ordered set. A binary func-
tion, φ : D2 → E is submodular if and only if, for all
u < x, v < y ∈ D, we have:

φ(u, v) + φ(x, y) ≤ φ(u, y) + φ(x, v)

Example 4.3 Let D be the set{1, 2, . . . ,M} with the usual
ordering, and consider the binary functionπM , defined by
πM (x, y) = M2 − xy.

Note that, for anyu < x, v < y ∈ D, we have:

πM (u, v) + πM (x, y) = 2M2 − uv − xy

= 2M2 − uy − xv − (x− u)(y − v)

≤ πM (u, y) + πM (x, v).

Hence, by Remark 4.2, the functionπM is submodular.

It follows from Definition 4.1 that the sum of any two sub-
modular functions is submodular. This suggests that in some
cases it may be possible to express a submodular function as
a sum of simpler submodular functions. For example, for any
unary functionψ : D → E we have

ψ(x) ≡
∑

d∈D

η
ψ(d)
[d,d] (x, x).

The main result of this section is Theorem 4.4, which states
that anybinarysubmodular function can also be expressed as
a sum of generalized interval functions.

Theorem 4.4 Let D be a totally ordered finite set. A binary
function,φ : D2 → E is submodular if and only if it can be
expressed as a sum of generalized interval functions onD.

Proof: By the observations already made, any functionφ
which is equal to a sum of generalized interval functions is
clearly submodular.

To establish the converse, we use induction on thetight-
nessof φ, that is, the number of tuples for which the value of
φ is non-zero. Details are given in[Cohenet al., 2002].

Example 4.5 Consider the binary functionπM on D =
{1, 2, . . . , M}, defined in Example 4.3. WhenM = 3, the
values ofπ3 are given by the following table:

π3 1 2 3
1 8 7 6
2 7 5 3
3 6 3 0

Note that:0
@

8 7 6
7 5 3
6 3 0

1
A =

0
@

6 6 6
0 0 0
0 0 0

1
A+

0
@

0 0 0
3 3 3
0 0 0

1
A+

0
@

2 0 0
2 0 0
2 0 0

1
A+

0
@

0 1 0
0 1 0
0 1 0

1
A+

0
@

0 0 0
1 1 0
1 1 0

1
A+

0
@

0 0 0
1 0 0
1 0 0

1
A+

0
@

0 0 0
0 0 0
1 1 0

1
A+

0
@

0 0 0
0 0 0
1 0 0

1
A .

Hence,

π3(x, y) = η6
[1,1](x, x) + η3

[2,2](x, x) +

η2
[1,1](y, y) + η1

[2,2](y, y) + η1
[2,2](x, y) +

η1
[2,1](x, y) + +η1

[3,2](x, y) + η1
[3,1](x, y).

In general, for arbitrary values ofM , we haveπM (x, y) =
M−1∑

d=1

(
η

M(M−d)
[d,d] (x, x) + ηM−d

[d,d] (y, y) +
M−1∑
e=1

η1
[d+1,e](x, y)

)

We remark that this decomposition is not unique - other de-
compositions exist, including the symmetric decomposition
πM (x, y) = π′M (x, y) + π′M (y, x), whereπ′M (x, y) =
M−1∑

d=1

(
η

(M2−d2)
2

[d,d] (x, x) + η
1
2
[d+1,d](x, y) +

d−1∑
e=1

η1
[d+1,e](x, y)

)

Combining Theorem 4.4 with Corollary 3.6, gives:

Corollary 4.6 For any finite soft constraint languageΓ on a
finite totally ordered setD, if Γ contains only unary or binary
submodular functions, then the time complexity ofsCSP(Γ)
is O(n3|D|3).
The next result shows that the tractable class identified in
Corollary 4.6 is maximal.

Theorem 4.7 LetΓ be the set of all binary submodular func-
tions on a totally ordered finite setD, with |D| ≥ 2.

For any binary functionψ 6∈ Γ, sCSP(Γ∪{ψ}) is NP-hard.

Proof: The proof is by reduction fromsCSP({φXOR})
to sCSP(Γ ∪ {ψ}), where φXOR is the binary function
defined in Example 2.5. It was pointed out in Example 2.5
that sCSP({φXOR}) corresponds to theMAX -SAT problem
for the exclusive-or predicate, which is known to be NP-
hard[Creignouet al., 2001]. HencesCSP(Γ ∪ {ψ}) is also
NP-hard. Details of the reduction are given in[Cohenet al.,
2002].

5 Applications
In this section we give a number of examples to illustrate
the wide range of soft constraints which can be shown to be
tractable using the results obtained in the previous sections.

Definition 5.1 For anyk-ary relationR on a setD, we define
anassociated function, φR : Dk → E, as follows:

φR(x1, x2, . . . , xk) =
{

0 if 〈x1, x2, . . . , xk〉 ∈ R
∞ otherwise.

By Corollary 4.6, any collection of crisp constraints, where
each constraint is specified by a relationR for which φR

is unary or binary submodular, can be solved in polynomial
time, even when combined with other soft constraints that are
also unary or binary submodular.

Example 5.2 The constraint programming language CHIP
incorporates a number of constraint solving techniques for
arithmetic and other constraints. In particular, it provides a
constraint solver for a restricted class of crisp constraints over
natural numbers, referred to asbasic constraints[van Henten-
ryck et al., 1992]. These basic constraints are of two kinds,
which are referred to as “domain constraints” and “arithmetic
constraints”. The domain constraints described in[van Hen-
tenrycket al., 1992] are unary constraints which restrict the
value of a variable to some specified finite subset of the nat-
ural numbers. The arithmetic constraints described in[van
Hentenrycket al., 1992] have one of the following forms:

aX 6= b aX ≤ bY + c
aX = bY + c aX ≥ bY + c

where variables are represented by upper-case letters, and
constants by lower case letters, all constants are non-negative
real numbers anda is non-zero.

For each of these crisp constraints the associated func-
tion given by Definition 5.1 is unary or binary submodular,
hence, by Corollary 3.6, any problem involving constraints of
this form can be solved in cubic time. Moreover, any other
soft constraints with unary or binary submodular evaluation
functions can be added to such problems without sacrificing
tractability (including the examples below).

Now assume, for simplicity, thatD = {1, 2, . . . , M}.

Example 5.3 Consider the binary linear functionλ defined
by λ(x, y) = ax + by + c, wherea, b ∈ R+.

This function is submodular and hence, by Corollary 3.6,
any collection of such binary linear soft constraints over the
discrete setD can be solved in polynomial time.

Example 5.4 The Euclidean length function
√

x2 + y2 is
submodular, and can be used to express the constraint that
a 2-dimensional point〈x, y〉 is “as close to the origin as pos-
sible”.

Example 5.5 The following functions are all submodular:

• δr(x, y) = |x− y|r, wherer ∈ R, r ≥ 1.
The functionδr can be used to express the constraint
that: “The values assigned to the variablesx and y
should be as similar as possible”.

• δ+
r (x, y) = (max(x− y, 0))r, wherer ∈ R, r ≥ 1.

The functionδ+
r can be used to express the constraint

that: “The value ofx is either less than or as near as
possible toy”.

• δ≥r (x, y) =
{ |x− y|r if x ≥ y
∞ otherwise

wherer ∈ R, r ≥ 1.
The functionδ≥r can be used to express the temporal
constraint that: “x occurs as soon as possible aftery”.

Example 5.6 Reconsider the optimization problem defined
in Example 1.1. Sinceψi is unary, andδr is binary submod-
ular (Example 5.5), this problem can be solved in cubic time,
using the methods developed in this paper.

LetP be the instance withn = 3 andr = 2. The values of
δ2 are given by the following table:

δ2 1 2 3
1 0 1 4
2 1 0 1
3 4 1 0

Hence,

δ2(x, y) = η1
[2,1](x, y) + η1

[2,1](y, x) + η1
[3,2](x, y) +

η1
[3,2](y, x) + η2

[3,1](x, y) + η2
[3,1](y, x)

Using this decomposition forδ2, we can construct the graph
GP corresponding to the instanceP, as follows.

v13
v12 v11 v10

S T

v23

v22 v21 v20

v33 v32 v31 v30

v43
v42 v41 v40

v53
v52 v51 v50

v63 v62 v61 v60

4

9/4

1

1/4

25/4

1

1/4

1/4

9/4

1/4

1

9/4

1/4

1
4

1 1

1

1

22

221

12 2

The minimum weight of any cut in this graph is114 , and
hence the optimal evaluation of any assignment forP is 11

4 .

One of the several possible cuts with this weight is indi-
cated by the gray line across the graph, which corresponds to
the solutionv1 = 1, v2 = 1, v3 = 2, v4 = 2, v5 = 3, v6 = 3.

References
[Bistarelli et al., 1999] S. Bistarelli, U. Montanari, F. Rossi,

T. Schiex, G. Verfaillie, and H. Fargier. Semiring-based CSPs
and valued CSPs: Frameworks, properties, and comparison.Con-
straints, 4:199–240, 1999.

[Cohenet al., 2002] D. Cohen, M. Cooper, P. Jeavons, and
A. Krokhin. A tractable class of soft constraints. Technical
Report CSD-TR-02-14, Computer Science Department, Royal
Holloway, University of London, Egham, Surrey, UK, Decem-
ber 2002.

[Creignouet al., 2001] N. Creignou, S. Khanna, and M. Sudan.
Complexity Classifications of Boolean Constraint Satisfaction
Problems, volume 7 ofSIAM Monographs on Discrete Mathe-
matics and Applications. 2001.

[Dahlhauset al., 1994] E. Dahlhaus, D.S. Johnson, C.H. Papadim-
itriou, P.D. Seymour, and M. Yannakakis. The complexity of
multiterminal cuts.SIAM Journal on Computing, 23(4):864–894,
1994.

[Feder and Vardi, 1998] T. Feder and M.Y. Vardi. The computa-
tional structure of monotone monadic SNP and constraint satis-
faction: A study through Datalog and group theory.SIAM Jour-
nal of Computing, 28:57–104, 1998.

[Goldberg and Tarjan, 1988] A. Goldberg and R.E. Tarjan. A new
approach to the maximum flow problem.Journal of the ACM,
35:921–940, 1988.

[Jeavonset al., 1997] P.G. Jeavons, D.A. Cohen, and M. Gyssens.
Closure properties of constraints.Journal of the ACM, 44:527–
548, 1997.

[Khannaet al., 2000] S. Khanna, M. Sudan, L. Trevisan, and
D. Williamson. The approximability of constraint satisfaction
problems.SIAM Journal on Computing, 30(6):1863–1920, 2000.

[Khatibet al., 2001] L. Khatib, P. Morris, R. Morris, and F. Rossi.
Temporal constraint reasoning with preferences. InProceedings
of the 17th International Joint Conference on Artificial Intelli-
gence (IJCAI-01), pages 322–327, Seattle, USA, 2001.

[Nemhauser and Wolsey, 1988] G.L. Nemhauser and L.A. Wolsey.
Integer and Combinatorial Optimization. John Wiley & Sons,
1988.

[Schaefer, 1978] T.J. Schaefer. The complexity of satisfiability
problems. InProceedings 10th ACM Symposium on Theory of
Computing, STOC’78, pages 216–226, 1978.

[Topkis, 1978] D.M. Topkis. Minimizing a submodular function on
a lattice.Operations Research, 26:305–321, 1978.

[van Hentenrycket al., 1992] P. van Hentenryck, Y. Deville, and C-
M. Teng. A generic arc-consistency algorithm and its specializa-
tions. Artificial Intelligence, 57:291–321, 1992.

