Supermodular Functions and the Complexity
of Max CSP*

David Cohen?, Martin Cooper?, Peter Jeavons ¢,
Andrei Krokhin 4*

& Department of Computer Science, Royal Holloway, University of London, Egham,
Surrey, TW20 0EX, UK

PIRIT, University of Toulouse III, 31062 Toulouse, France
¢Computing Laboratory, University of Ozford, Ozford OX1 3QD, UK

dDepartment of Computer Science, University of Durham, Durham, DH1 3LE,
UK, tel: +44 191 8341743, fax: +44 191 3341701

Abstract

In this paper we study the complexity of the maximum constraint satisfaction prob-
lem (MAX CSP) over an arbitrary finite domain. An instance of MAxX CSP consists
of a set of variables and a collection of constraints which are applied to certain
specified subsets of these variables; the goal is to find values for the variables which
maximize the number of simultaneously satisfied constraints. Using the theory of
sub- and supermodular functions on finite lattice-ordered sets, we obtain the first
examples of general families of efficiently solvable cases of Max CSP for arbitrary
finite domains. In addition, we provide the first dichotomy result for a special class
of non-Boolean MAX CSP, by considering binary constraints given by supermodu-
lar functions on a totally ordered set. Finally, we show that the equality constraint
over a non-Boolean domain is non-supermodular, and, when combined with some
simple unary constraints, gives rise to cases of MAX CSP which are hard even to
approximate.

Key words: Complexity, constraint satisfaction problem, optimization,
supermodularity

* A preliminary version of some parts of this paper appears in Proceedings of
STACS’04, Montpellier, France, 2004.
* Corresponding author.

Email addresses: d.cohen@rhul.ac.uk (David Cohen), cooper@irit.fr
(Martin Cooper), peter. jeavons@comlab.ox.ac.uk (Peter Jeavons),
andrei.krokhin@durham.ac.uk (Andrei Krokhin).

Preprint submitted to Elsevier Science 27 October 2004



1 Introduction

The main object of our study in this paper is the maximum constraint sat-
isfaction problem (MAX CSP) where one is given a collection of constraints
on overlapping sets of variables and the goal is to find an assignment of val-
ues to the variables that maximizes the number of satisfied constraints. A
number of classic optimization problems including MAx 3-SaT, Max Cur
and MAX DicuT can be represented in this framework, and it can also be
used to model optimization problems arising in more applied settings, such as
database design [11].

The MAX-CSP framework has been well-studied in the Boolean case, that is,
when the set of values for the variables is {0, 1}. Many fundamental results
have been obtained, concerning both complexity classifications and approx-
imation properties (see, e.g., [8,9,21,24,25,37]). In the non-Boolean case, a
number of results have been obtained that concern approximation proper-
ties (see, e.g., [11,14,15,33]). However, there has so far been very little study
of efficient exact algorithms, or complexity, for subproblems of non-Boolean
Max CSP. This paper presents a general approach which is aimed at filling
this gap.

We study a standard parameterized version of the MAx CSP, in which re-
strictions may be imposed on the types of constraints allowed in the instances.
In particular, we investigate which restrictions make such problems tractable,
by allowing a polynomial time algorithm to find an optimal assignment. This
setting has been extensively studied and completely classified in the Boolean
case [8,9,24,25]. In contrast, we consider here the case where the set of possible
values is an arbitrary finite set.

Experience in the study of various forms of constraint satisfaction [2-5,23| has
shown that the more general form of such problems, in which the domain is
an arbitrary finite set, is often considerably more difficult to analyze than the
Boolean case. The techniques developed for the Boolean case typically involve
the careful manipulation of logical formulas; such techniques do not readily
extend to larger domains. For example, Schaefer [31] obtained a complete
classification of complexity for the standard constraint satisfaction problem
in the Boolean case using such techniques in 1978; although he raised the
question of generalizing this result to larger domains in the same paper, little
progress was made for the next twenty years.

The key step in the analysis of the standard constraint satisfaction prob-
lem [3,4] was the discovery that the characterization of the tractable cases
over the Boolean domain can be restated in an algebraic form [23]. This alge-
braic description of the characterization has also proved to be a key step in the



analysis of the counting constraint satisfaction problem [5] and the quantified
constraint satisfaction problem [2]. However, this form of algebraic descrip-
tion does not provide a suitable tool for analyzing the MAX CSP, which is
our focus here.

The main contribution of this paper is the first general approach to and
the first general results about the complexity of subproblems of non-Boolean
Max CSP. We point out that the characterization of the tractable cases of
Max CSP over a Boolean domain can also be restated in an algebraic form,
but using a rather different algebraic framework: we show that they can be
characterized using the property of supermodularity. We also show how this
property can be generalized to the non-Boolean case, and hence used to iden-
tify large families of tractable subproblems of the non-Boolean MAx CSP.
Moreover, we give some results to demonstrate how non-supermodularity can
cause hardness of the corresponding subproblem.

The properties of sub- and supermodularity have been extensively used to
study combinatorial optimization problems in other contexts. In particular,
the problem of minimizing a submodular set function has been thoroughly
studied, due to its applications across many research areas [17,20,22,26,27].
The dual problem of maximizing a supermodular function has found inter-
esting applications in diverse economic models, such as supermodular games
(see [36]). Submodular functions defined on (products of) totally ordered sets
correspond precisely to Monge matrices and arrays (see, for example, sur-
vey [6]) which play an important role in solving a number of optimization
problems including travelling salesman, assignment and transportation prob-
lems [6]. Hence this paper also unifies, for the first time, the study of the
Max CSP with many other areas of combinatorial optimization.

The structure of the paper is as follows. In Section 2 we discuss the MAx CSP
problem, its Boolean case, its complexity, and the relevance of sub- and su-
permodularity. In Sections 3 and 4, we give two different generalizations for
the (unique) non-trivial tractable case of Boolean MaAX CSP: one to gen-
eral supermodular constraints on restricted types of ordered domains (dis-
tributive lattices), and the other to a restricted form of supermodular con-
straint on more general ordered domains (arbitrary lattices). For the second
case, we are able to give a cubic time algorithm, based on a reduction to
the MIN CuT problem. Section 5 describes a first dichotomy result for non-
Boolean Max CSP, namely, for the case when the set of allowed constraints
contains all binary supermodular functions on a chain. As further evidence
that non-supermodularity causes hardness of MAX CSP, Section 6 establishes
that, in the non-Boolean case, allowing just the (non-supermodular) equality
constraint and unary constraints gives rise to versions of MAX CSP that are
hard even to approximate. Finally, in Section 7 we discuss our ideas in the
light of the results obtained, and describe possible future work.



2 Preliminaries

Throughout the paper, let D denote a finite set, with |D| > 1. Let Rgn) denote
the set of all m-ary predicates over D, that is, functions from D™ to {0, 1},

and let Rp = U_, R,

Definition 2.1 A constraint over a set of variables V.= {x1,z9,...,x,}, is
an expression of the form f(x) where

o fc R(Dm) is called the constraint function;

o x=(z4,...,2;,) is called the constraint scope.
The constraint f is said to be satisfied on a tuple a = (a;,,...,a;,) € D™ if
fla)=1.

Definition 2.2 An instance of MAX CSP is a finite collection of constraints
{filx1),..., f,(x)}, ¢ > 1, over a set of variables V. = {x1,...,x,}, where
fi € Rp for all1 <1 < q. The goal is to find an assignment ¢ : V — D that
maximizes the number of satisfied constraints.

Arguably, it is more appropriate for our purposes to consider the 0,1 values
taken by constraint functions as integers and not as Boolean values; the goal
in a MAX CSP instance is then to maximize the function f : D" — z* (where
Z* is the set all non-negative integers), defined by

q

f(Il, Ce ,.Tn) = Zfl(xl)
i=1
The weighted version of the MAX CSP problem, in which each constraint
fi(x;) has associated weight p; € Z*, can be viewed as the problem of maxi-
mizing the function

f(l’l, . ,l’n) = Z'Ol . fz(Xz)
=1

In fact, the two versions of MAX CSP can be shown to be equivalent (as in |9,
Lemma 7.2]).

Throughout the paper, F will denote a finite subset of Rp which does not
contain any unsatisfiable predicate (taking the value 0 on all tuples of ar-
guments) , and Max CSP(F) will denote the restriction of Max CSP to
instances where all constraint functions belong to F. The central problem we
consider in this paper is the following.

Problem 1 Classify the complezity of (weighted) MAXx CSP(F) for all pos-
sible sets F.



Though we do not solve this problem completely, we produce substantial evi-
dence that, by further exploiting the new ideas and results in this paper, one
can make significant progress on this problem.

Recall that PO and NPO are optimization analogs of P and NP; that is, they
are classes of optimization problems that can be solved in deterministic poly-
nomial time and non-deterministic polynomial time, respectively. We will call
problems in PO tractable. An optimization problem is called NP-hard if it
admits a polynomial time Turing reduction from some NP-complete problem.
The approximation complexity class APX consists of all NPO problems for
which there is a polynomial time approximation algorithm whose performance
ratio is bounded by a constant. A problem in APX is called APX-complete
if every problem in APX has a special approximation-preserving reduction,
called an AP-reduction, to it. It is not hard to show that every APX-complete
problem is NP-hard. For more detailed definitions of approximation and op-
timization complexity classes and reductions, the reader is referred to [1,9,29].

Proposition 2.3 Max CSP(F) belongs to APX for every F.

Proof. For the case | D| = 2, our statement is Theorem 13.2 [28] or Proposition
5.17 [9]. Generalisation to larger finite domains is almost identical to the proofs
of the above mentioned results, as we will now show.

Let Z be an instance of MAX CSP(F) with m constraints and n variables
Z1,...,%,. Let k be the maximum arity of a predicate in F. We may without
loss of generality assume that every constraint f;(x;) in Z has k different
variables, some of which may be dummy and hence not mentioned explicitly.
If t; is the number of assignments of values to the k variables of f; that
satisfy f;, then a random assignment of values to all n variables satisfies f;
with probability p; = éﬁ > ﬁ. Hence, a random assignment is expected to
satisfy p(Z) = > p; > [pJF constraints. An assignment satisfying at least DF
constraints can be found deterministically as follows. If D = {d;,...,d;} then
p(Z) = %Zézlp(I[xl = d;]) where Z[[z; = d;| is T with z; instantiated with
the value d;. Hence, there is some s, 1 < s <, such that p(Z[z; = d;]) > p(Z).
Clearly, we can compute all values p(Z[z; = d;]) in polynomial time (just as
we computed p(Z)), find ds and fix this value for x;. If we continue like this
with x5 and so on, we will obtain the required assignment. Since the optimum
number of satisfied constraints is obviously not greater than m (the total
number of constraints), this is a polynomial-time algorithm that satisfies at

least ﬁ of the optimum number of satisfied constraints in any instance. =

A complete classification of the complexity of MAx CSP(F) for a two-element
set D was obtained in [8,9,25]. Before stating that result we need to give some
definitions.



Definition 2.4 An endomorphism of F is a unary operation m on D such
that f(ay,...,an) = 1 = f(r(a1),...,7(am)) = 1 for all f € F and all
(a1,...,a,) € D™. We will say that F is a core if every endomorphism of F
is injective (i.e. a permutation).

The intuition here is that if F is not a core then it has a non-injective en-
domorphism 7, which implies that, for every assignment ¢, there is another
assignment 7w¢ that satisfies all constraints satisfied by ¢ and uses only a re-
stricted set of values, so the problem can be reduced to a problem over this
smaller set. For example, if D = {0,1} then F is a not a core if and only if
fla,,...,a) =1 for some a € D and all f € F. Obviously, in this case the
assignment that assigns the value a to all variables satisfies all constraints, so
it is optimal, and hence MAX CSP(F) is trivial.

Definition 2.5 ([9]) A function f € R%?l} is called 2-monotone if it can be
expressed as follows:

flr,..o,zn) =1 (zy Ao A) V(T Ao ANTG,),

where either of the two disjuncts may be empty (i.e., the values of s ort may
be zero).

Theorem 2.6 ([8,9,25]) Let F C Ry 1y be a core. If every f € F is 2-mon-
otone, then (weighted) MAX CSP(F) is in PO, otherwise it is APX-complete.

As we announced in the introduction, the main new tools which we introduce
to generalize (the tractability part of) this result will be the conditions of
sub- and supermodularity. We will consider the most general type of sub-
and supermodular functions, that is, those defined on a (general) lattice, as
in [35,36]. Recall that a partial order C on a set D is called a lattice order if,
for every x,y € D, there exist a greatest lower bound x My and a least upper
bound z LI y. The algebra £ = (D,M,U) on D with two binary operations M
and Ll is called a lattice, and we have x C y < My =z < x Uy = y. As
is well known, every finite lattice has a least element and a greatest element,
which we will denote by 0, and 1., respectively. In fact, since D is finite,
the existence of both a greatest lower bound for every pair of elements and
a greatest element is sufficient for a partial order to be a lattice order. (For
more information about lattices, see, e.g., [12].)

For tuples a = (ay,...,a,), b= (b1,...,b,) in D" let amb and allb denote
the tuples (a; Mby,...,a,Mb,) and (a; Uby, ..., a, Ub,), respectively.

Definition 2.7 Let £ = (D,MN,U) be a lattice. A function f : D" — 7% is
called submodular on L if

f(amb)+ f(aUb) < f(a)+ f(b) for alla,b € D™



It is called supermodular on L if
f(amb)+ f(aUb) > f(a)+ f(b) for alla,b e D™

The sets of all submodular and supermodular functions on L, will be denoted
Sbmod, and Spmod,, respectively.

Note that sub- and supermodular functions are usually defined to take values
in R, but, in the context of Max CSP, it is appropriate to restrict the range
to consist of non-negative integers.

The properties of sub- and supermodularity are most often considered for
functions defined on subsets of a set, which corresponds to the special case
of Definition 2.7 where |D| = 2. A function on subsets of a set is submod-
ular if f(XUY)+ f(XNY) < f(X)+ f(Y) for all subsets X,Y, and it
is supermodular if the inverse inequality holds [17,27]. The problem of sub-
modular set function minimization has attracted considerable attention from
researchers during the last twenty years (see, e.g., [17,20,22,26,27,32]), in par-
ticular, due to its numerous applications in combinatorial optimization. Some
results have also been obtained that concern minimization of a submodular
function defined on a family of subsets [18,20,22,32], or on a finite grid (or
integer lattice) [16,34], or on general lattices [35,36].

Observation 2.8 Let fi; and fy be submodular functions on a lattice L.

e For any constants, oy, an € Z, the function oy fi + ao fo is also submodular.

e For any number K, the function f' = K — f1, is supermodular.

o The function f; is submodular on the dual lattice L2 obtained by reversing
the order of L.

(Corresponding statements also hold when the terms submodular and super-
modular are exchanged throughout.)

The next proposition shows that the non-trivial tractable case of Boolean MAX
CSP identified in Theorem 2.6 can be characterized using supermodularity.

Proposition 2.9 A function f € Ry is 2-monotone if and only if it is
supermodular.

Proof. It is straightforward to verify that every 2-monotone function is su-
permodular. Indeed, let f be an n-ary 2-monotone function. Fix the lattice
order 0 < 1 on {0,1}. Note that the other lattice order on {0,1} is dual, and
hence, by Observation 2.8, supermodularity is not affected by the choice of
order. Take two n-tuples a and b on {0,1}. If f(a) = 1 and a satisfies the
disjunct without negations (see Definition 2.5) then so does alb. If f(a) =1
and a satisfies the disjunct with negations then so does ab. Obviously, the



two previous assertions hold if we exchange a and b throughout. Hence, if at
most one of f(a), f(b)is 1, orif f(a) = f(b) = 1 and a and b satisfy different
disjuncts, then the supermodularity inequaliy holds. If f(a) = f(b) =1 and a
and b satisfy the same disjunct then it is easy to see that both allb and allb
satisfy this disjunct. Hence, f(aMb) = f(alUb) = 1, and the supermodularity
inequality holds as well. It follows from this that, for all choices of a and b,
we have f(a) + f(b) < f(alb)+ f(aUb).

For the converse, we assume that f is supermodular and show that it is 2-
monotone. Assume that ¢ C a C d (where the order is component-wise), are
such that the three tuples are all different and f(a) = 1 while f(c) = f(d) = 0.
Define b = (by,...,b,) as follows: b; = d; — a; + ¢; for all 1 < i < n. Note
that, since 0 < ¢; < a; < d; < 1 for all i, we have b; € {0,1}. Moreover,
it can be easily checked that ¢ < b < d and allb = ¢, allb = d. Then
we have f(a) + f(b) > 1 >0 = f(afnb)+ f(alb), a contradiction with
supermodularity of f. It follows that, for every a such that f(a) = 1, either
all b with b C a satisfy f(b) = 1, or all b with b J a satisfy f(b) = 1, or
both.

Suppose that there is a tuple a such that f(b) = 1 whenever b C a. We will
show that there is a unique maximal tuple with this property. Assume, for the
contrary, that there are two maximal tuples, a; and a, with this property. Take
any tuple c such that ¢ C a; Llas and let ¢; = cl1a;, co = cllas. Note that
f(c1) = f(cg) = 1. It is easy to verify that ¢ = ¢; U co. By supermodularity
of f, we have f(c1)+ f(ca) =2 < f(e1Mer) + f(c). It follows that f(c) =1,
which is a contradiction with the choice of a;, as. Therefore, if f(0,...,0) =1
then there is unique maximal element a such that f(b) = 1 whenever b C a.
Similarly, if f(1,...,1) = 1 then there is unique minimal element a’ such that
f(b) =1 whenever b J a’. Now let {ji,...,7:} be the set of all indices j such
that the j-th component of a is 0 (if a exists), and, dually, let {i,...,is} be
the set of all indices i such that the i-th component of a’ is 1 (if &’ exists).
Clearly, f can now be expressed as shown in Definition 2.5. "

Proposition 2.9 is a key step in extending tractability results for MAxX CSP
from the Boolean case to an arbitrary finite domain, as it allows us to re-state
Theorem 2.6 in the following form.

Corollary 2.10 Let F C Ryo1y be a core. If F C Spmody 1y, then (weighted)
Max CSP(F) is in PO, otherwise it is APX-complete.



3 Supermodular constraints on distributive lattices

In this section we consider constraints given by supermodular functions on
a finite distributive lattice. Recall that a finite lattice D = (D, M, 1) is dis-
tributive if and only if it can be represented by subsets of a set A, where the
operations LI and M are interpreted as set-theoretic union and intersection,
respectively [12]. It is well-known [12] that A can be chosen so that |A| < |D],
and the standard representation for D (see Theorem 5.12 [12]) can clearly be
found in constant time for any fixed D. Note that if D is a finite distributive
lattice, then the product lattice D™ = (D™, 11, 1) is also a finite distributive
lattice, which can be represented by subsets of a set of size at most |D| - n,
since every element of D can be represented using at most |D| bits.

It was shown in [22,32] that a submodular function on a finite distributive lat-
tice !, which is representable by subsets of an n-element set, can be minimized
in polynomial time in n (assuming that computing the value of the function
on a given argument is a primitive operation). The complexity of the best
known algorithm is O(n® min {lognM,n*logn}) where M is an upper bound
for the values taken by the function [22].

Using this result, and the correspondence between sub- and supermodular
functions, we obtain the following general result about tractable subproblems

of MAax CSP.

Theorem 3.1 Weighted MAX CSP(F) is in PO whenever F C Spmody, for
some distributive lattice D on D.

Proof. Assume that F C Spmodp, and let

q

flzy, ... x,) = Zpi - fi(x;)

=1

be an instance of weighted Max CSP(F). If we set W = 37, p;, then [’ =
W — f is an n-ary submodular function on D, and the minimizers of f’ are
exactly the maximizers of f. Clearly, computing the value of f’ on a given
argument can be done in linear time. Note that f’ can be seen as a unary
submodular function on the lattice D". Since D can be represented by Boolean
tuples of (fixed) length at most |D|, the lattice D™ can be represented by
Boolean tuples of (fixed) length at most |D|n, that is, by subsets of a set with
at most |D|n elements. Thus, we can apply, for example, the submodular set
function minimization algorithm from [22] to maximize f in polynomial time.
[

I Referred to in [32] as a ring family.



It is currently not known whether submodular functions on non-distributive
lattices can be minimized in polynomial time, and this problem itself is of
interest due to some applications (see [22]). Obviously, any progress in this
direction would imply that MAX CSP for supermodular constraints on the
corresponding lattices could also be solved efficiently.

4 Generalized 2-monotone constraints

In this section we give a cubic-time algorithm for solving MAx CSP(F) when
F consists of supermodular functions of a special form which generalizes the
class of 2-monotone Boolean constraints defined above. Throughout this sec-
tion £ denotes an arbitrary (that is, not necessarily distributive) finite lattice.

Definition 4.1 A function f € Rg) will be called generalized 2-monotone on
a lattice L on D if it can be expressed as follows

f(x)=1s ((zy Eay)A A(wi, Eai)V (x5 o)A Az, Dby,)) (1)

where x = (z1,...,%y), Qiy,-..,0;,,bj,...,b;, € D, and either of the two
disjuncts may be empty (i.e., the value of s ort may be zero).

It is easy to check that all generalized 2-monotone functions are supermodular
(but the converse is not true in general). To obtain an efficient algorithm
for MAX CSP(F) when F consists of generalized 2-monotone functions, we
construct a reduction to the MIN CUT problem, which is known to be solvable
in cubic time [19].

To describe the reduction, we need to give some more notation and definitions.
Recall that a principal ideal in a lattice L is a set of the form {z € L | z C a},
for some a € L, and a principal filter (or dual ideal) is a set of the form
{z € L | x 3 b}, for some b € L. For any generalized 2-monotone function
f, we will call the first disjunct in Equation 1 of Definition 4.1 (containing
conditions of the form = C a), the ideal part of f, and the second disjunct in
this equation (containing conditions of the form x Jb), the filter part of f.

For any lattice £, and any c¢,d € L, we shall write ¢ < d if ¢ C d and there
is nou € £ with ¢ C u C d. Finally, let B, denote the set of all maximal
elements in {z € L | = 2 b}. Now we are ready to describe the digraph used
in the reduction.

Definition 4.2 Let £ be a lattice on a finite set D, and let F be a set of
generalized 2-monotone functions on L.

Let Z = {p1 - fi(x1),--.,pq - fo(xXg)}, ¢ > 1, be an instance of weighted

10



Max CSP(F), over a set of variables V' = {x1,...,2,}, and let co denote
an integer greater than  p;.

We construct a digraph Gz as follows:

e The vertices of Gz are as follows
AT, FYyU{zy |z € V,de D} U{e;,e; |i=1,2,...,q}.

For each f; where the ideal part is empty, we identify the vertices e; and F'.
Similarly, for each f; where the filter part is empty, we identify the vertices
e; and T

e The arcs of G7 are defined as follows:
- For each ¢ < d in £ and for each x € V, there is an arc from z. to x4 with

weight oo;

- For each f;, there is an arc from e; to e; with weight p;;
- For each f;, and each conjunct of the form z C a in f;, there is an arc

from e; to x, with weight oo;

- For each f;, and each conjunct of the form x 3 b in f;, there is an arc

from every x,, where u € By, to é; with weight oo.

Arcs with weight less than oo will be called constraint arcs.

It is easy to see that GGz is a digraph with source 7" and sink F'. The number
of vertices in Gz is at most 2+ n - |D| + 2¢, and the number of edges at most
n|DI* +q(1+[D] +|D[*).

Example 1 Let £, be the lattice on {0,a,b, 1} such that 0 = 0., 1 = 1.,
and the “middle” elements a and b are incomparable. Consider the instance Z
of Max CSP(F) corresponding to maximizing the following function:

f(x,y) = pr- fi(x) + p2 - folz) + p3 - fs(w,y) + pa- fa(y)

where the constraint functions f; are defined as follows:

filz) =1&(x Ca)

fo(z) =1 (x 3 D)
fa(r,y) =1 (yCO)V(rI1)

fay) =1 (y 3 1)

Note that, in L, By = {a,b}, and By, = {a}. One can check that the digraph
shown in Figure 1 is the graph Gz specified in Definition 4.2 above.

We will now show how any instance Z of weighted Max CSP(F) can be
reduced to computing a minimum cut in the graph Gz.

Theorem 4.3 Let L be a lattice on a finite set D. If F consists of general-
ized 2-monotone functions on L, then (weighted) MAX CSP(F) is solvable in

11



Fig. 1. Example of digraph G7. Dashed lines denote constraint arcs, and solid lines
denote arcs of weight oco.

O(q® + n®|D|?) time, where q is the number of constraints and n is the number
of variables in an instance.

Proof. Let £ be an arbitrary lattice on the finite set D, and let F be a set of
generalized 2-monotone functions on L.

Let T = {p1 - filx1),---,pq - fo(X4)}, ¢ > 1, be an instance of weighted
Max CSP(F), over a set of variables V' = {x1,,...,,2,}.

Define the deficiency of an assignment ¢ as the difference between 7, p;
and the evaluation of ¢ on Z. In other words, the deficiency of ¢ is the total
weight of constraints not satisfied by ¢. We will prove that minimal cuts in
G7 exactly correspond to optimal assignments to Z. More precisely, we will
show that, for each minimal cut in Gz with weight p, there is an assignment
for Z with deficiency at most p, and, for each assignment to Z with deficiency
P, there is a cut in Gz with weight p'.

The semantics of the construction of Gz will be as follows: the vertices of the
form z, correspond to assertions of the form x C a, and arcs between these
vertices denote implications about these assertions. Given a minimal cut in Gz,
we will call a vertex x, reaching if F' can be reached from it without crossing
the cut. Furthermore, if a vertex z, is reaching then this will designate that
the corresponding assertion is false, and otherwise the corresponding assertion
is true. A constraint is not satisfied if and only if the corresponding constraint
arc crosses the cut.

Let C' be a minimal cut in Gz. Obviously, C' contains only constraint arcs. First
we show that, for every variable € V, there is a unique minimal element

12



a € L (depending on x) such that z, is non-reaching. Indeed, assume that
there are two such minimal elements, a and a’. Let ¢ = a M a’. Then z. is
reaching, that is, there is a path in G7 from x. to F' not crossing the cut.
Consider the first arc in this path containing a vertex not of the form z,. By
construction of Gz, it has to be an arc of the form (z.,é€;) for some ¢ J ¢
such that Z contains a constraint f;(x;) whose filter part has a conjunct x J b
and ¢ € By. Assume first that both @ J b and o’ J b. Then, by the choice of
¢, we have ¢ 3 ¢ J b which contradicts the condition ¢ € B;,. Now assume
without loss of generality that a 2 b. Then there is d € B, such that d J a.
It follows that Gz contains an arc (x4, €;), as part of the construction of Gz
corresponding to the constraint f;(x;) whose filter part has a conjunct x J b.
Then there is a path from x, to é; consisting of non-constraint arcs (and hence
not crossing the cut), and a path from é; to F' (which is a part of the path
from z. to F') that does not cross the cut either. It follows that there is a path
from x, to F' that does not cross the cut, which contradicts the assumption
that z, is non-reaching. So, we cannot have more than one minimal element
a € L such that z, is non-reaching. It remains to notice that z;, is always
non-reaching, since 1, € B, for any b € L.

Define an assignment ¢¢ as follows:
¢c(x) is the unique minimal element a such that z, is non-reaching.

Suppose that a constraint arc is not in the cut. The assignment satisfies the
filter part of the corresponding constraint if the arc is on the F' side of the
cut, and it satisfies the ideal part of the constraint otherwise. To establish
this, suppose first that the constraint arc is of the form (7 ¢;), that is, it
corresponds to a constraint with an empty filter part. Then, for every vertex
x, such that there is an arc (e;, z,), the assertion ¢co(z) C a is true, since
otherwise x, is reaching and F' would be reachable from 7'. Similarly, if the
constraint arc is of the form (é;, F'), then every vertex x,, such that (z,,é;)
is an arc, is reaching, and, therefore, the assertion ¢c(x) C a is false. This
implies that the filter part of the constraint f; is satisfied, since, for any =z, if
¢c(x) £ a for all @ € B, then ¢c(x) 3 b. Finally, suppose that the arc is of
the form (€;, ;). Then, if there is a reaching vertex z, such that there is an arc
(e;,x,) then every vertex y., where ¢ is such that there is an arc (y., &), is also
reaching, which implies that ¢¢(y) £ ¢ for such y and ¢, and hence the filter
part of the constraint f; is satisfied. If all such vertices x, are non-reaching
then all assertions ¢c(x) C a are true and the ideal part of f; is satisfied.
Therefore, the deficiency of ¢¢ is not greater than the weight of C.

Conversely, let ¢ be an assignment to Z, and let K be the set of constraints
in 7 that give a zero evaluation on ¢. Consider any path from T to F. By
construction of G'7, this path has the following structure: the first two arcs are
(T,e;) and (e;, x,) for some i, x € V, and a € D. Then the path goes up in the

13



a-copy of the digraph representing £ (which is, in fact, the Hasse diagram of £)
to some vertex z;, with a C b. Then the path goes via arcs of the form (z, €;),
(€;,€;), (€j,yc) to the y-copy of the digraph representing £, where y € V' and
c € D. It travels up this copy to some other vertex y,; and then via a triple of
arcs as above, and so on. The final part of this path consists of arcs (z, ),
(ér, F'). We examine, in order, the constraint arcs along this path, replacing
every disjunct of the form (z; 3 b1) A ... A (z; 3 b)) in every constraint by
an equivalent expression (A.cp, —(21 C ¢))A...A(Acep,, ~(2¢ E ¢)). Then we
obtain a sequence of assertions of the following form:

({L‘il E (11) )

VA
A (2, Cag) A ...) for some by J ay

)V (oo A (x, Eag) A ...) for some by 3 ag—q

) for some by 1 3 ay

Since the second part of each assertion contradicts the first part of the next,
these assertions cannot all hold simultaneously, so one of the corresponding
constraints must in fact give a zero evaluation on ¢. Hence, every path from
T to F includes at least one edge corresponding to a constraint from K, and
so the edges corresponding to the set K form a cut in G'z. Furthermore, by
the choice of K, the weight of this cut is equal to the deficiency of ¢.

It follows that the standard algorithm [19] for the MIN CUT problem can be
used to find an optimal assignment for any instance of MAX CSP(F). This
algorithm runs in O(k%) where k is the number of vertices in the graph. Since
the number of vertices in Gz is at most 2 + n - |D| + 2¢, the result follows. =

Note that, unlike in the previous section, the lattice £ is mot required to
be represented (as a poset) by subsets of a set, which may have required
exponential blow-up.

Theorem 4.3 shows that when the constraints in a MAX CSP instance are
described by generalized 2-monotone functions, then an optimal solution can
be found much more efficiently than by invoking the general algorithm for
minimizing submodular functions. Moreover, for non-distributive lattices L,
the obtained class of constraints will, in general, not be a subclass of the
constraints studied in the previous section, and hence the known forms of
SEFM algorithms may not be applicable at all in this case.

14



5 Binary supermodular constraints on a chain

In this section we consider supermodular functions on a finite totally ordered
lattice, or chain. One reason why chains are especially interesting in our study
is the following lemma.

Lemma 5.1 FEvery unary function is supermodular on a lattice L if and only
if L 1s a chain.

Proof. It is straightforward to check that if £ is a chain then every function
f e RS) is supermodular on £, as the inequality in the supermodularity
condition becomes equality. For the converse, assume that £ is not a chain.
This implies that |D| > 2, and £ has two incomparable elements a, b. Since
a and b are incomparable, we have {a U b,a b} N {a,b} = (). Consider the
function f such that f(a) =1 and f(z) = 0 otherwise. It is easy to see that f
is not supermodular. (]

It is easy to see that a chain is a distributive lattice, which implies that
Theorem 3.1 can be applied, and hence that Max CSP(F) is tractable for
all sets F consisting of supermodular constraints on a chain. Furthermore, by
Lemma 5.1, such sets of functions can include all unary functions.

We will now show that, for supermodular constraints which are at most binary,
this result can be further strengthened, to obtain a more efficient optimization
algorithm.

Theorem 5.2 Let C be a chain on a finite set D. If 7 C Spmod,, and each
[ € F is at most binary, then MAX CSP(F) is solvable in O(n3|D|?) time,
where n is the number of variables in an instance.

Proof. Let f(x1,...,2,) = > pi - fi(x;) be an instance Z of MAx CSP(F).
Consider the function f'(xq,...,2,) = S pi- (1 — fi(x;)). Note that the
minimizers of f’ are exactly the maximizers of f and that, for every 1 <i < g,
the function 1 — f;(x;) is submodular on C. Theorem 4.7 [7] states that the
problem of minimizing functions of the form Y7, g;(x;) where every g; is
submodular on C and at most binary can be solved exactly in O(n?|D|?) time,
and the result follows. [

The next theorem is the main result of this section. It shows that the only
tractability-preserving way of extending the set F from Theorem 5.2 is with
further supermodular functions; all other extensions give rise to hard problems.
Hence, it provides the first dichotomy result for a large class of non-Boolean
Max CSP problems.

15



Theorem 5.3 Let C be a chain on a finite set D, and let F C Rp contain all
at most binary supermodular functions on C. If F C Spmod,, then (weighted)
Max CSP(F) is in PO, otherwise it is NP-hard.

Proof. If all functions in F are supermodular then the result follows from
Theorem 3.1. For the converse, assume that F contains a non-supermodular
function ¢ € R¥W. We will show that in this case MaX CSP(F) is NP-
hard. Since g is not supermodular on C, there exist a,b € D* such that
g(amb)+g(alb) < g(a) + g(b). Note that, since C is a chain, both a; LI b;
and a; Mb; are in {a;,b;} for all 1 < ¢ < k. For 1 < i < k, define functions
t; : {0,1} — {a;, b;} by the following rule.

o if a; = b; then ¢;(0) = t;(1) = a;;
e if a; C b; then ¢;(0) = a; and t;(1) = b;;
o if bl C a; then tl(()) = bl and tl(l) = ;.

Then it is easy to check that the function ¢’ € R%?l} defined by the rule

g (x1,. .. xx) = g(ti(x), ..., te(xr))

is a Boolean non-supermodular function. We will need unary functions ¢, ¢}
on {0, 1} which are defined as follows ¢;(x) is 1 if = ¢ and 0 otherwise. It
follows from Theorem 2.6 and Proposition 2.9 that Max CSP(F’) on {0, 1},
where F' = {¢', ¢{, ¢} }, is NP-hard. (Note that that we include ¢, ¢} to ensure
that F’ is a core). We will give a polynomial time reduction from this problem
to (weighted) MAx CSP(F).

In the reduction, we will use functions h;(x,y), 1 < i < k, defined by the rule
hi(z,y) =1 & (x E0) A (y E4:(0)) V ((z 1) A (y I ti(1))).

It is easy to see that these functions are generalized 2-monotone. In particular,
they are supermodular on C. Assume without loss of generality that 0,1 € D.
Other functions used in the reduction are from R%), and are defined as follows:

e for cach d € D, let ¢4(z) = 1 if and only if x = d;
e for each 1 <i <k, let ¢;(z) =1 if and only if = € {a;,b;};
o let co1(x) = 1if and only if z € {0,1}.

By Lemma 5.1, all these functions are supermodular.
Let f'(z1,,...,,2,) = Y pi- fl(x;) be an instance Z' of Max CSP(F),
over the set V. = {zy,...,2,} of variables. Let W = Y p; + 1. Construct

an instance Z of MAX CSP(F) containing all variables from V' and further
variables and constraints as follows.

e For every 1 <i < ¢ such that f/(x;) = ¢'(zj,,...,z;,), introduce

16



- k new variables ¢t , ...,y
- constraint g(yj,,...,y;, ) with weight p;,
- constraints ¢ (y},), . .., (¥}, ), each with weight W
- constraints hq(x;,, yjl) , hie (5, /5, ), each with weight W;
e for every 1 < i < ¢ such that fl(x;) = ¢y(z;,), introduce constraint cy(z;,)
with weight p;;
e for every 1 < i < ¢ such that f/(x;) = ¢|(z;,), introduce constraint ¢;(z;,)
with weight p;;
e for every variable z; € V| introduce constraint cy; (z;) with weight W.

It is easy to see that Z can be built from Z’ in polynomial time. Let [ be the
number of constraints with weight W in Z.

For every assignment ¢’ to Z’, let ¢ be an assignment to Z which coincides with
¢’ on V', and, for every variable i , set ¢(y; ) = ts(¢'(x;,)). It is easy to see that
¢ satisfies all constraints of weight . Moreover, every constraint of the form
ci(zj,), 1 € {0,1}, in 7’ is satisfied if and only the corresponding constraint
ci(z},) in T is satisfied. It follows from the construction of the function g’
and the choice of functions h;, ¢;, and cg; in Z that a constraint f/(x;) in
7' with the constraint function ¢’ is satisfied if and only if the corresponding
constraint with constraint function ¢ in Z is satisfied. Hence, if the total weight
of satisfied constraints in Z’ is p then the total weight of satisfied constraints
inZisl-W+p.

In the other direction, it is easy to see that every optimal assignment ¢ to
7 satisfies all constraints of weight W, therefore its weight is [ - W + p for
some p < W. In particular, it follows that ¢(z) € {0,1} for every x € V. Let
¢’ be an assignment to Z’ that is the restriction of ¢ to V. Then the total
weight of satisfied constraints in Z’ is p. Indeed, this follows from the fact that
all constraints of the form h;, ¢;, and cg; are satisfied, that all variables yés,
1 < s <k, take values in the corresponding sets {as, b5}, and these values can
always be recovered from the values of the variables x;, by using the functions
ts. Thus, optimal assignments to Z and to Z’ exactly correspond to each other,
and the result follows. "

6 A simple non-supermodular constraint

We have established in the previous section that for chains, in the presence of
all binary supermodular functions, supermodularity is the only possible reason
for tractability. It can be shown using results of [30] that the binary super-
modular functions on a finite chain determine the chain (up to reverse order).
However, by Lemma 5.1, all unary functions are supermodular on every chain.

17



It is therefore an interesting question to determine whether supermodularity
on a chain is the only possible reason for tractability of MAx CSP(F) when

F contains all unary functions? .

In this section we give some evidence in favour of a positive answer to this
question, by considering a simple equality constraint. Interestingly, in all of the
various versions of the constraint satisfaction problem for which complexity
classifications have previously been obtained, an equality constraint can be
combined with any tractable set of constraints without affecting tractability.
However, we show here that such a constraint gives rise to hard subproblems
of MAX CSP, in the presence of some simple unary constraints.

Definition 6.1 Let D be a finite set. We define the function f., € Rg), and
the functions cq € RS) for each d € D, as follows

Y),
d).

feq(z,y) =1 (x
calz) =1 (x

It is easy to check that f., on D is supermodular if |D| = 2. However, the
next result shows that |D| = 2 is the only case for which this is true.

Lemma 6.2 If |D| > 2 then f.,(z,y) is not supermodular on any lattice on
D.

Proof: If £ is a lattice on D, and |D| > 2, then there exists a € L such that
Og C a C 1g. It is easy to check that the supermodularity condition for f,
fails on the pairs (0z,1.) and (a, a). n

Note that MAX CSP({f.,}) is clearly tractable. However, this does not give
us an interesting tractable subproblem of Max CSP, since { f.,} is not a core.
In fact, the core obtained from {f.,} is one-element.

The next theorem shows that the equality constraint f.,, when considered
together with the set of unary functions ¢4 (to make a core), gives rise to a
hard problem.

In the proof of Theorem 6.4, we will use a form of reduction known as an
L-reduction [1,29], which is defined as follows.

2 We remark that if F contains all unary functions, then a problem of the form
Max CSP(F) is the optimization version of a conservative constraint satisfaction
problem [4], in which one can specify arbitrary constraints restricting the domain
for individual variables.

18



Definition 6.3 ([1,29]) An L-reduction from an optimization problem A to
an optimization problem B is a quadruple (f,g,«, 3), where f and g are poly-
nomial time algorithms and o, 3 > 0 are constants, such that the following
conditions hold.

(a) given any instance a of A, algorithm f produces an instance b = f(a) of
B, such that the cost of an optimal solution for b, OPT(b), is at most
a-OPT(a);

(b) given a,b = f(a), and any solution y to b, algorithm g produces a solution
x to a such that |cost(z) — OPT(a)| < - |cost(y) — OPT(b)].

By Lemma 8.2 of [1], any problem in APX which has an L-reduction from an
APX-complete problem is itself APX-complete.

Theorem 6.4 For any finite set D with |D| > 2, if F D {cq | d € D}U{fes},
then MAX CSP(F) is APX-complete.

Proof. Let 7 D {cq | d € D} U{f.,}. By Proposition 2.3, MAx CSP(F) is
in APX.

To establish APX-completeness, we will give an L-reduction from the MAX
Cut problem, which is known to be APX-complete [1,29]. In this problem,
one is given an undirected graph and the goal is to partition the vertices into
two classes so that the number of edges connecting a vertex in one class to a
vertex in the other is as large as possible.

51

Fig. 2. “Gadget” graph C adapted from [10].

Let G = (V, E) be a graph. Using a construction adapted from [10], we first
construct from G another graph F, as follows. For each edge (z,y) in G, the
graph F' contains a copy of the “gadget” graph C (see Fig. 2), containing
the vertices x and y, the (fixed) vertices sy, sg, s3, and four other vertices
which are distinct in each different copy of C'. Note that F' contains a total of
|V| + 3 4 4|E| vertices and 18| E| edges.

19



Given a graph F' as above, we construct an instance Zp of MAX CSP(F),
as follows. The variables are the vertices of F. For every edge e = (u,v)
in F, introduce the constraint f.,(u,v) with weight 1 if e is unmarked in
its copy of C' (see Fig. 2) and with weight 4 otherwise. Hence, the equality
constraints corresponding to each single copy of C' have total weight 54, and
the total weight of all equality constraints in Zp is 54|EF|. Assume without
loss of generality that 1,2,3 € D. For each vertex s;, i = 1,2, 3, introduce the
constraint ¢;(s;) with weight 60|E)|.

It is clear that Zp can be constructed from G in polynomial time, so it only
remains to show that this construction can be extended to an L-reduction.

Since the weight of each unary constraint in Zp is greater than the combined
weight of all the binary equality constraints, it follows that in any optimal
solution to Zr each variable s; must take the value 3.

Now consider a subproblem of Zy corresponding to a single copy of the gadget
graph C, and assume that each variable s; takes the value 7. Lemma 4.1 [10]
states the following: if the variables  and y take distinct values from the set
{1, 2}, then the optimal solution breaks equality constraints with total weight
27 (either the vertical constraints or the horizontal constraints in Figure 2),
and hence satisfies all other equality constraints, with total weight 27 as well.
Similarly, if the variables x and y take equal values from the set {1, 2} then the
optimal solution breaks equality constraints with total weight 28, and hence
satisfies all other equality constraints, with total weight 26. Furthermore, if
either of the variables = or y takes values outside of the set {1,2}, then it is
possible to satisfy equality constraints with total weight at most 26.

It follows that Zr has an optimal solution which assigns the values 1 or 2
to all variables corresponding to vertices of GG, and satisfies constraints with
total weight 180|E| + 26|E| + M, where M is the number of pairs of variables
corresponding to adjacent vertices of GG that are assigned distinct values. Note
that M is equal to the size of a maximal cut of the graph G.

Since, as is well known, any maximal cut of G contains at most |E| and at least
|E|/2 edges (see, e.g., Theorem 2.14 [1]), we have shown that OPT(Zp)/M <
207|E|/4|E|, and hence our construction satisfies property (a) of an L-reduction,
with o = 414.

Now let ¢ be any solution to Zg, and define g(¢) to be the partition of the
vertices of G where one class contains all vertices v such that ¢(v) = 1, and
the other class contains the remaining vertices. Clearly this partition can be
obtained from ¢ in polynomial-time.

If ¢ satisfies all three constraints ¢;(s;), then, by the observations above, it
satisfies constraints with a total weight of at most 180|FE| 4+ 26| FE| + N, where

20



N is the number of pairs of variables corresponding to adjacent vertices of G
that are assigned distinct values from the set {1,2}. On the other hand, if it
fails to satisfy one of these constraints, then it satisfies constraints with total
weight at most 120|E| + 54|E|. Hence, in either case, g satisfies property (b)
of an L-reduction with g = 1. [

Remark 6.5 In fact, in Theorem 6.4, it is enough to require that F contains
at least three functions of the form cq.

7 Conclusion

We believe that the most interesting feature of the research presented in this
paper is that it brings together several different methods and directions in
combinatorial optimization which have previously been studied separately:
Max CSP, submodular functions, and Monge properties. We hope that the
ideas and results presented here will stimulate research in all of these areas,
and perhaps also impact on other related areas of combinatorial optimiza-
tion. In particular, the problem of minimizing submodular functions on non-
distributive lattices becomes especially important in view of the links we have
discovered.

Problem 2 Is it true that the following problem is tractable for an arbitrary
finite lattice L: given a submodular function [ on a product lattice L™, can f
be minimized in polynomial time (in n)?

Earlier analysis of various forms of CSP has shown that the classification of
complexity in the Boolean case, when appropriately restated, gave good con-
jectures about the boundary of tractability for the general case [3-5]. The
close connection we have established between tractable cases of MAx CSP
and the property of supermodularity leads us to conjecture that supermodu-
larity is the only possible reason for tractability in MAX CSP. Regardless of
whether this conjecture holds, the results we have given above demonstrate
that significant progress can now be made in developing efficient algorithms
for all the known tractable cases of MAX CSP by exploiting the large body of
existing results concerning sub- and supermodularity, and Monge properties
(e.g., [6,13,30,36]).

One possible direction to extend our results would be a further study of the ap-
proximability of constraint satisfaction problems over arbitrary finite domains.
For example, the techniques presented here can be further fine-tuned to es-
tablish APX-completeness for at least some of the remaining NP-hard cases
of Max CSP. However, to complete the study of approximability properties,

21



it is likely to be necessary to define appropriate notions of expressiveness for a
given set of constraint functions, and this has previously only been developed
for the Boolean case [8,9,25].

References

[1] G. Ausiello, P. Creszenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complezity and Approximation. Springer, 1999.

[2] F. Borner, A. Bulatov, P. Jeavons, and A. Krokhin. Quantified constraints:
Algorithms and complexity. In Proceedings of 17th International Workshop on
Computer Science Logic, CSL’03, volume 2803 of LNCS, pages 5870, 2003.

[3] A.A. Bulatov. A dichotomy theorem for constraints on a three-element set.
In Proceedings 43rd IEEE Symposium on Foundations of Computer Science,
FOCS’02, pages 649-658, 2002.

[4] A.A. Bulatov. Tractable conservative constraint satisfaction problems. In
Proceedings 18th IEEE Symposium on Logic in Computer Science, LICS 03,
pages 321-330, 2003.

[5] A.A. Bulatov and V. Dalmau. Towards a dichotomy theorem for the counting
constraint satisfaction problem. In Proceedings 44th IEEE Symposium on
Foundations of Computer Science, FOCS’03, pages 562-572, 2003.

[6] R.E. Burkard, B. Klinz, and R. Rudolf. Perspectives of Monge properties in
optimization. Discrete Applied Mathematics, 70:95-161, 1996.

[7] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. A maximal tractable class
of soft constraints. Journal of Artificial Intelligence Research, 22:1-22, 2004.

[8] N. Creignou. A dichotomy theorem for maximum generalized satisfiability
problems. Journal of Computer and System Sciences, 51:511-522, 1995.

[9] N. Creignou, S. Khanna, and M. Sudan. Complezity Classifications of Boolean
Constraint Satisfaction Problems, volume 7 of SIAM Monographs on Discrete
Mathematics and Applications. 2001.

[10] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and
M. Yannakakis. The complexity of multiterminal cuts. SIAM Journal on
Computing, 23(4):864-894, 1994.

[11] M. Datar, T. Feder, A. Gionis, R. Motwani, and R. Panigrahy. A combinatorial
algorithm for MAX CSP. Information Processing Letters, 85(6):307-315, 2003.

[12] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 2002.

[13] B.L. Dietrich and A.J. Hoffman. On greedy algorithms, partially ordered

sets, and submodular functions. IBM Journal of Research and Development,
47(1):25-30, 2003.

22



[14] L. Engebretsen. The non-approximability of non-Boolean predicates. SIAM
Journal on Discrete Mathematics, 18(1):114-129, 2004.

[15] L. Engebretsen and V. Guruswami. Is constraint satisfaction over two variables
always easy? Random Structures and Algorithms, 25(2):150-178, 2004.

[16] P. Favati and F. Tardella. Convexity in nonlinear integer programming. Ricerca
Operativa, 53:3-44, 1990.

[17] S. Fujishige. Submodular Functions and Optimization, volume 47 of Annals of
Discrete Mathematics. North-Holland, Amsterdam, 1991.

[18] M.X. Goemans and V.S. Ramakrishnan. Minimizing submodular functions over
families of subsets. Combinatorica, 15:499-513, 1995.

[19] A. Goldberg and R.E. Tarjan. A new approach to the maximum flow problem.
Journal of the ACM, 35:921-940, 1988.

[20] M. Grotschel, L. Lovasz, and A. Schrijver.  Geometric Algorithms and
Combinatorial Optimization. Springer-Verlag, New York, 1988.

[21] J. Hastad. Some optimal inapproximability results. Journal of the ACM,
48:798-859, 2001.

[22] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions.  Journal of the ACM,
48(4):761-777, 2001.

[23] P. Jeavons. On the algebraic structure of combinatorial problems. Theoretical
Computer Science, 200:185-204, 1998.

[24] P. Jonsson. Boolean constraint satisfaction: Complexity results for optimization
problems with arbitrary weights. Theoretical Computer Science, 244(1-2):189—
203, 2000.

[25] S. Khanna, M. Sudan, L. Trevisan, and D. Williamson. The approximability
of constraint satisfaction problems. SIAM Journal on Computing, 30(6):1863—
1920, 2001.

[26] H. Narayanan. Submodular Functions and Electrical Networks. North-Holland,
1997.

[27] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization.
Wiley, 1988.

[28] C.H. Papadimitriou. Computational Complezxity. Addison-Wesley, 1994.

[29] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43(3):425-440,
1991.

[30] R. Rudolf. Recognition of d-dimensional Monge arrays. Discrete Applied
Mathematics, 52(1):71-82, 1994.

23



[31] T.J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings 10th
ACM Symposium on Theory of Computing, STOC’78, pages 216-226, 1978.

[32] A. Schrijver. A combinatorial algorithm minimizing submodular functions in
polynomial time. Journal of Combinatorial Theory, Ser.B, 80:346-355, 2000.

[33] M. Serna, L. Trevisan, and F. Xhafa. The (parallel) approximability of
non-boolean satisfiability problems and restricted integer programming. In
Proceedings STACS’98, volume 1373 of LNCS, pages 488-498, 1998.

[34] A. Shioura. Minimization of an M-convex function. Discrete Applied
Mathematics, 84:215-220, 1998.

[35] D. Topkis. Minimizing a submodular function on a lattice. Operations Research,
26(2):305-321, 1978.

[36] D. Topkis. Supermodularity and Complementarity. Princeton University Press,
1998.

[37] U. Zwick. Approximation algorithms for constraint satisfaction problems
involving at most three variables per constraint. In Proceedings 9th ACM
Symposium on Discrete Algorithms, SODA’98, pages 201-210, 1998.

24



