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Abstract. Over the past few years there has been considerable progress
in methods to systematically analyse the complexity of classical (crisp)
constraint satisfaction problems with specified constraint types. One very
powerful theoretical development in this area links the complexity of a
set of classical constraints to a corresponding set of algebraic operations,
known as polymorphisms.
In this paper we begin a systematic investigation of the complexity of
combinatorial optimisation problems expressed using various forms of
soft constraints. We extend the notion of a polymorphism by introducing
a more general algebraic operation, which we call a multimorphism. We
show that a number of maximal tractable sets of soft constraints, both
established and novel, can be characterised by the presence of particular
multimorphisms.

1 Introduction

In the standard constraint satisfaction framework a constraint is usually taken
to be a predicate, or relation, specifying the allowed combinations of values
for some fixed collection of variables: we will refer to such constraints here as
crisp constraints. Problems with crisp constraints deal only with feasibility : no
satisfying solution is considered better than any other.

A number of authors have suggested that the usefulness of the constraint
satisfaction framework could be greatly enhanced by extending the definition of
a constraint to include also soft constraints, which allow different measures of
desirability to be associated with different combinations of values [1]. In this ex-
tended framework a constraint can be seen as a function, mapping each possible
combination of values to a measure of desirability or undesirability. Problems
with soft constraints deal with optimisation as well as feasibility: we seek an
assignment of values to all of the variables having the best possible overall com-
bined measure of desirability.



Example 1. Consider an optimisation problem where we have 2n variables,
v1, v2, . . . , v2n, and we wish to assign each variable an integer value in the range
1, 2, . . . , n, subject to the following restrictions:

– The value assigned to v2n must be at least twice the value assigned to vn.
– Each variable vi should be assigned a value that is as close as possible to

i/2.
– Each pair of variables vi, v2i should be assigned a pair of values that are as

similar as possible.

To model this situation we might impose constraints as follows:

– A binary constraint on the pair vn, v2n specified by a function ζ, where
ζ(x, y) = 0 if y ≥ 2x and ∞ otherwise.

– A unary constraint on each vi specified by a function ψi, where ψi(x) =
|x− i/2|r for some r ≥ 1.

– A binary constraint on each pair vi, v2i specified by a function δr, where
δr(x, y) = |x− y|r for some r ≥ 1.

We would then seek an assignment to all of the variables which minimises the
sum of these constraint functions,

ζ(vn, v2n) +
2n∑

i=1

ψi(vi) +
n∑

i=1

δr(vi, v2i).

The cost of allowing additional flexibility in the specification of constraints, in
order to model optimisation criteria as well as feasibility, is generally an increase
in computational difficulty. For example, we establish below that the class of
problems containing only unary constraints and a soft version of the equality
constraint is NP-hard (see Example 5).

On the other hand, for certain types of soft constraint it is possible to solve
the associated optimisation problems efficiently. For example, we establish below
that optimisation problems of the form described in Example 1 can be solved in
polynomial time (see Example 12).

In the case of crisp constraints there has been considerable progress in ana-
lyzing the complexity of different types of constraints. This work has led to the
identification of a number of classes of constraints which are tractable, in the
sense that there exists a polynomial time algorithm to determine whether or not
any collection of constraints from such a class can be simultaneously satisfied [2,
12, 20, 27]. One powerful result in this area establishes that any tractable class
of constraints over a finite domain must be preserved by a non-trivial algebraic
operation, known as a polymorphism [4, 19, 20].

In the case of soft constraints there has not yet been any detailed investigation
of the tractable cases, except for the special case of a two-valued domain [9], and
the special case of simple temporal constraints [24]. In this paper we take the
first step towards a systematic analysis of the complexity of soft constraints over
arbitrary finite domains. To do this we generalise the algebraic ideas used to



study crisp constraints, and introduce a new algebraic operation which we call a
multimorphism. Every soft constraint has an associated set of multimorphisms,
and every multimorphism has an associated set of soft constraints. We show that,
for several different types of multimorphism, the associated set of soft constraints
forms a maximal tractable set. In other words, we show that several maximal
tractable classes of soft constraints can be precisely characterised as the set of
all soft constraints associated with a particular multimorphism.

The examples given below demonstrate that the framework we introduce here
can be used to unify isolated results about tractable problem classes from many
different application areas, as well as prompting the discovery of new tractable
classes. For example, the notion of a multimorphism can be used to characterise
tractable subproblems in all of the following areas: in the case of the Satisfia-
bility problem these include the Horn-Sat and 2-Sat subproblems [15]; in the
case of the standard constraint satisfaction problem these include generalisations
of Horn-Sat (such as the so-called ‘max-closed’ constraints [23, 20]), generali-
sations of 2-Sat (such as the so-called ‘0/1/all’ or ‘implicative’ constraints [8,
18, 25]) and systems of linear equations [20]; in the case of the optimisation
problem Max-Sat these include the ‘0-valid’ and ‘2-monotone’ constraints [9];
in the case of optimisation problems over sets these include the submodular set
functions [17, 26] and bisubmodular set functions [14].

2 Definitions

Several alternative mathematical frameworks for soft constraints have been pro-
posed in the literature, including the very general frameworks of ‘semi-ring based
constraints’ and ‘valued constraints’ [1]. For simplicity, we shall adopt the val-
ued constraint framework here (although our results can easily be adapted to
the semi-ring framework, for appropriate semi-ring structures).

In the valued constraint framework, a constraint is specified by a function
which assigns a cost to each possible assignment of values. In general, costs may
be chosen from any valuation structure, satisfying the following definition.

Definition 1. A valuation structure, χ, is a totally ordered set, with a min-
imum and a maximum element (denoted 0 and ∞), together with a commuta-
tive, associative binary aggregation operator (denoted +), such that for all
α, β, γ ∈ χ

α + 0 = α (1)
α + γ ≥ β + γ whenever α ≥ β. (2)

For all of the examples given in this paper we shall use the valuation structure
R+, consisting of the non-negative real numbers together with infinity, with the
usual ordering and the usual addition operation.

Definition 2. An instance of the valued constraint satisfaction problem, VCSP,
is a tuple P = 〈V,D, C, χ〉 where:



– V is a finite set of variables;
– D is a finite set of values;
– χ is a valuation structure representing possible costs;
– C is a set of constraints. Each element of C is a pair c = 〈σ, φ〉 where σ

is a tuple of variables called the scope of c, and φ is a mapping from D|σ|

to χ, called the cost function of c.

Definition 3. For any VCSP instance P = 〈V, D, C, χ〉, an assignment for P
is a mapping s from V to D. The cost of an assignment s, denoted CostP (s),
is given by the sum (i.e., aggregration) of the costs for the restrictions of s onto
each constraint scope, that is,

CostP (s) =
∑

〈〈v1,v2,...,vm〉,φ〉∈C

φ(s(v1), s(v2), . . . , s(vm)).

A solution to P is an assignment with minimal cost, and the question is to find
a solution.

Example 2 (Standard CSP). For any standard constraint satisfaction problem
instance P with crisp constraints, we can define a corresponding valued con-
straint satisfaction problem instance P̂ in which the range of the cost functions
of all the constraints is the set {0,∞}. For each crisp constraint c of P, we define
a corresponding soft constraint ĉ of P̂ with the same scope; the cost function of
ĉ maps each tuple allowed by c to 0, and each tuple disallowed by c to ∞.

In this case the cost of an assignment s for P̂ equals the minimal possible
cost, 0, if and only if s satisfies all of the crisp constraints in P.

Example 3 (MAX-CSP). For any standard constraint satisfaction problem in-
stance P with crisp constraints, we can define a corresponding valued constraint
satisfaction problem instance P# in which the range of the cost functions of all
the constraints is the set {0, 1}. For each crisp constraint c of P, we define a
corresponding soft constraint c# of P# with the same scope; the cost function
of c# maps each tuple allowed by c to 0, and each tuple disallowed by c to 1.

In this case the cost of an assignment s for P# equals the number of crisp
constraints in P which are violated by s. Hence a solution to P# corresponds to
an assignment which violates the minimal number of constraints of P.

The problem of finding a solution to a valued constraint satisfaction problem is
an NP optimisation problem, that is, it lies in the complexity class NPO (see [9]
for a formal definition of this class). It follows from Examples 2 and 3 that the
general VCSP is NP-hard. To achieve more tractable versions of VCSP, we will
now consider the effect of restricting the forms of cost function allowed in the
constraints.

Definition 4. Let D be a set and χ a valuation structure. A valued constraint
language over D with costs in χ is defined to be a set of functions, Γ , such that
each φ ∈ Γ is a function from Dm to χ, for some m ∈ N, where m is called the
arity of φ.

The class VCSP(Γ ) is defined to be the class of all VCSP instances where
the cost functions of all constraints lie in Γ .



For any valued constraint language Γ , if every instance in VCSP(Γ ) can be
solved in polynomial time then we will say that Γ is tractable. On the other
hand, if there is a polynomial-time reduction from some NP-complete problem
to VCSP(Γ ), then we shall say that VCSP(Γ ) and Γ are NP-hard.

Example 4 (SAT and MAX-SAT). Let Γ be any valued constraint language
over D, where |D| = 2. In this case VCSP(Γ ) is a Boolean soft constraint satis-
faction problem.

If we restrict Γ even further, by only allowing functions with range {0,∞}, as
in Example 2, then each VCSP(Γ ) corresponds precisely to a standard Boolean
crisp constraint satisfaction problem. Such problems are sometimes known as
Generalized Satisfiability problems [29, 15]. The complexity of VCSP(Γ )
for such restricted sets Γ has been completely characterised, and the six tractable
cases have been identified [29, 9].

Alternatively, if we restrict Γ by only allowing functions with range {0, 1}, as
in Example 3, then each VCSP(Γ ) corresponds precisely to a standard Boolean
maximum satisfiability problem, in which the aim is to satisfy the maximum
number of crisp constraints. Such problems are sometimes known as Max-Sat
problems [9]. The complexity of VCSP(Γ ) for such restricted sets Γ has been
completely characterised, and the three tractable cases have been identified (see
Theorem 7.6 of [9]).

We note, in particular, that when Γ contains just the single binary function
φXOR defined by

φXOR(x, y) =
{

0 if x 6= y
1 otherwise

then VCSP(Γ ) corresponds to the Max-Sat problem for the exclusive-or pred-
icate, which is known to be NP-hard (see Lemma 7.4 of [9]).

Example 5. Let Γ be a soft constraint language over D, where |D| ≥ 3, and
assume that Γ contains just the set of all unary functions, together with the
single binary function φEQ defined by

φEQ(x, y) =
{

0 if x = y
1 otherwise.

Even in this apparently simple case it can be shown [6] that VCSP(Γ ) is NP-
hard, by reduction from the Minimum Multiterminal Cut problem [11].

3 Reductions and Multimorphisms

Let Γ be a valued constraint language, and consider an arbitrary instance P in
VCSP(Γ ). If we choose a subset of the variables of P which is equal to the set
of variables in the scope of some constraint of P, then the values taken by those
variables are explicitly constrained. What is more, if we choose any subset of
the variables of P, then the values may still be constrained implicitly, due to the
combined effect of the constraints of P. The cost function which describes this



implicit constraint may or may not be an element of Γ , but can, in a sense, be
expressed using elements of Γ .

The next two definitions formalise this idea of a function being expressible
over a valued constraint language.

Definition 5. For any VCSP instance P = 〈V, D,C, χ〉, and any tuple of dis-
tinct variables W = 〈v1, . . . , vk〉, the cost function for P on W , denoted ΦWP ,
is defined as follows:

ΦWP (d1, . . . , dk) = min{CostP (s) | s : V → D, 〈s(v1), . . . , s(vk)〉 = 〈d1, . . . , dk〉}
Definition 6. A function φ is expressible over a valued constraint language Γ
if there exists an instance P = 〈V, D, C, χ〉 in VCSP(Γ ) and a list W of variables
from V such that φ = ΦWP .

The notion of expressibility is a key tool in analysing the complexity of valued
constraint languages, as the next result shows.

Proposition 1. Let Γ and Γ ′ be valued constraint languages.
If Γ ′ is finite, and every φ ∈ Γ ′ is expressible over Γ , then VCSP(Γ ′) is

polynomial-time reducible to VCSP(Γ ).

Proof. Let P = 〈V,D, C, χ〉 be any instance in VCSP(Γ ′), and let c = 〈σ, φ〉 be
a constraint in C. Since φ is expressible over Γ , there exists an instance Pφ in
VCSP(Γ ), and a list of variables W of Pφ, such that ΦWPφ

= φ. Hence we can
replace the constraint c with a copy of Pφ, where the variables in the scope σ
are identified with the list of variables W , and the remaining variables of Pφ are
disjoint from V , to obtain a new problem instance P ′. Note that the solutions
to P ′, when restricted to V , correspond precisely to the original solutions to P.

By repeating this construction for each constraint c of P, we can obtain an
instance P ′′ of VCSP(Γ ). Since Γ ′ is finite, there is a bound on the size of the
instances Pφ used in the construction, and so the size of P ′′ is bounded by a
constant multiple of the size of P. Hence we have described a polynomial-time
reduction from VCSP(Γ ′) to VCSP(Γ ).

It follows from Proposition 1 that valued constraint languages that are finite
and express precisely the same set of functions have the same complexity, up
to polynomial-time reduction. Hence to analyse the complexity of a valued con-
straint language it may be sufficient to determine what functions can be ex-
pressed over that language. For example, the next result shows how this idea
can be used to establish NP-hardness of a valued constraint language.

Corollary 1. Let Γ be a valued constraint language over D, with costs in R+.
If there exist d, d′ ∈ D, and α, β ∈ R+, with α < β < ∞, such that the binary

function φXOR+ given by

φXOR+(x, y) =





α if x 6= y ∧ x, y ∈ {d, d′}
β if x = y ∧ x, y ∈ {d, d′}
∞ otherwise

is expressible over Γ , then VCSP(Γ ) is NP-hard.



Proof. Any instance of VCSP({φXOR+}) must have a solution involving only
the two values d and d′, since all assignments involving any other values must
have costs at least as high. Lemma 7.4 of [9] states that the two-valued problem
VCSP({φXOR}) is NP-hard, where φXOR is the Boolean exclusive-or function,
as defined in Example 4. Since adding a constant to all cost functions, and scaling
all costs by a constant factor, does not affect the difficulty of solving a VCSP
instance, we conclude that VCSP({φXOR+}) is also NP-hard.

For crisp constraints, it has been show that the expressive power of a set of rela-
tions is determined by certain algebraic invariance properties of those relations,
known as polymorphisms [4, 20, 22, 21, 28]. The concept of a polymorphism is
specific to relations, and cannot be applied directly to the functions in a valued
constraint language. However, we now introduce a more general notion, which
we call a multimorphism, which does apply directly to functions.

Throughout the rest of the paper, the ith component of a tuple t will be
denoted t[i].

Definition 7. Let D be a set, χ a valuation structure, and φ : Dm → χ a
function.

We extend the definition of φ in the following way: for any positive integer
k, and any list of k-tuples, t1, t2, . . . , tm, over D, we define

φ(t1, t2, . . . , tm) =
k∑

i=1

φ(t1[i], t2[i], . . . , tm[i])

We say that F : Dk → Dk is a multimorphism of φ if, for any list of k-tuples
t1, t2 . . . , tm over D we have

φ(F (t1), F (t2), . . . , F (tm)) ≤ φ(t1, t2, . . . , tm).

Example 6. Let D = {0, 1, 2, . . . , |D| − 1} be a subset of the integers, and let
φ : D3 → R+ be the linear function defined by φ(x, y, z) = ax + by + cz, where
a, b, c are positive constants.

Consider the function F : D2 → D2 defined by F (x, y) = 〈min(x, y),max(x, y)〉.
For any list of pairs, t1, t2, t3, over D we have

φ(F (t1), F (t2), F (t3))
= φ(〈min(t1[1], t1[2]),max(t1[1], t1[2])〉, . . . ,

〈min(t3[1], t3[2]),max(t3[1], t3[2])〉)
= φ(min(t1[1], t1[2]), min(t2[1], t2[2]),min(t3[1], t3[2]))

+ φ(max(t1[1], t1[2]), max(t2[1], t2[2]),max(t3[1], t3[2]))
= (amin(t1[1], t1[2]) + bmin(t2[1], t2[2]) + c min(t3[1], t3[2]))

+ (a max(t1[1], t1[2]) + bmax(t2[1], t2[2]) + c max(t3[1], t3[2])
= a(t1[1] + t1[2]) + b(t2[1] + t2[2]) + c(t3[1] + t3[2])
= φ(t1, t2, t3)

Hence F is a multimorphism of φ.



Example 7. Let R be a relation of arity m, and let φR be the function defined
by

φR(x1, x2, . . . , xm) =
{

0 if 〈x1, x2, . . . , xm〉 ∈ R
∞ otherwise

There is a close relationship between the polymorphisms of the relation R, as
defined in [4, 21, 28], and the multimorphisms of the function φR.

For any polymorphism f : Dk → D of R, it is easy to show that the function
F : Dk → Dk defined by

F (x1, x2, . . . , xk) = 〈f(x1, x2, . . . , xk), f(x1, x2, . . . , xk), . . . , f(x1, x2, . . . , xk)〉

is a multimorphism of φR.
Furthermore, if F : Dk → Dk is a multimorphism of φR, then it is straight-

forward to check from the definitions that each of the k component functions,
Fi, given by Fi(x1, x2, . . . , xk) = F (x1, x2, . . . , xk)[i], is a polymorphism of R.

The following result means that multimorphisms have the key property that
they extend to all functions expressible over a given language.

Theorem 1. Let Γ be a valued constraint language, and F be a multimorphism
of every function in Γ .

If φ is expressible over Γ , then F is also a multimorphism of φ.

Proof. The proof of this result is a straightforward application of Definition 7
and Definition 6.

In the remainder of the paper we will show that a wide range of tractable opti-
misation problems are characterised by the presence of certain forms of multi-
morphism.

Example 8. For any finite set Q, a function ψ defined on subsets of Q is called
a submodular set function [26] if, for all subsets S and T of Q

ψ(S ∪ T ) + ψ(S ∩ T ) ≤ ψ(S) + ψ(T ).

The problem of submodular set function minimisation consists in finding a subset
S of Q for which ψ(S) is minimal. Such problems arise in a number of different
contexts. For example, Cunningham [10] showed that finding the maximum flow
in a network can be viewed as a special case of the general problem of submodular
function minimisation.

By fixing an arbitrary order for the elements of Q, we can associate each
subset S of Q with a tuple tS of length |Q| over the set {0, 1}, where tS [i] = 1 if
S contains the ith element of Q, and tS [i] = 0 otherwise. Using this association,
it is easy to show that a function ψ is a submodular set function if and only if the
function φ given by φ(tS) = ψ(S) has the multimorphism F : {0, 1}2 → {0, 1}2
given by F (x, y) = 〈min(x, y), max(x, y)〉.

It has been known for a long time that real-valued submodular set functions
can be minimised in polynomial time using the ellipsoid method [16]. Recently,



several different strongly polynomial, combinatorial algorithms have been pro-
posed for this problem [30, 17, 13].

However, the best known polynomial-time bounds for general real-valued
submodular set function minimisation are still rather high: the number of oracle
calls has been shown to be O(n7), and the number of fundamental operations
has been shown to be O(n8) [13].

Example 9. For any finite set Q, a function ψ defined on pairs of disjoint subsets
of Q is called a bisubmodular function [14] if for all pairs (S1, S2) and (T1, T2)
of disjoint subsets of Q

ψ(〈S1, S2〉 t 〈T1, T2〉) + ψ(〈S1, S2〉 u 〈T1, T2〉) ≤ ψ(〈S1, S2〉) + ψ(〈T1, T2〉)
where

〈S1, S2〉 t 〈T1, T2〉 = 〈(S1 ∪ T1) \ (S2 ∪ T2), (S2 ∪ T2) \ (S1 ∪ T1)〉
〈S1, S2〉 u 〈T1, T2〉 = 〈S1 ∩ T1, S2 ∩ T2〉

It is known that an integer-valued bisubmodular function ψ can be minimised
in O(n5 log M) time where M designates the maximum value of the function
ψ [14].

By fixing an arbitrary order for the elements of Q, we can associate each pair
of disjoint subsets 〈S1, S2〉 of Q with a tuple t〈S1,S2〉 of length |Q| over the set
{0, 1, 2}, where t〈S1,S2〉[i] = 1 if S1 contains the ith element of Q, t〈S1,S2〉[i] = 2
if S2 contains the ith element of Q, and t〈S1,S2〉[i] = 0 otherwise. Using this
association, it is easy to check that a function ψ is a bisubmodular function if and
only if the function φ given by φ(t〈S1,S2〉) = ψ(〈S1, S2〉) has the multimorphism
F : {0, 1, 2}2 → {0, 1, 2}2 given by F (x, y) = 〈min0(x, y),max0(x, y)〉, where

min0(x, y) =
{

min(x, y) if {x, y} 6= {1, 2}
0 otherwise

max0(x, y) =
{

max(x, y) if {x, y} 6= {1, 2}
0 otherwise

Hence the bisubmodular functions defined in [14] are also characterised by the
presence of a multimorphism.

4 Multimorphisms and Tractable Languages

In this section we will present several tractable valued constraint languages.
Some of these are translations of known tractable optimisation problems into
the VCSP framework, and others are novel tractable classes. In all cases we are
able to give a characterisation of the tractable language in terms of a single mul-
timorphism. Hence, in all cases we have shown that the presence of a particular
multimorphism is sufficient to guarantee tractability.

Definition 8. Given a function F : Dk → Dk, we will write ΓF to denote the
valued constraint language over D with costs in R+, consisting of all functions
for which F is a multimorphism.



4.1 Constant multimorphisms

The first example we give is a rather straightforward family of tractable lan-
guages, characterised by the presence of a single unary multimorphism with a
constant value. Although the proof of tractability for this case is trivial, the
proof that every language characterised by a constant multimorphism is a max-
imal tractable language is more interesting, and provides a simple example of
the techniques we shall use for other cases.

Theorem 2. Let D be a set, and let F : D → D be a constant function.

1. The set of functions ΓF is a tractable valued constraint language.
2. Any valued constraint language Γ such that Γ ⊃ ΓF is NP-hard.

Proof. Let dF be the (constant) value of F .

1. Let φ be any function in ΓF , and let m be the arity of φ. Since F is a
multimorphism of φ, we have, for all d1, d2, . . . , dm ∈ D,

φ(dF , dF , . . . , dF ) ≤ φ(d1, d2, . . . , dm)

Hence any instance P in VCSP(ΓF ) has a solution which assigns the value
dF to every variable, so VCSP(ΓF ) is tractable.

2. Now assume that Γ ⊃ ΓF , and hence Γ contains a function φ of arity m such
that F is not a multimorphism of φ. Hence there exist d1, d2, . . . , dm ∈ D
such that φ(d1, d2, . . . , dm) < φ(dF , dF , . . . , dF ).
If φ(dF , . . . , dF ) < ∞, then set µ = (φ(dF , . . . , dF )− φ(d1, . . . , dm))/2, oth-
erwise set µ = 1. Choose i0 such that di0 6= dF . Now define the functions δ
and ψ as follows:

δ(x1, . . . , xm) =
{

0 if 〈x1, . . . , xm〉 ∈ {〈d1, . . . , dm〉, 〈dF , . . . , dF 〉}
∞ otherwise

ψ(x1, x2, x3) =
{

µ if 〈x1, x2, x3〉 ∈ {〈di0 , di0 , di0〉, 〈di0 , dF , dF 〉}
0 otherwise

Note that δ, ψ ∈ ΓF .
We construct the instance P ∈ VCSP(Γ ) with variables

{X1, . . . , Xm, Y1, . . . , Ym, Z1, . . . , Zm}
and constraints

〈〈X1, . . . , Xm〉, φ〉, 〈〈X1, . . . , Xm〉, δ〉,
〈〈Y1, . . . , Ym〉, δ〉, 〈〈Z1, . . . , Zm〉, δ〉,
〈〈Xi0 , Yi0 , Zi0〉, ψ〉

If we set W = 〈Yi0 , Zi0〉, then it is straightforward to check that

ΦWP (x, y) =





φ(d1, d2, . . . , dm) if x 6= y ∧ x, y ∈ {dF , di0}
µ + φ(d1, d2, . . . , dm) if x = y ∧ x, y ∈ {dF , di0}
∞ otherwise

Hence, by Corollary 1, VCSP(Γ ) is NP-hard.



Example 10. Recall from Example 4 that the Max-Sat optimisation problem
has just three maximal tractable classes, which are identified in [9]. Two of these
can be characterised by having a constant function as a multimorphism; these
are referred to in [9] as ‘0-valid’ relations, and ‘1-valid’ relations.

4.2 Min-max multimorphisms

The next example we give is a valued constraint language which can be defined on
any finite totally ordered set D. This language is characterised by the presence
of a single binary multimorphism, which we will call a min-max multimor-
phism. Languages with this multimorphism generalise the class of submodular
set functions used in economics and operations research [26] (see Example 8).

Theorem 3. Let D be a finite totally ordered set, and let F : D2 → D2 be the
function defined by F (d, d′) = 〈min(d, d′),max(d, d′)〉.

1. The set of finite-valued functions in ΓF is a tractable valued constraint lan-
guage.

2. Any valued constraint language Γ such that Γ ⊃ ΓF is NP-hard.

Proof.

1. To establish the tractability of the set of finite-valued functions in ΓF , we
show that this problem can be reduced to the problem of minimising a real-
valued submodular set function [26] over a special family of sets known as a
ring family [30]. This problem can then be solved in polynomial time using
an algorithm due to Schrijver [30]. Details are given in [7].

2. Proof omitted due to space restrictions. See [7] for details.

Example 11. Recall from Example 4 that the Max-Sat optimisation problem
has just three maximal tractable classes, which are identified in [9]. One of these
can be characterised by having a min-max multimorphism; this class is referred
to in [9] as the class of ‘2-monotone’ relations.

Example 12. It is a simple consequence of the definitions that every unary func-
tion has a min-max multimorphism.

We have recently shown that a problem instance P = (V, D,C,R+) involving
unary and binary functions with a min-max multimorphism, including functions
taking infinite values, can be solved in O(|V |3|D|3) time [6]. Note that this
compares very favourably with the best known complexity bound for optimising
submodular set functions of arbitrary arity, as discussed in Example 8.

Let D be the set {0, 1, 2, . . . , |D| − 1}, considered as a set of integers. The
following binary functions all have a min-max multimorphism, and hence any
VCSP instance involving constraints with cost functions of these forms can be



solved in cubic time.

φ1(x, y) =
{

0 if ax ≤ by + c (for positive constants a, b, c)
∞ otherwise

φ2(x, y) = ax + by + c (for positive constants a, b, c)

φ3(x, y) =
√

x2 + y2

φ4(x, y) = |x− y|r (for r ≥ 1)

Using these observations we conclude that the discrete optimisation problem
described in Example 1 can be solved in cubic time.

Note that some of the functions in Example 12 may appear to be similar to
the soft simple temporal constraints with semi-convex cost functions defined and
shown to be tractable in [24]. However, there are fundamental differences: the
constraints in [24] are defined over an infinite set of values, and their tractability
depends crucially on the aggregation operation used for the costs being idempo-
tent (i.e., the operation min).

4.3 Max-max multimorphisms

The next example we give is again a valued constraint language which can be
defined on any finite totally ordered set D. This language is characterised by
the presence of a single binary multimorphism, which we will call a max-max
multimorphism. Languages with this multimorphism generalise the class of max-
closed crisp constraints introduced and shown to be tractable in [23].

Theorem 4. Let D be a finite totally ordered set, and let F : D2 → D2 be the
function defined by F (d, d′) = 〈max(d, d′), max(d, d′)〉.
1. The set of functions ΓF is a tractable valued constraint language.
2. Any valued constraint language Γ such that Γ ⊃ ΓF is NP-hard.

Proof. Omitted due to space restrictions. See [7] for details.

Example 13. The constraint language CHIP incorporates a number of constraint
solving techniques for arithmetic and other constraints. In particular it provides a
constraint solver for a restricted class of crisp constraints over natural numbers,
referred to as basic constraints [31]. These basic constraints are of two kinds
which are referred to as “domain constraints” and “arithmetic constraints”. The
domain constraints described in [31] are unary constraints which restrict the
value of a variable to some specified finite subset of the natural numbers. The
arithmetic constraints described in [31] are unary or binary constraints which
have one of the following forms:

aX 6= b aX ≤ bY + c
aX = bY + c aX ≥ bY + c

where variables are represented by upper-case letters, and constants by lower
case letters, all constants are non-negative, and a is non-zero.



If we represent these crisp constraints as soft constraints where the range of
the cost functions is the set {0,∞}, as described in Example 2, then it is easy to
verify that they all have a max-max multimorphism, and hence form a tractable
soft constraint language, by Theorem 4.

Moreover, this tractable language can be extended, as shown in [23], to in-
clude functions corresponding to crisp constraints of the following forms, which
also have a max-max multimorphism.

a1X1 + a2X2 + . . . + arXr ≥ bY + c

aX1X2 . . . Xr ≥ bY + c

(a1X1 ≥ b1) ∨ (a2X2 ≥ b2) ∨ . . . ∨ (arXr ≥ br) ∨ (aY ≤ b)

Example 14. Let D be an ordered domain and χ a valuation structure. A func-
tion φ : Dm → χ is called antitone if the value of φ(d1, d2, . . . , dm) does not
increase when we increase any of the di.

All antitone functions have a max-max multimorphism, and hence form a
tractable class. More importantly, they may be combined with the crisp con-
straints described in Example 13 to form a larger tractable class.

For example, let D = {0, 1, 2, . . . ,M} be a subset of the integers, and let
φ : D2 → R+ be the binary function defined by

φ(x, y) =
{

(M − x)(M − y) if x < y
∞ if x ≥ y

This function can be used to express a preference for larger values for x, y pro-
vided x < y. It is straightforward to check that it has a max-max multimorphism.

4.4 Majority/minority multimorphisms

The final example we give is a tractable valued constraint language which can
be defined on any finite set D. This language is characterised by the presence of
a single ternary multimorphism, which we will call a majority/minority mul-
timorphism. Languages with this multimorphism generalise the class of bijective
crisp constraints.

Theorem 5. Let D be a finite set, and let F : D3 → D3 be the function defined
by F (x, y, z) = 〈Maj1(x, y, z), Maj2(x, y, z), Min3(x, y, z)〉 where

Maj1(x, y, z) =
{

y if y = z
x otherwise.

Maj2(x, y, z) =
{

x if x = z
y otherwise.

Min3(x, y, z) =





x if y = z 6= x
y if x = z 6= y
z otherwise.

1. The set ΓF is a tractable valued constraint language.
2. Any valued constraint language Γ such that Γ ⊃ ΓF is NP-hard.

Proof. Omitted due to space restrictions. See [7] for details.



5 Conclusions

In this paper we have begun a systematic investigation of the complexity of the
optimisation problems resulting from different forms of soft constraint. Since soft
constraints are specified by functions, we have introduced an algebraic property
of a function, which we call a multimorphism, and shown that in a range of cases
the presence of such a property is sufficient to ensure tractability. Indeed, we have
shown that the presence of a multimorphism precisely characterises a number of
tractable problem classes that appear on the surface to be very different.

Further study is needed to determine whether the notion of a multimor-
phism exactly captures the expressive power, and hence the complexity, of soft
constraints over finite domains. If this is true, then multimorphisms are likely to
play a central role in the analysis of complexity for soft constraints, just as the
related notion of a polymorphism does in the analysis of complexity for crisp
constraints [3–5, 20–22]
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