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Why formulate new models?

Complexity Theory




 what is the model?

— start with spins of known total angular momentum

- permute the particles around

— measure total angular momentum

— direct analogue to topological quantum computation

e what can it do?

- approximate irreps of S,
— approximate Ponzano-Regge invariant
— give us a new complexity class?



Angular momentum of n spins
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* 52 commutes with any permutation

* the eigenspaces of S° transform as irreducible
representations of S,

* The Young diagrams have two rows:

* The overhangis 2/



* what about a basis for the representations?
 Example: 3 particles
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(S14524+5)"  complete set of
(S1 + S2)° - commuting
Zy+ 2o+ Zs observables
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* How do the representations of S3 look in this
basis?

« (S) +5,+55)% tells us which irrep
* (5 +55)? labels the basis states within an irrep
* (Z1+ Z>+ Z3) is an irrelevant degree of freedom



e We have a choice between bases:

(S1 + 52 + S3)? (514 S5+ S5)
(S1 + Sa)? (S5 + S3)?
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* For a given tree, different labellings correspond
to orthogonal states

\2)/ \2/ — 8a(: de

 Different trees are related by recoupling
tensors
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* The recoupling tensors are:

Cc € C €

a b
* The 6/ symbols { c e i; } can be computed

in poly(a+b+c+d+e+ f) time using the
Racah formula.



* These states have this exchange symmetry:

b ¢ b ¢

b+c-a

= (-1)

d d

* This plus recoupling tells us everything about
permutation.
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* We now have a model of computation:

1) Prepare a basis state from some complete
set of commuting angular momentum operators.

2) Permute the qubits.

3) Measure some other complete set of commuting
angular momentum operators

* Variant: include phases

[See Also Marzuoli et al.]
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How Powerful Is I1?

BQP
. What | think: ‘
e What | know:
PQP C BQP

Can approximate irreps of .5, and simulate
certain special cases of Ponzano-Regge.



Algorithm for Symmetric Group

* permutation induces a linear transformation:

1/2 1/2 1/2 19

1/2 1/2

* This map from permutations to linear
transformations is a representation of S»



A choice of tree is a choice of basis.

NN

If we choose this type of tree

then the representation of 5. isin Young's
orthogonal form.
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PQP c BQP
Proof Sketch:

work in this basis:

make any PQP state
by polynomially many
F and R moves

> p(abed)|abed)

abed

use Hadamard test



* R is easy to implement: just a phase
b ¢ b ¢

Y o U

 How about F?

Y}g[z:;] X/

- 1t IS sparse

— we can efficiently compute the nonzero entries
using the Racah formula



* We know how to implement any sparse row-
computable Hamiltonian.

* From this we can implement any sparse row-
and column-computable unitary.

e
etHT/2 — { oto } End of Proof Sketch.

[Joint work with Pawel Wocjan]



Permutational Algorithms for
3-manifold invariants

* 3-manifold: topological space locally like R®

* homeomorphism: a bijective, continuous map
between manifolds whose inverse is continuous

* if a homeomorphism exists between a pair of
manifolds we consider them equivalent




e How do we describe a 3-manifold to a
computer?

* one way Is to use a triangulation:

— a set of tetrahedra
— a gluing of the faces

NS



* two triangulations yield equivalent 3-
manifolds iff they are connected by a finite
sequence of Pachner moves
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* deciding equivalence of manifolds is not easy!

equivalence
2—manifolds in P
3—manifolds computable
A—manifolds uncomputable

* partial solution:
manifold invariant — if manifolds A and B are
diffeomorphic then f(A) = f(B)



Ponzano-Regge Invariant

* 0 each tetrahedron, associate one recoupling
tensor (one index to each edge)

* for each glued face, contract (sum over) the
corresponding indices






* For some triangulations the Ponzano-Regge
tensor network is an infinite sum

* Any pair of triangulations of a given manifold
such that the sum has finitely many terms yield
the same value for the Ponzano-Regge
invariant

[Barrett & Naish-Guzman, '08]



* Boundary is triangulated surface
* we have jlabels on edges of triangulation
* these specify a geometry

* the value of Ponzano-Regge tensor network is
a transition amplitude between geometries

 sum over cobordisms, obtain model of
topological quantum gravity



* Gluing of tetrahedra induces a change of
triangulation:

subdivide /\ A

. O

* The Ponzano-Regge amplitude corresponding
to the flip move is approximable in PQP




* flip move is F move on the dual:
C d c d
a b a b
C\<d/b C\d>/b
d d

* Hence, in PQP we approximate Ponzano-
Regge amplitude for 3-manifolds such that:

— dual triangulation of boundaries are trees
- tetrahedra glued two-faces at a time (flip moves)



mapping torus

Tr[U]



One Clean Qubit

B, S,

Matrix
Elements BQP-complete C BQP

Characters  DQC1-complete C BPP




Normalized Characters of S. in BPP Proof:

Theorem 1 ( Roichman ) For any partitions 1 = (pe1,..., 1) and X = (A,...,Ar) of n, the
corresponding irreducible character of S, is given by

Xp = Wu(A)
A

where the sum is over all standard Young tableauxr A of shape A and

WA = ] f.G.A)
1<i<k
iEB(1)
where B(p) = {p1+ ... +p |l <r <Il} and

—1 boxri+1 of A is in the southwest of box 1
fuli,A) = 0 i+ 1 isnortheast of i, i + 2 is southwest of i + 1, and 1 +1 & B(p)
1  otherwise

Theorem 2 (Greene, Nijenhuis, and Wilf) With polynomial resources, one
can sample uniformly from the standard Young Tableauz corresponding to a
given shape (n-box Young diagram) using the Hook walk algorithm.

End of Proof.




Is it Universal?

* So far we have seen:
- PQP C BQP
- probably PQP ¢ P
e PQP =BQP?
* My intuition: No
- no density
- one clean qubit version is in BPP



Fault Tolerance

* Model is inherently discrete

- like topological model
— unlike circuit model

« Computation occurs in a noiseless subsystem
for uniform magnetic fields

- total angular momentum operators commute with
magnetic field operators



Some Open Questions

* Implementation of phase measurements?

* g-deformed version of Ponzano-Regge
algorithm (Turaev-Viro)

* How computationally powertful are spin-foam
models for general topologies?



* For an exponentially large unitary matrix the
average magnitude of the matrix elements is

exponentially small.
* We approximate to polynomial precision?
* Is this trivial?

- For random instances: yes.
- In worst case: probably not.



* The normalized character tells us the average
diagonal element.

* In certain cases this is large.
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[Biane]



Young's Orthogonal Form
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