Generic function extension
In Haskell

Ralfi Lammel, Vrije University
Simon Peyton Jones, Microsoft Research

\What's function extension?

* You have
= A generic query

= A type-specific query
* You want a generic function which

pbehaves like spec on values of type T,
and like gen on all other values

gshow, gshow” :: Data a => a -> String
gshow = gshow” “extQ showString

showString :: String -> String
ShOWString S= “\”” ++ S ++ u\nn

gshow” x = “(* ++ show (toConstr Xx)
++ concat (gmapQ gshow Xx)
++)~
-— gmapQ :: Data a
=> (forall b. Data b => b->r)
-> a -> [r]

Defining extO

extQ :: (Typeable a, Typeable b)
=> (a->r) -> (b->r) -> a ->r
extQ gen spec X

= case (cast x) of
Just xX° -> spec X~
Nothing -> gen X

cast :: (Typeable a, Typeable b)
=> a -> Maybe b

Type saie cast

cast :: (Typeable a, Typeable b)
=> a -> Maybe Db

ghci> (cast "a") :: Maybe Char
Just "a“

ghci> (cast "a") :: Maybe Bool
Nothing

ghci> (cast True) :: Maybe Bool
Just True

Implementing cast

data TypeRep

instance Eqgq TypeRep
mkRep :: String -> [TypeRep] -> TypeRep

Guaranteed not

class Typeable a where to evaluate its

argument

typeOf -: a -> TypeRep

instance Typeable Int where
typeOf 1 = mkRep "Int" []

Implementing cast

class Typeable a where
typeOf -: a -> TypeRep

instance (Typeable a, Typeable b)

=> Typeable (a,b) where

typeOf p = mkTyConApp

(mkTyCon ""(,)")
[ta,tb]

where

ta = typeOf (fst p)
tb typeOf (snd p)

Implementing cast

cast :: (Typeable a, Typeable b)
=> a -> Maybe Db
cast X = r
where
r = 1T typeOf x == typeOf (get r)
then Just (unsafeCoerce X)
else Nothing

get -: Maybe a -> a
get X = undefined

Implementing cast

* In GHC:

= [ypeable instances are generated
autematically by the compiler for any data

type
= [[he definition ofi cast Is in a library

* [Then cast Is sound

« Bottom line: cast Is best thought of as a
language extension, but it IS an easy one
to iImplement. All the hard work is done
Py type classes

Generalisation 1
LLeibnitz equality

Back to function extension

* You have
= A generic

= A type-specific transform

« You want a generic function which
pehaves like spec on values of type T,

and like gen on all other values

Defining extl

extT :: (Typeable a, Typeable b)
=> (a->a) -> (b->b) -> a -> a

extT gen spec X \
= case (cast x) of r'
Just X° -> spec X

Nothing -> gen X

Wrong result type!

Defining extT:

Instead, cast spec

extT :: (Typeable a, Typeable b)
=> (a->a) -> (b->b) -> a -> a
extlT gen spec X

= case (cast spec) of
Just spec” -> spec” X
Nothing -> gen X

Compares type rep for (a->a) with that ofr
(b->b), when all that is necessary Is to
compare a and b.

What about extM?

extM :-: (Typeable a, Typeable b)
=> (a->m a)-> (b->m b)-> a -> m a

Need to compare type rep for (a->m a) with
that for (b->m b), so we actually need.

extM :: (Typeable a, Typeable Db,
Typeable (mn a), Typeable (m b))
=> (a->m a)-> (b->m b)-> a -> m a

Sigh: complex, and adds bogus constraints

Use [Leibnitz equality!

gcast :: (Typeable a, Typeable b)
=> c a -> Maybe (c b)

« Abstracts over arbitrary type constructor c
« Now extM Is simple...

Defining extivi

newtype M ma =M (a -> m a)

extM :: (Typeable a, Typeable b)
=> (a->m a)-> (b->m b)-> a -> m a
extM gen spec X
= case gcast (M spec) of
Just (M spec’) -> spec’ X
Nothing -> gen X

* No preblem with the ‘m’ part
« Compares type reps only for a, b.

Generalisation 2
polymorphic function

extension

Poelymerphic function extension

« S0 far we have only menomorphic function
extension. Given
shew :: Data a => a -> String
We can extend It with a type-specific function
shoewlnt :: Int -> String
or showkoeogle :: Tree [Int] -> String

But we can’t extend it with;a polymorphic
function:
showLlist :: Data a => [a] -> String

extQl :: (Data a, Typeablel t)
=> (a -> r)
-> (forall b. Data b => t b -> r)
-> (a ->r)

compare previous:

extQ 2. (Typeable a, Typeable b)
=> (a -> r)
-> (b -> r)
-> (a -> r)

Tthen we could do:

gshow, gshow” :: Data a => a -> String
gshow = gshow” “extQ showString
“extQl” showList
showString :-: String -> String
showString s= “\”” ++ s ++ “\””

showList :-: Data a => [a] -> String
showList xs = “[*

++ 1Intersperse “,” (map gshow Xs)
++ “]11

gshow” X = _..unchanged...

Digression 1
What Is Typeablel?

Typeabl

class Typeable a where

typeOf :-: a -> TypeRep

instance Typeable a => Typeable [a] where

typeOf _ = mkTyConApp

(mkTyCon “[]1)
(typeOf (undefined::a))

Proxy type argument

ypeanleld

class Typeablel t where
typeOf -: t a -> TypeRep

instance Typeablel [] where
typeOf _ = mkTyConApp (mkTyCon “[1’) []

But what about Typeable [a]?

Typeablel e

class Typeablel t where

typeOfl :-: t a -> TypeRep

instance Typeablel [] where
typeOfl = mkTyConApp (mkTyCon “[1) []

instance (Typeablel t, Typeable a)
=> Typeable (t a) where
typeOf = mkAppTy
(typeOfl (undefined::t a))
(typeOf (undefined::a))

Sigh

ypeable2 (t :: *->*->%)

lypeabled (i :: *->*->*->7%)
..Now. far?

« and what about

Typeablel 2 (t:: (*->%) -> %)

* elc

Wanted: Kind pelymoenrphism

class Typeable (a::k) where
typeOf :-: a -> TypeRep

No! Only works If k = *

Wanted: kind' polymorphism

class Typeable (a::k) where
typeOf :-: Proxy a -> TypeRep

-— typeOf :: forall k. forall a:k.
—= Proxy a -> TypeRep

data Proxy (a::k)
—-— Proxy :: forall k. k -> *

Wanted: kind' polymorphism

class Typeable (a::k) where
typeOf :-: Proxy a -> TypeRep

instance Typeable [] where
typeOf = mkTyConApp (mkTyCon “[17) [1

instance (Typeable t, Typeable a)
=> Typeable (t a) where
typeOf = mkAppTy
(typeOf (undefined::Proxy t))
(typeOf (undefined::Proxy a))

End ofi digression 1

Back to extQ1

extQl :: (Data a, Typeablel t)
=> (a -> r)
-> (forall b. Data b => t b -> r)
-> (a ->r)

compare previous:

extQ 2. (Typeable a, Typeable b)
=> (a -> r)
-> (b -> r)
-> (a -> r)

Recall ext@ implementation

extQ :: (Typeable a, Typeable b)
=> (a->r) -> (b->r) ->a ->r
extQ gen spec X

= case gcast (Q spec) of
Just (Q spec’) -> spec” X~
Nothing -> gen X

newtype Q r a = Q (a->r)

gcast :: (Typeable a, Typeable b)
=> Cc a -> Maybe (c b)

Implementation off extQ1

extQl :: (Data a, Typeablel t)
=> (a->r)-> (forall b.Data b => t b -> r)
-> (a->r)

extQl gen spec X
= case dataCastl (Q spec) of

Just (Q spec’) -> spec’ X
Nothing -> gen X
newtype Q r a = Q (a->r)

dataCastl :: (Data a, Typeablel t)
=> (forall b. Data b => c (t b))
-> Maybe (c a)

| | The $64M question:
MPIEMEn How does dataCastl
extQl :: (Data a, T get the (Data b)

A CEd DML dCtionary to pass to
-> (a->r) spec?
extQl gen spec X

= case dataCastl (Q spec) of

Just (Q spec’) -> spec’ X
Nothing -> gen X
newtype Q r a = Q (a->r)

dataCastl :: (Data a, Typeablel t)
=> (forall b. Data b => c (t b))
-> Maybe (c a)

fhe stunning plow!

« Answer: dataCastl Is a method of Data

class Typeable a => Data a where

dataCastl :: Typeablel t
=> forall b. Data b => c (t b))
-> Maybe (c a)

Instances are trivial

instance Data a => Data [a] where

dataCastl f = gcastl f

gcastl :: (Typeablel t, Typeablel s)
=> c (t a)
-> Maybe (c (s a))

Instances are trivial

instance (da:Data a) => Data [a] where

dataCastl (tt:Typeablel t) T
= gcastl (tt,tList) (f da)

tList :-: Typeablel List

gcastl :: (Typeablel t, Typeablel s)
=> c (t a)
-> Maybe (c (s a))

Geastl Is just like cast

gcastl :: (Typeablel t, Typeablel s)
=> c (t a)
-> Maybe (c (s a))

gcastl (x::c (t a)) :: Maybe (c (s a)
= 1T typeOfl (undefined::t a)
== typeOfl (undefined::s a)
then Just (unsafeCoerce X)
else Nothing

Conclusions

« Poelymonphic type extension IS
(Ssurprisingly) possible

« We want polymoerphism at the kind: level.
Are there other applications for this? How

much more complicated does the type
system become?

Papers: http://research.microsoft.com/~simonp]

