
Generic function extension Generic function extension
in Haskellin Haskell

Ralf LRalf Läämmelmmel, , VrijeVrije UniversityUniversity
Simon Peyton Jones, Microsoft ResearchSimon Peyton Jones, Microsoft Research

What’s function extension?What’s function extension?

You have You have
A generic query A generic query
gengen :: Data a => a :: Data a => a --> R> R

A typeA type--specific queryspecific query
spec :: T spec :: T --> R> R

You want a generic function which You want a generic function which
behaves like behaves like specspec on values of type T, on values of type T,
and like and like gengen on all other valueson all other values
gengen `̀extQextQ` spec :: Data a => a ` spec :: Data a => a --> R> R

ExampleExample
gshow, gshow’ :: Data a => a -> String
gshow = gshow’ `extQ` showString

showString :: String -> String
showString s= “\”” ++ s ++ “\””

gshow’ x = “(“ ++ show (toConstr x)
++ concat (gmapQ gshow x)
++ “)”

-- gmapQ :: Data a
-- => (forall b. Data b => b->r)
-- -> a -> [r]

Defining Defining extQextQ
extQ :: (Typeable a, Typeable b)

=> (a->r) -> (b->r) -> a -> r
extQ gen spec x
= case (cast x) of

Just x’ -> spec x’
Nothing -> gen x

cast :: (Typeable a, Typeable b)
=> a -> Maybe b

Type safe castType safe cast

cast :: (Typeable a, Typeable b)
=> a -> Maybe b

ghci> (cast 'a') :: Maybe Char
Just 'a'
ghci> (cast 'a') :: Maybe Bool
Nothing
ghci> (cast True) :: Maybe Bool
Just True

Implementing castImplementing cast
data TypeRep
instance Eq TypeRep
mkRep :: String -> [TypeRep] -> TypeRep

class Typeable a where
typeOf :: a -> TypeRep

instance Typeable Int where
typeOf i = mkRep "Int" []

Guaranteed not
to evaluate its

argument

An Int, perhaps

Implementing castImplementing cast
class Typeable a where
typeOf :: a -> TypeRep

instance (Typeable a, Typeable b)
=> Typeable (a,b) where

typeOf p = mkTyConApp
(mkTyCon "(,)")
[ta,tb]

where
ta = typeOf (fst p)
tb = typeOf (snd p)

Implementing castImplementing cast

cast :: (Typeable a, Typeable b)
=> a -> Maybe b

cast x = r
where
r = if typeOf x == typeOf (get r)

then Just (unsafeCoerce x)
else Nothing

get :: Maybe a -> a
get x = undefined

Implementing castImplementing cast
In GHC: In GHC:

TypeableTypeable instances are generated instances are generated
automatically by the compiler for any data automatically by the compiler for any data
typetype
The definition of cast is in a libraryThe definition of cast is in a library

Then cast is soundThen cast is sound
Bottom line: cast is best thought of as a Bottom line: cast is best thought of as a
language extension, but it is an easy one language extension, but it is an easy one
to implement. All the hard work is done to implement. All the hard work is done
by type classesby type classes

Generalisation 1Generalisation 1
LeibnitzLeibnitz equalityequality

Back to function extensionBack to function extension

You have You have
A generic A generic transformtransform
gengen :: Data a => a :: Data a => a --> a> a

A typeA type--specific transformspecific transform
spec :: T spec :: T --> T> T

You want a generic function which You want a generic function which
behaves like behaves like specspec on values of type T, on values of type T,
and like and like gengen on all other valueson all other values
gengen `̀extTextT` spec :: Data a => a ` spec :: Data a => a --> a> a

Defining Defining extTextT
extT :: (Typeable a, Typeable b)

=> (a->a) -> (b->b) -> a -> a
extT gen spec x
= case (cast x) of

Just x’ -> spec x
Nothing -> gen x

Wrong result type!

Defining Defining extTextT

extT :: (Typeable a, Typeable b)
=> (a->a) -> (b->b) -> a -> a

extT gen spec x
= case (cast spec) of

Just spec’ -> spec’ x
Nothing -> gen x

Instead, cast spec

Compares type rep for (a->a) with that ofr
(b->b), when all that is necessary is to
compare a and b.

What about What about extMextM??
extM :: (Typeable a, Typeable b)

=> (a->m a)-> (b->m b)-> a -> m a

Need to compare type rep for (a->m a) with
that for (b->m b), so we actually need.

extM :: (Typeable a, Typeable b,
Typeable (m a), Typeable (m b))

=> (a->m a)-> (b->m b)-> a -> m a

Sigh: complex, and adds bogus constraints

Use Use LeibnitzLeibnitz equality!equality!

Abstracts over arbitrary type constructor cAbstracts over arbitrary type constructor c
Now Now extMextM is simple...is simple...

gcast :: (Typeable a, Typeable b)
=> c a -> Maybe (c b)

Defining Defining extMextM
newtype M m a = M (a -> m a)

extM :: (Typeable a, Typeable b)
=> (a->m a)-> (b->m b)-> a -> m a

extM gen spec x
= case gcast (M spec) of

Just (M spec’) -> spec’ x
Nothing -> gen x

No problem with the ‘m’ partNo problem with the ‘m’ part
Compares type reps only for a, b.Compares type reps only for a, b.

Generalisation 2Generalisation 2
polymorphic function polymorphic function

extensionextension

Polymorphic function extensionPolymorphic function extension

So far we have only So far we have only monomorphicmonomorphic function function
extension. Given extension. Given

show :: Data a => a show :: Data a => a --> String> String
we can extend it with a typewe can extend it with a type--specific functionspecific function

showIntshowInt :: :: IntInt --> String> String
oror showFoogleshowFoogle :: Tree [:: Tree [IntInt]] --> String> String

But we But we can’tcan’t extend it with a polymorphic extend it with a polymorphic
function:function:

showListshowList :: Data a => [a] :: Data a => [a] --> String> String

WantedWanted
extQ1 :: (Data a, Typeable1 t)
=> (a -> r)
-> (forall b. Data b => t b -> r)
-> (a -> r)

compare previous:
extQ :: (Typeable a, Typeable b)

=> (a -> r)
-> (b -> r)
-> (a -> r)

Then we could do:Then we could do:
gshow, gshow’ :: Data a => a -> String
gshow = gshow’ `extQ` showString

`extQ1` showList
showString :: String -> String
showString s= “\”” ++ s ++ “\””

showList :: Data a => [a] -> String
showList xs = “[“

++ intersperse “,” (map gshow xs)
++ “]”

gshow’ x = ...unchanged...

Digression 1Digression 1
What is Typeable1?What is Typeable1?

TypeableTypeable
class Typeable a where
typeOf :: a -> TypeRep

instance Typeable a => Typeable [a] where
typeOf _ = mkTyConApp

(mkTyCon “[]”)
(typeOf (undefined::a))

a :: *

Proxy type argument

Typeable1Typeable1
class Typeable1 t where
typeOf :: t a -> TypeRep

instance Typeable1 [] where
typeOf _ = mkTyConApp (mkTyCon “[]”) []

t::*->*

But what about But what about TypeableTypeable [a]?[a]?

Typeable1Typeable1
class Typeable1 t where
typeOf1 :: t a -> TypeRep

instance Typeable1 [] where
typeOf1 _ = mkTyConApp (mkTyCon “[]”) []

instance (Typeable1 t, Typeable a)
=> Typeable (t a) where

typeOf _ = mkAppTy
(typeOf1 (undefined::t a))
(typeOf (undefined::a))

t::*->*

SighSigh

Typeable2 (t :: *Typeable2 (t :: *-->*>*-->*)>*)
Typeable3 (t :: *Typeable3 (t :: *-->*>*-->*>*-->*)>*)
...how far?...how far?
and what aboutand what about
Typeable1_2 (t :: (*Typeable1_2 (t :: (*-->*) >*) --> *)> *)
etcetc

Wanted: kind polymorphismWanted: kind polymorphism

No! Only works if k = *No! Only works if k = *

class Typeable (a::k) where
typeOf :: a -> TypeRep

Wanted: kind polymorphismWanted: kind polymorphism
class Typeable (a::k) where
typeOf :: Proxy a -> TypeRep

-- typeOf :: forall k. forall a:k.
-- Proxy a -> TypeRep

data Proxy (a::k)
-- Proxy :: forall k. k -> *

Wanted: kind polymorphismWanted: kind polymorphism
class Typeable (a::k) where
typeOf :: Proxy a -> TypeRep

instance Typeable [] where
typeOf _ = mkTyConApp (mkTyCon “[]”) []

instance (Typeable t, Typeable a)
=> Typeable (t a) where

typeOf _ = mkAppTy
(typeOf (undefined::Proxy t))
(typeOf (undefined::Proxy a))

End of digression 1End of digression 1

Back to extQ1Back to extQ1
extQ1 :: (Data a, Typeable1 t)
=> (a -> r)
-> (forall b. Data b => t b -> r)
-> (a -> r)

compare previous:
extQ :: (Typeable a, Typeable b)

=> (a -> r)
-> (b -> r)
-> (a -> r)

Recall Recall extQextQ implementationimplementation

compare previous

extQ :: (Typeable a, Typeable b)
=> (a->r) -> (b->r) -> a -> r

extQ gen spec x
= case gcast (Q spec) of

Just (Q spec’) -> spec’ x’
Nothing -> gen x

newtype Q r a = Q (a->r)

gcast :: (Typeable a, Typeable b)
=> c a -> Maybe (c b)

Implementation of extQ1Implementation of extQ1
extQ1 :: (Data a, Typeable1 t)
=> (a->r)-> (forall b.Data b => t b -> r)
-> (a->r)

extQ1 gen spec x
= case dataCast1 (Q spec) of

Just (Q spec’) -> spec’ x
Nothing -> gen x

newtype Q r a = Q (a->r)

dataCast1 :: (Data a, Typeable1 t)
=> (forall b. Data b => c (t b))
-> Maybe (c a)

Implementation of extQ1Implementation of extQ1
extQ1 :: (Data a, Typeable1 t)
=> (a->r)-> (forall b.Data b => t b -> r)
-> (a->r)

extQ1 gen spec x
= case dataCast1 (Q spec) of

Just (Q spec’) -> spec’ x
Nothing -> gen x

newtype Q r a = Q (a->r)

dataCast1 :: (Data a, Typeable1 t)
=> (forall b. Data b => c (t b))
-> Maybe (c a)

The $64M question:
How does dataCast1

get the (Data b)
dictionary to pass to

spec?

The stunning blow!The stunning blow!

Answer: dataCast1 is a method of DataAnswer: dataCast1 is a method of Data

class Typeable a => Data a where
...
dataCast1 :: Typeable1 t

=> forall b. Data b => c (t b))
-> Maybe (c a)

Instances are trivialInstances are trivial
instance Data a => Data [a] where
...
dataCast1 f = gcast1 f

gcast1 :: (Typeable1 t, Typeable1 s)
=> c (t a)
-> Maybe (c (s a))

Instances are trivialInstances are trivial
instance (da:Data a) => Data [a] where
...
dataCast1 (tt:Typeable1 t) f

= gcast1 (tt,tList) (f da)

tList :: Typeable1 List

gcast1 :: (Typeable1 t, Typeable1 s)
=> c (t a)
-> Maybe (c (s a))

Gcast1 is just like castGcast1 is just like cast

gcast1 :: (Typeable1 t, Typeable1 s)
=> c (t a)
-> Maybe (c (s a))

gcast1 (x::c (t a)) :: Maybe (c (s a)
= if typeOf1 (undefined::t a)

== typeOf1 (undefined::s a)
then Just (unsafeCoerce x)

else Nothing

ConclusionsConclusions
Polymorphic type extension is Polymorphic type extension is
(surprisingly) possible(surprisingly) possible
We want polymorphism at the kind level. We want polymorphism at the kind level.
Are there other applications for this? How Are there other applications for this? How
much more complicated does the type much more complicated does the type
system become?system become?

Papers: http://research.microsoft.com/~simonpj

