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Probabilistic
Distributed systems

Problems to be solved include 
Shared resources; 
Leadership election; 
Distributed consensus...

The features of the solutions include 

Randomisation within processors’ 
program execution;

Adversial scheduling in the selection of 
which processor can execute a program 
step.

These features interact 
in unanticipated ways 
making the
entire system hard to 
understand!

Often interested in the 
probability that some 
property holds.



Program algebra
To describe a distributed system using algebra we use the 
following language constructs and terms:

x, y, z represent programs executed by individual processors, 
eg X, Y, Z;

0 stands for a “miracle”;

1 stands for “skip”;

x y stands for “execute x first and then y”;

x + y stands for “execute either x or y, arbitrarily” 

x* stands for “execute x for some arbitrary number of times”.

Used together we can express for example that
 x and y run in parallel:   (x+y)*, or
first x runs for a while, and then y does:  x*y*



.... in probabilistic models these two rules are not!

Demonic
 nondeterminism
and refinement

x (y+z) = x y + x z
(x+y)z = x z + y z   
x ≤ y ⇔ x + y = y

x* = 1 + x x*

x y ≤ x ⇒ x y* = x
x y ≤ y ⇒ x* y = y

*- induction rules: a
left and a right

Standard program algebra
(x+y) + z = x + (y+z)
x + y = y + x
x + x = x
0 + x = x

x (y z) = (x y) z
0 x = x 0 = 0
1 x = x 1 = x

In standard relational models of programming these rules 
are sound....

Sequential
composition, magic

and skip



Probabilistic program algebra
x (y+z) = x y + x z

x y ≤ x ⇒ x y* = x

Today’s talk explains
the problem with these

equalities when
x, y and z are interpreted

  as probabilistic
programs.



A probabilistic program such as “x” or “x+y” maps initial 
“states” to sets of probability distributions over final states:

S          ℙS 
“s:=0  +  s:=1” is the program that “outputs” 0 or 1 arbitrarily;

s=0 s=0

s=1s=1

Some semantics



“s:=0 ⊕½ s:=1” is the program that “outputs” 0 or 1 fairly;

A probabilistic program such as “x” or “x+y” maps initial 
“states” to sets of probability distributions over final states:

S          ℙS 

s=0 s=0

s=1s=1

Some semantics

⊕

⊕



A probabilistic program such as “x” or “x+y” maps initial 
“states” to sets of probability distributions over final states:

S          ℙS 

s=0 s=0

s=1s=1

“s:=0” outputs 0 with “probability 1”;

Some semantics



A probabilistic program such as “x” or “x+y” maps initial 
“states” to sets of probability distributions over final states:

S          ℙS 

s=0 s=0

s=1s=1

“s:=0” outputs 0 with “probability 1”;
“s:=0 ⊕½ s:=1” is the program that “outputs” 0 or 1 fairly;

Some semantics



A probabilistic program such as “x” or “x+y” maps initial 
“states” to sets of probability distributions over final states:

S          ℙS 

s=0 s=0

s=1s=1

“s:=0 + (s:=0 ⊕½ s:=1)” outputs 0 with probability “at least 1/2”.

Some semantics



A probabilistic program such as “x” or “x+y” maps initial 
“states” to sets of probability distributions over final states:

S          ℙS 

s=0 s=0

s=1s=1

Refinement reduces the range of nondeterminism:

s:=0 ≤ s:=0 + s:=1 
if P then s:=0 else s:=1 ≤ s:=0 + s:=1 
s:=0 ⊕½ s:=1 ≤ s:=0 + s:=1 

Some semantics



A probabilistic program such as “x” or “x+y” maps initial 
“states” to sets of probability distributions over final states:

S          ℙS 

s=0 s=0

s=1s=1

Refinement reduces the range of nondeterminism:

s:=0 ≤ s:=0 + s:=1 
if P then s:=0 else s:=1 ≤ s:=0 + s:=1 
s:=0 ⊕½ s:=1 ≤ s:=0 + s:=1 

Some semantics

Take P to be
“s=1”



(s₀:=0 ⊕½ s₀:=1) ; 
if (s₀=0) then s₁:=0 else s₁:=1
≤

x (y+z) = x y + x z

What’s wrong with this equality?

Let x be the program “s₀:=0 ⊕½ s₀:=1”
let y be the program “s₁:=0”
let z be the program “s₁:=1”

x (y + z)

recall that “if (s₀=0)  then s₁:=0 else s₁:=1  ≤  s₁:=0 + s₁:=1”

s₀:=0; s₁:=0   ⊕½   s₀:=1; s₁:=1
=

The 
scheduler 
has a 
strategy to 
force s₀ and 
s₁  to take 
the same 
value.



.... but no such strategy exists for the scheduler in 
x y + x z, as the probabilistic choice occurs after 
the scheduler has decided.

 s₀:=0; s₁:=0   ⊕½   s₀:=1; s₁:=1      ≤      x (y + z)

x (y+z) = x y + x z

What’s wrong with this equality?

Let x be the program “s₀:=0 ⊕½ s₀:=1”
let y be the program “s₁:=0”
let z be the program “s₁:=1”

(s₀:=0 ⊕½ s₀:=1) ; s₁:=0
+
(s₀:=0 ⊕½ s₀:=1) ; s₁:=1

 =      x y + x z

The scheduler in x (y + z) has a strategy to set  s₀ 
and s₁ to the same value with probability 1....



.... but        (s₀:=0 ⊕½ s₀:=1)(s₀:=0 ⊕½ s₀:=1)* is not the same as
                  s₀:=0 ⊕½ s₀:=1.

The adversary scheduler could choose the strategy 
“stop when s₀ is 0” so that it can force the state to be set to 
0 with probability 1.

Easily we have 
s₀:=0 ⊕½ s₀:=1 ; s₀:=0 ⊕½ s₀:=1 is the same as s₀:=0 ⊕½ s₀:=1....

x y ≤ x ⇒ x y* = x

What’s wrong with this *-induction rule?

Again, this rule doesn’t take the scheduler into into 
account....

Recall that y* = 1 + y y*, thus there is a scheduler 
implicitly acting within a *-iteration. 

Let y be the program “s₀:=0 ⊕½ s₀:=1”.



=x (y+z)   x y + x z
(x+y) z = x z + y z   
x ≤ y ⇔ x + y = y

x* = 1 + x x*

x y     ≤ x ⇒ x y* = x
x y ≤ y ⇒ x* y = y
(  +1)

Probabilistic program algebra

(x+y) + z = x + (y+z)
x + y = y + x
x + x = x
0 + x = x

x (y z) = (x y) z
0 x = x 0 = 0
1 x = x 1 = x

≤

These rules are now sound when interpreted over 
probabilistic systems, 
and in fact there has only been one real change...



This allows actions of 
a protocol to appear to
be executed atomically.

This allows a simple
specification of 
probabilistic properties of 
distributed systems.

Some easy theorems

Transforming the body of an iteration:
x (1+y) ≤ z x ⇒ x y* ≤ z*x

generalised to:
x (1+y ) ≤ z* x, for i ∈ I, then

 +      (x y *) ≤ z*x

Probabilistic separation:
y (x+1)  ≤ (x+1) y* ⇒ (x + y)* = x*y*

 i ∈ I

 i

 i



Bounded mutual exclusion: A tricky problem

A number of processors need to access a shared resource. 
Processors wishing to gain access to the resource at any time 
must compete with any others, in such a way that each process  
has probability at least k/m of “winning”.

Here k is a constant value, independent of the size of the 
system, and m is the number of processes participating in the 
competition.

Processors are scheduled by an adversarial scheduler and 
“communicate” via shared variables if necessary.  The 
scheduler usually has to satisfy some strong fairness 
criterion.



Let select be a program that nondeterministically selects a 
subset of I:  
                          select :=  names :⊆ I

Problem: find definitions of the x such that

                             (+      x  )*   ≤  select vote i ∈ I  i

 i

Let us suppose that the names of the processors are drawn 
from the index set I.

Let x represent the program of the i’th processor

The distributed system is thus represented as   (+      x  )*  i ∈ I  i

 i

 i ∈ I  i

 i

Let vote be a program that chooses uniformly at random 
between a subset of names:
                          vote :=  w:= uniform(M)



Let x :=   if (i ∉ names) then names := names ⋃ {i}; 
                                             w:= i   ⊕ skip 
               else skip

1/n

 i

Observe: a uniform random selection of one out of N items 
can be implemented iteratively....

Something that doesn’t work, but looks like it oughter....

If the i’th processor has not 
voted.... 
.... win with probability relative to 
the number of processors that 
precede this one in the round. 
(n= |names|)

Does this solve the problem?

The adversary can favour a 
particular processor by 
terminating the round if its 
favourite is currently winning, 
selecting a new processor 
only if its favourite has 
already lost.

vote  x = x vote ii



Observe that in all
rounds in which 
exactly
two processors are 
selected
to vote x₀ wins 
every time....

Let x :=   if (i ∉ names) then names := names ⋃ {i}; 
                                             w:= i   ⊕ skip 
               else skip

 i

1/n

Now consider (x₀ + x₁ + x₂)*
Schedule x₀ and x₁

Schedule x₂
 only if x₀
 has lostw=x₁w=x₂  

 @ 1/6 @ 1/3

Algebraically, this behaviour is captured by the 
failure of the inequality
vote  (x + 1)   ≤  (x + 1) vote 

w=x₁
w=x₀
@ 1/2

@ 1/2

ii



Something better....
.... split the protocol into two phases:
   (a)  processors register to vote;
   (b)  registered processors vote.

The adversary cannot favour a processor since 
once the registration has ended, the length of the 
round is decided and the adversary is forced to 
allow all of the registered processors to vote.

 iLet x’ :=   if (i ∉ names ⋀ r=0) then names := names ⋃ {i};
                                                               r := 0 + r:= 1
               else if ( i ∈ names ⋀ r=1) then  w := i   ⊕ skip 
               else skip

1/n

If p= (r=0), then we can show that

 ( + x )*   ≤   ( + {p} x  )*  ( + {¬p} x )* ≤ select; uniformiii ii



Extension of (Kleene) algebra to a model of probabilistic 
programs

Our contribution

Further challenges

http://web.comlab.ox.ac.uk/oucl/research/areas/probs/

Infinite iterations (termination);
Study the impact of “tests” and probability.


