
Generics for the masses

Ralf Hinze
Institut für Informatik III

Universität Bonn
Römerstraße 164, 53117 Bonn, Germany

ralf@informatik.uni-bonn.de

1 Introduction

A type system is like a suit of armour: it shields against the modern
dangers of illegal instructions and memory violations, but it also re-
stricts flexibility. The lack of flexibility is particularly vexing when
it comes to implementing fundamental operations such as showing
a value or comparing two values. In a statically typed language
such as Haskell 98 [8] it is simply not possible to define an equality
test that works for all types. Polymorphism does not help: equality
is not a polymorphic function since it must inspect its arguments.
Static typing dictates that equality becomes a family of functions
containing a tailor-made instance of equality for each type of inter-
est. Rather annoyingly, all these instances have to be programmed.

More than a decade ago the designers of Haskell noticed and par-
tially addressed this problem. By attaching a so-calledderiving
form to a data type declaration the programmer can instruct the
compiler to generate an instance of equality for the new type.1 In
fact, the deriving mechanism is not restricted to equality: parsers,
pretty printers and several other functions are derivable, as well.
These functions have to become known asdata-genericor polytypic
functions, functions that work for a whole family of types. Unfor-
tunately, Haskell’s deriving mechanism is closed: the programmer
cannot introduce new generic functions.

The recent years have seen a number of proposals that support ex-
actly this, thedefinitionof generic functions. Some of the propos-
als define new languages, some define extensions to existing lan-
guages. As a common characteristic none of the proposals can be
made to work within Haskell 98; they all require something extra,
either a more sophisticated type system or an additional language
construct.

1Actually, in Haskell 1.0 the compiler would always generate
an instance of equality. A deriving form was used torestrict the
instances generated to those mentioned in the form. To avoid the
generation of instances altogether, the programmer had to supply
an empty deriving clause.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’04,September 19–22, 2004, Snowbird, Utah.
Copyright 2004 ACM ...$5.00

The purpose of this pearl is to show that one can, in fact, program
generically within Haskell 98 obviating to some extent the need for
fancy type systems or separate tools. The proposed approach is
extremely light-weight; each implementation of generics—we will
introduce two major ones and a few variations—consists roughly of
two dozen lines of Haskell code. The reader is cordially invited to
play with the material. The source code can be found at

http://www.informatik.uni-bonn.de/˜ralf/masses.tar.bz2

We have also included several exercises to support digestion of the
material and to stimulate further experiments.

2 Generic functions on types

This section discusses the first implementation of generics. Sec-
tions 2.1 and 2.2 introduce the approach from a user’s perspective,
Section 2.3 details the implementation, and Section 2.4 takes a look
at various extensions, some obvious and some perhaps less so.

2.1 Defining a generic function

Let us tackle a concrete problem. Suppose we want to encode el-
ements of various data types as bit strings implementing a simple
form of data compression. For simplicity, we represent a bit string
by a list of bits.

type Bin = [Bit]
data Bit = 0 | 1 deriving (Show)
bits :: (Enumα)⇒ Int→ α→ Bin

We assume a functionbits that encodes an element of an enumera-
tion type using the specified number of bits. We seek to generalize
bits to a functionshowBinthat works for arbitrary types. Here is a
simple interactive session that illustrates the use ofshowBin(note
that characters consume 7 bits and integers 16 bits).

Main〉 showBin3
[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Main〉 showBin[3,5]
[1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

Main〉 showBin"Lisa"
[1,0,0,1,1,0,0,1,1,1,0,0,1,0,1,1,
1,1,1,0,0,1,1,1,1,1,0,0,0,0,1,1,0]

A string of lengthn, for instance, is encoded in8∗n+1 bits.

ImplementingshowBinso that it works for arbitrary data types

seems like a hard nut to crack. Fortunately, generic programming
comes to the rescue. The good news is that it suffices to define
showBinfor primitive types and for three elementary types: the
one-element type, the binary sum, and the binary product.

data Unit = Unit

data Plusα β = Inl α | Inr β
data Pair α β = Pair{outl :: α,outr :: β}

Why these types? Now, Haskell’s construct for defining new types,
thedata declaration, introduces a type that is isomorphic to a sum
of products. Thus, if we know how to compress sums and products,
we can compress elements of an arbitrary data type. More gener-
ally, we can handle a typeσ if we can handle some representation
type τ that is isomorphic toσ. The details of the representation
type are largely irrelevant. When programming a generic function
it suffices to know the two mappings that witness the isomorphism.

data Isoα β = Iso{ fromData:: β→ α, toData:: α→ β}

Turning to the implementation ofshowBin, we first have to provide
the signature of the generic function. Rather unusual, we specify
the type using anewtypedeclaration.

newtypeShowBinα = ShowBin{applyShowBin:: α→ Bin}
An element ofShowBinσ is an instance ofshowBinthat encodes
values of typeσ as bit strings. We know thatshowBinitself cannot
be a genuine polymorphic function of typeα→ Bin. Data com-
pression does not work for arbitrary types, but only for types that
arerepresentable. Representable means that thetypecan be repre-
sented by a certainvalue. For the moment, it suffices to know that
a type representation is simply an overloaded value calledrep. The
generic compression function is then given by the following simple,
yet slightly mysterious definition.

showBin :: (Repα)⇒ α→ Bin
showBin = applyShowBin rep

Loosely speaking, we apply the generic function to the type rep-
resentationrep. Of course, this is not the whole story. The code
above defines only a convenient shortcut. The actual definition of
showBinis provided by an instance declaration.

instanceGeneric ShowBinwhere
unit = ShowBin(λx→ [])
plus = ShowBin(λx→ casex of Inl l → 0 : showBin l

Inr r → 1 : showBin r)
pair = ShowBin(λx→ showBin(outl x)++showBin(outr x))
datatype iso

= ShowBin(λx→ showBin(fromData iso x))
char = ShowBin(λx→ bits7 x)
int = ShowBin(λx→ bits16x)

The classGenerichas six member functions corresponding to the
elementary types,Unit, Plus, and Pair, and to a small selection
of primitive types,Char and Int. The member functiondatatype,
which slightly breaks ranks, deals with arbitrary data types. Each
method binding defines the instance of the generic function for the
corresponding type. Let us consider each case in turn. To encode
the single element of the typeUnit no bits are required (read: the
instance ofshowBinfor the Unit type isλx→ []). To encode an
element of a sum type, we emit one bit for the constructor followed
by the encoding of its argument. The encoding of a pair is given
by the concatenation of the component’s encodings. To encode an
element of an arbitrary data type, we first convert the element into
a sum of products, which is then encoded. Finally, characters and
integers are encoded using the functionbits.

That’s it! We can start compressing data to strings of bits. Actually,
not quite. First, we have to turn the types of the to-be-compressed
values into representable types, which is what we will do next.

Exercise 1. Implement a generic version of Haskell’s comparison
function of typecompare:: (Repα)⇒ α→ α→ Ordering. Fol-
low the scheme above: first turn the signature into anewtypedec-
laration, then definecompare, and finally provide an instance of
Generic. 2

Exercise 2. Implement a functionreadBin:: (Repα)⇒ Bin→ α
that decodes a bit string that was encoded byshowBin. 2

2.2 Defining a new type

A generic function such asshowBincan only be instantiated to a
representable type. By default, only the elementary types,Unit,
Plus, and Pair, and the primitive typesChar and Int are repre-
sentable. So, whenever we define a new data type and we intend
to use a generic function on that type, we have to do a little bit of
extra work. As an example, consider the data type of binary leaf
trees.

data Shrubα = Leaf α | Fork (Shrubα) (Shrubα)

We have to show that this type is representable. To this end we ex-
hibit an isomorphic type built from representable type constructors.
We call this type thestructure typeof Shrub.

instance(Repα)⇒ Rep(Shrubα) where
rep = datatype(Iso fromShrub toShrub)

The main work goes into defining two mappings,fromShrub
and toShrub, which certify thatShrubα and its structure type
Plusα (Pair (Shrubα) (Shrubα)) are indeed isomorphic.2

fromShrub:: Shrubα→ Plusα (Pair (Shrubα) (Shrubα))
fromShrub(Leaf x) = Inl x
fromShrub(Fork l r) = Inr (Pair l r)
toShrub:: Plusα (Pair (Shrubα) (Shrubα))→ Shrubα
toShrub(Inl x) = Leaf x
toShrub(Inr (Pair l r)) = Fork l r

Perhaps surprisingly, the structure type may contain the original
type. This is valid and, in fact, the standard approach for recursive
types since the original type becomes representable by virtue of the
instance declaration. Oh, wonders of recursion!

As a second example, here is the encoding of Haskell’s list data
type.

instance(Repα)⇒ Rep[α] where
rep = datatype(Iso fromList toList)

fromList :: [α]→ Plus Unit(Pair α [α])
fromList[] = Inl Unit
fromList(x : xs) = Inr (Pair x xs)
toList :: Plus Unit(Pair α [α])→ [α]
toList (Inl Unit) = []
toList (Inr (Pair x xs)) = x : xs

TheUnit type is used for encoding constructors with no arguments.
If a data type has more than two alternatives, or if a constructor has

2Strictly speaking, the types Shrub α and
Plusα (Pair (Shrubα) (Shrubα)) are not isomorphic in Haskell
sincePlusis a lifted sum. We simply ignore this complication here.

more than two arguments, we have to nest the binary type construc-
torsPlusandPair accordingly. Actually, we are more flexible than
this: we can map the new type to any other type as long as the target
type is an instance ofRep.

Exercise 3.Turn the following types into instances ofRep.

data Shrubα β = Tip α | Node(Shrubα β) β (Shrubα β)
data Roseα = Branchα [Roseα] 2

2.3 Implementation

The implementation of light-weight generics is surprisingly con-
cise: apart from declaring the two classes,Genericand Rep, we
only provide a handful of instance declarations. To begin with, the
classGenericaccommodates the different instances of a generic
function.

classGeneric gwhere
unit :: g Unit
plus :: (Repα,Repβ)⇒ g (Plusα β)
pair :: (Repα,Repβ)⇒ g (Pair α β)
datatype :: (Repα)⇒ Isoα β→ g β
char :: g Char
int :: g Int

The class abstracts over the type constructorg, the type of a generic
function. This is whyunit has typeg Unit. In the case ofPlusand
Pair the corresponding method has an additional context that con-
strains the type arguments ofPlusandPair to representable types.
This context is necessary so that a generic function can recurse on
the component types. In fact, the context allows us to call any
generic function, so that we can easily define mutually recursive
generic functions. We will see an example of this in the next sec-
tion.

Now, what does it mean for a type to be representable? For our pur-
poses, this simply means that we can instantiate a generic function
to that type. So an intriguing choice is toidentify type representa-
tions with generic functions.

classRepα where
rep :: (Generic g)⇒ g α

Note that the type variableg is implicitly universally quantified: the
type representation must work forall instances ofg. This is quite
a strong requirement. How can we possibly define an instance of
g? The answer is simple, yet mind boggling: we have to use the
methods of classGeneric. Recall thatunit has type(Generic g)⇒
g Unit. Thus, we can turnUnit into an instance ofRep.

instanceRep Unitwhere
rep = unit

instance(Repα,Repβ)⇒ Rep(Plusα β) where
rep = plus

instance(Repα,Repβ)⇒ Rep(Pair α β) where
rep = pair

instanceRep Charwhere
rep = char

instanceRep Intwhere
rep = int

Strange as the instance declarations may seem, each has a logical
explanation. A type is representable if we can instantiate a generic
function to that type. But the classGeneric just contains the in-
stances of generic functions. Thus, each method ofGenericwith

the notable exception ofdatatypegives rise to an instance declara-
tion. We have seen in Section 2.2 that the methoddatatypeis used
to make an arbitrary type an instance ofRep. The procedure de-
scribed in Section 2.2 is, in fact, dictated by the type ofdatatype:
we have to provide an isomorphic data type that is representable.

The type ofrep, namely,(Repα,Generic g)⇒ g α is quite remark-
able. In a sense,rep can be seen as the mother of all generic
functions. This de-mystifies the definition ofshowBin in Sec-
tion 2.1: the applicationapplyShowBin repimplicitly instantiates
rep’s type to (Repα)⇒ ShowBinα, which the selector function
applyShowBinthen turns to(Repα) ⇒ α → Bin. Note that the
classesGenericandRepare mutually recursive: each class list the
other one in a method context. Oh, wonders of recursion!

2.4 Extensions

2.4.1 Additional type cases

The classGenericcan be seen as implementing a case analysis on
types. Each method corresponds to a case branch. Types not listed
as class methods are handled completely generically. However, this
is not always what you want. As an example, recall that the en-
coding of a list of lengthn takesn+ 1 bits plus the space for the
encoding of the elements. A better method is to first encode the
length of the list and then to concatenate the encodings of the ele-
ments. In order to treat the list type as a separate case, we have to
add a new method to the class Generic.

classGeneric gwhere
. . .
list :: (Repα)⇒ g [α]
list = datatype(Iso fromList toList)

instance(Repα)⇒ Rep[α] where
rep = list

So, the bad news is that we have to change a class definition. The
good news is that by supplying a default definition forlist this
change does not affect any of the instance declarations: all the
generic functions work exactly as before. The newShowBinin-
stance overrides the default definition.

instanceGeneric ShowBinwhere
. . .
list = ShowBin(λx→ bits16(length x)++concatMap showBin x)

The technique relies on Haskell’s concept ofdefault class methods:
only if the instance does not provide a binding for thelist method,
then the default class method is used.

Exercise 4.Adopt readBinto the new encoding of lists. 2

2.4.2 A default type case

Using the same technique we can also implement a default or catch-
all type case.

classGeneric gwhere
. . .
default :: (Repα)⇒ g α
unit = default
plus = default
pair = default
char = default
int = default

A default type case is useful for saying ‘treat all the type cases not
explicitly listed in the following way’. We will see an example
application in Section 2.4.4.

2.4.3 Accessing constructor names

So far, the structure type captures solely the structure of a data type,
hence its name. However, in Haskell there is more to a data type
than this: adata constructor has a unique name, an arity, possibly
a fixity, and possibly named fields. We are free to add all this in-
formation to the structure type. There are, in fact, several ways to
accomplish this: we discuss one alternative in the sequel, Exercise 5
sketches a second one. To record the properties of adata construc-
tor we use the data typeConstr(we confine ourselves to name and
arity).

type Name = String

type Arity = Int

data Constrα = Constr{name:: Name,arity :: Arity,arg:: α}
As an example, here is a suitable redefinition offromShruband
toShrub.

fromShrub(Leaf x) = Inl (Constr"Leaf" 1 x)
fromShrub(Fork l r) = Inr (Constr"Fork" 2 (Pair l r))

toShrub(Inl (Constr n a x)) = Leaf x
toShrub(Inr (Constr n a(Pair l r))) = Fork l r

Note that, for reasons of efficiency,toShrubsimply discards the
additionalConstr wrapper. So strictly, the two functions do not
define an isomorphism. This is not a problem, however, as long as
we do not cheat with the constructor names.

It remains to introduce a new type case for constructors and to add
Constrto the league of representable types.

classGeneric gwhere
. . .
constr :: (Repα)⇒ g (Constrα)
constr = datatype(Iso arg wrap)

wherewrap a = Constr"" (−1) a

instance(Repα)⇒ Rep(Constrα) where
rep = constr

Figure 1 displays a simple pretty printer, based on Wadler’s prettier
printing library [10], that puts the additional information to good
use. Thepluscase discards the constructorsInl andInr as they are
not needed for showing a value. Theconstrcase signals the start
of a constructed value. If the constructor is nullary, its string repre-
sentation is emitted. Otherwise, the constructor name is printed fol-
lowed by a space followed by the representation of its arguments.
The pair case applies if a constructor has more than one compo-
nent. In this case the components are separated by a space. Finally,
list takes care of printing lists using standard list syntax, comma-
separated elements between square brackets.

The approach above works well for pretty printing but, unfortu-
nately, fails for parsing. The problem is that the constructor names
are attached to avalue. Consequently, this information is not avail-
able when parsing a string. The important point is that parsingpro-
duces(not consumes) a value, and yet it requires access to the con-
structor name. An alternative approach, discussed in the exercise
below, is to attach the information to thetype, respectively, to the
type representation.

newtypePrettyα = Pretty{applyPretty:: α→ Doc}
pretty :: (Repα)⇒ α→ Doc
pretty = applyPretty rep

instanceGeneric Prettywhere
unit = Pretty(λx→ empty)
plus = Pretty(λx→ casex of

Inl l → pretty l
Inr r → pretty r)

pair = Pretty(λx→ pretty(outl x) 〈〉 line〈〉pretty(outr x))
datatype iso

= Pretty(λx→ pretty(fromData iso x))
char = Pretty(λx→ prettyChar x)
int = Pretty(λx→ prettyInt x)
list = Pretty(λx→ prettyl pretty x)
constr = Pretty(λx→ if arity x 0 then

text(name x)
else
group(nest1 (
text"(" 〈〉 text(name x) 〈〉 line
〈〉pretty(arg x) 〈〉 text")")))

prettyl :: (α→ Doc)→ ([α]→ Doc)
prettyl p[] = text"[]"
prettyl p(a : as) = group(nest1 (text"[" 〈〉p a〈〉 rest as))

where rest[] = text"]"
rest(x : xs) = text"," 〈〉 line〈〉p x〈〉 rest xs

Figure 1. A generic prettier printer

Exercise 5. Augment thedatatypemethod by an additional argu-
ment

datatype :: (Repα)⇒ DataDescr→ Isoα β→ g β

that records information about the data type and its constructors.
Re-implement the pretty printer using this modification instead of
theconstrcase. 2

Exercise 6.Use the extension of the previous exercise and a parser
library of your choice to implement a generic parser analogous to
Haskell’sreadmethod. 2

2.4.4 Mutual recursion

In Haskell, theShowclass takes care of pretty printing. The class is
very carefully crafted so that strings, which are lists of characters,
are shown in double quotes, rather than between square brackets. It
is instructive to re-program this behaviour as the new code requires
all three extensions introduced before. Basically, we have to imple-
ment a nested case analysis on types. The outer type case checks
whether we have a list type; the inner type case checks whether the
type argument of the list type constructor isChar. In our setting, a
nested type case can be encoded using a pair of mutually recursive
generic functions. The first realizes the outer type case.

instanceGeneric Prettywhere
. . .
list = Pretty(λx→ prettyList x)

The instance declaration is the same as before, except that thelist
method dispatches to the second function which corresponds to the

inner type case.

newtypePrettyListα = PrettyList{applyPrettyList:: [α]→ Doc}
prettyList :: (Repα)⇒ [α]→ Doc
prettyList = applyPrettyList rep

instanceGeneric PrettyListwhere
char = PrettyList(λx→ prettyString x)
datatype iso = PrettyList(λx→ prettyl(pretty· fromData iso) x)
list = default
default = PrettyList(λx→ prettyl pretty x)

The PrettyList instance makes use of a default type case which
implements the original behaviour, comma-separated elements be-
tween square brackets. Note that thelist method must be explic-
itly set todefaultbecause it has the ‘wrong’ default class method.
Finally, thechar method takes care of printing strings in double
quotes.

3 Generic functions on type constructors

Let us now turn to the second implementation of generics, which
will increase flexibility at the cost of automation.

3.1 Defining a generic function

The generic functions introduced in the last section abstract over a
type. For instance,showBingeneralizes functions of type

Char→ Bin, String→ Bin, [[Int]]→ Bin

to a single generic function of type

(Repα)⇒ α→ Bin

A generic function may also abstract over atype constructor. Take,
as an example, a function that counts the number of elements con-
tained in a data structure. Such a function generalizes functions of
type

[α]→ Int, Shrubα→ Int, [Roseα]→ Int

to a single generic function of type

(FRepϕ)⇒ ϕ α→ Int

The class context makes explicit that counting elements does not
work for arbitrary type constructors, but only for representable
ones.

When type constructors come into play, typings often become am-
biguous. Imagine applying a generic size function to a data struc-
ture of type[Rose Int]. Shall we count the number of rose trees in
the list, or the number of integers in the list of rose trees? Because
of this inherent ambiguity, the second implementation of generics
will be more explicit about types and type representations. The fol-
lowing implementation of a generic counter illustrates the point.

newtypeCountα = Count{applyCount:: α→ Int}

instanceGeneric Countwhere
unit = Count(λx→ 0)
plus a b = Count(λx→ casex of

Inl l → applyCount a l
Inr r → applyCount b r)

pair a b = Count(λx→ applyCount a(outl x)
+applyCount b(outr x))

datatype iso a = Count(λx→ applyCount a(fromNew iso x))
char = Count(λx→ 0)
int = Count(λx→ 0)

The new version of the classGenerichas the same member func-
tions as before, but with slightly different typings: the cases cor-
responding to type constructors,plus, pair anddatatype, now take
explicit type arguments,a andb, which are passed to the recursive
calls. Of course, we do not pass types as arguments, but rather type
representations.

Though the class is a bit different, we are still able to define all the
generic functions we have seen before. In particular, we can apply
applyCountto rep to obtain a generic function of type(Repα)⇒
α→ Int. However, the result is not interesting at all: the function
always returns0 (provided its argument is fully defined). Instead,
we applyapplyCountto frep, the generic representation of a type
constructor.

size :: (FRepϕ)⇒ ϕ α→ Int
size = applyCount(frep(Count(λx→ 1)))

Sincefrep represents a type constructor, it takes an additional ar-
gument, which specifies the action ofsizeon the base typeα: the
functionλx→ 1 makes precise that each element of typeα counts
as1. Interestingly, this is not the only option. If we pass the identity
to frep, then we get a generic sum function.

sum :: (FRepϕ)⇒ ϕ Int→ Int
sum = applyCount(frep(Count(λx→ x)))

Two generic functions for the prize of one!

Whensizeandsumare applied to some value, Haskell’s type in-
ferencer determines the particular instance of the type constructor
ϕ. We have noted before that there are, in general, several possible
alternatives forϕ. If we are not happy with Haskell’s choice, we
can always specify the type explicitly.

Main〉 let xss= [[i ∗ j | j← [i . .9]] | i← [0. .9]]
Main〉 size xss
10
Main〉 let a = Count(λx→ 1)
Main〉 applyCount(list (list a)) xss
55
Main〉 applyCount(list a) xss
10
Main〉 applyCount a xss
1

By default,sizecalculates the size of the outer list, not the total
number of elements. For the latter behaviour, me must pass an ex-
plicit type representation toapplyCount. This is something which
is not possible with the first implementation of generics.

Exercise 7.Generalizesizeandsumso that they work for arbitrary
numeric types.

size :: (FRepϕ,Numη)⇒ ϕ α→ η
sum :: (FRepϕ,Numη)⇒ ϕ η→ η 2

Exercise 8. The functionreducerwhose signature is given below

generalizes Haskell’sfoldr function (reducerswaps the second and
the third argument).

newtypeReducerβ α = Reducer{applyReducer:: α→ β→ β}
instanceGeneric(Reducerβ) where

. . .

reducer :: (FRepϕ)⇒ (α→ β→ β)→ (ϕ α→ β→ β)
reducer f = applyReducer(frep(Reducer f))

Fill in the missing details. Usereducer to define a function that
flattens a data structure into a list of elements. Definesumin terms
of reducer. 2

3.2 Introducing a new type

As before, we have to do a bit of extra work when we define a
new data type. The main difference to Section 2.2 is that we must
explicitly define the structure type—datatypeexpects the structure
type as its second argument. At first sight, providing this infor-
mation seems to be a lot less elegant, but it turns out to be fairly
advantageous.

Reconsider the data typeShrub. Since it is a type constructor rather
than a type, we first define a ‘type constructor representation’.

shrub :: (Generic g)⇒ g α→ g (Shrubα)
shrub a = datatype(Iso fromShrub toShrub)

(a⊕shrub a⊗shrub a)

The operators ‘⊕’ and ‘⊗’ are convenient shortcuts forplus and
pair.

infixr 3 ⊗
infixr 2 ⊕
a⊕b = plus a b
a⊗b = pair a b

The type constructorShrubcan be seen as a function that takes
types to types. Likewise,Shrubis a function that takes type repre-
sentations to type representations. The structure typea⊕shrub a⊗
shrub amakes explicit, thatShrub is a binary sum, that the first
constructor takes a single argument of typeα, and that the second
constructor takes two arguments of typeShrubα. Usingshrubwe
can now provide suitable instances ofRepandFRep.

instance(Repα)⇒ Rep(Shrubα) where
rep = shrub rep

instanceFRep Shrubwhere
frep = shrub

The last declaration shows thatshrub is just theShrubinstance of
frep.

3.3 Implementation

The implementation ofGenericandRepreflects the change from
implicit to explicit type arguments: the implicit arguments in the
form of a context ‘(Repα)⇒’ are replaced by explicit arguments
of the form ‘g α→’.

classGeneric gwhere
unit :: g Unit
plus :: g α→ g β→ g (Plusα β)
pair :: g α→ g β→ g (Pair α β)
datatype :: Isoα β→ g α→ g β
char :: g Char
int :: g Int

classRepα where
rep :: (Generic g)⇒ g α

instanceRep Unitwhere
rep = unit

instance(Repα,Repβ)⇒ Rep(Plusα β) where
rep = rep⊕ rep

instance(Repα,Repβ)⇒ Rep(Pair α β) where
rep = rep⊗ rep

instanceRep Intwhere
rep = int

Furthmermore, we introduce a class that accommodates the mother
of all ‘type constructor representations’.

classFRepϕ where
frep :: (Generic g)⇒ g α→ g (ϕ α)

Exercise 9.The first implementation of generics used implicit, the

second explicit type arguments. Does it make sense to combine
both?

classGeneric gwhere
unit :: g Unit
plus :: (Repα,Repβ)⇒ g α→ g β→ g (Plusα β)
. . . 2

Exercise 10.Some generic functions require abstraction over two

type parameters.

classGeneric gwhere
unit :: g Unit Unit
plus :: g α1 α2→ g β1 β2→ g (Plusα1 β1) (Plusα2 β2)
. . .

classRepα where
rep :: (Generic g)⇒ g α α

Implement a generic mapping function using this interface. 2

3.4 Extensions

3.4.1 Accessing constructor names

Being explicit about type representations pays off when it comes to
adding information about constructors. In Section 2.4.3 we had to
introduce a new typeConstrto record the name and the arity of the
constructor. Now, we can simply add the information to the type
representation.

classGeneric gwhere
. . .
constr :: Name→ Arity→ g α→ g α

Since the additional type caseconstr name arityhas typegα→ gα,
the representation of values is not affected. This is a huge advantage
as it means that this extension works both for pretty printing and
parsing.

In particular, it suffices to adapt the definition ofshrub and
colleagues; the implementation of the mappingsfromShruband
toShrubis not affected.

shrub :: (Generic g)⇒ g α→ g (Shrubα)
shrub a = datatype(Iso fromShrub toShrub) (

constr"Leaf" 1 a
⊕constr"Fork" 2 (shrub a⊗shrub a))

The new definition ofshrubis a true transliteration of the data type
declaration.

3.4.2 Mutual recursion

Being explicit about type representations is a bit of a pain when it
comes to programming mutually recursive generic functions. With
the first implementation mutual recursion was easy: the method
context ‘(Repα)⇒’ allowed us to call any generic function. Now,
we are less flexible: the explicitg α argument corresponds to the
immediate recursive call. So, to implement mutual recursion we
have to tuple the functions involved.

newtypePrettyα = Pretty{applyPretty:: α→ Doc,
applyPrettyList:: [α]→ Doc}

The following exercise asks you to re-implement the prettier printer
using this record type.

Exercise 11. Re-implement the generic prettier printer of Sec-
tion 2.4.4 using tupling. Try, in particular, to simulate default type
cases. 2

4 Where to go from here

Got interested in generic programming? There is quite a wealth of
material on the subject. For a start, we recommend studying the
tutorials [1, 6, 5]. Further reading includes [7, 3].

The particular implementation described in this pearl is inspired by
Weirich’s paper [11]. Weirich gives an implementation in Haskell
augmented by rank-2 types. The essence of this pearl is that
Haskell’s class system can be used to avoid higher-order ranks.

If you are willing to go beyond Haskell 98, then there is a lot more
to discover. Usingrank-2 typeswe can implementhigher-order
generic functions. This extension is jolly useful for implementing
generic traversals [9, 4]. Usingexistential typeswe can combine
generic functions with dynamic values [2, 4]. Dynamic type check-
ing is indispensible for programs that interact with the environment.

5 References

[1] Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lam-
bert Meertens. Generic Programming — An Introduction —
. In S. Doaitse Swierstra, Pedro R. Henriques, and Jose N.
Oliveira, editors,3rd International Summer School on Ad-
vanced Functional Programming, Braga, Portugal, volume
1608 ofLecture Notes in Computer Science, pages 28–115.
Springer-Verlag, Berlin, 1999.

[2] James Cheney and Ralf Hinze. A lightweight implementation
of generics and dynamics. In Manuel M.T. Chakravarty, ed-
itor, Proceedings of the 2002 ACM SIGPLAN Haskell Work-
shop, pages 90–104. ACM Press, October 2002.

[3] Ralf Hinze. A new approach to generic functional program-
ming. In Thomas W. Reps, editor,Proceedings of the 27th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’00), Boston, Massachusetts,
January 19-21, pages 119–132, January 2000.

[4] Ralf Hinze. Fun with phantom types. In Jeremy Gibbons
and Oege de Moor, editors,The Fun of Programming, pages
245–262. Palgrave Macmillan, 2003. ISBN 1-4039-0772-2
hardback, ISBN 0-333-99285-7 paperback.

[5] Ralf Hinze and Johan Jeuring. Generic Haskell: Applications.
In Roland Backhouse and Jeremy Gibbons, editors,Generic

Programming: Advanced Lectures, volume 2793 ofLecture
Notes in Computer Science. Springer-Verlag, 2003.

[6] Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and
theory. In Roland Backhouse and Jeremy Gibbons, editors,
Generic Programming: Advanced Lectures, volume 2793 of
Lecture Notes in Computer Science. Springer-Verlag, 2003.

[7] Patrik Jansson and Johan Jeuring. PolyP—a polytypic pro-
gramming language extension. InConference Record 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’97), Paris, France, pages 470–
482. ACM Press, January 1997.

[8] Simon Peyton Jones.Haskell 98 Language and Libraries.
Cambridge University Press, 2003.

[9] Simon Peyton Jones and Ralf Lämmel. Scrap your boiler-
plate: a practical approach to generic programming. InPro-
ceedings of the ACM SIGPLAN Workshop on Types in Lan-
guage Design and Implementation (TLDI 2003), New Or-
leans, January 2003.

[10] Philip Wadler. A prettier printer. In Jeremy Gibbons and Oege
de Moor, editors,The Fun of Programming, Cornerstones of
Computing, pages 223–243. Palgrave Macmillan Publishers
Ltd, March 2003.

[11] Stephanie Weirich. Higher-order intensional type
analysis in type-erasure semantics. available from
http://www.cis.upenn.edu/˜sweirich/papers/erasure/
erasure-paper-july03.pdf , 2003.

