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Introduction

• Pointless - a Haskell library for point-free programming with recursion
patterns:

– Categorical combinators + Hylomorphisms;
– Types as fixed points of functors;
– Mimics the theoretical notation;
– Mainly built on top of PolyP’s ideas [NJ03].

• Examples of how to implement some of the standard recursion patterns
using hylomorphisms.

• Some related tools: visualization of intermediate data structures,
derivation of hylomorphisms and point-free definitions.
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Categorical Combinators in Haskell

A × B = {(x, y) | x ∈ A, y ∈ B}

fst (x, y) = x

snd (x, y) = y

(f M g) x = (f x, g x)

f × g = (f ◦ fst) M (g ◦ snd)
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Categorical Combinators in Haskell

• Products are implemented by Haskell pairs, even if these aren’t true
products: (⊥,⊥) 6= ⊥.

-- fst :: (a, b) -> a
-- fst (x, y) = x

-- snd :: (a, b) -> b
-- snd (x, y) = y

(/\) :: (a -> b) -> (a -> c) -> a -> (b,c)
(/\) f g x = (f x, g x)

(><) :: (a -> b) -> (c -> d) -> (a,c) -> (b,d)
f >< g = (f . fst) /\ (g . snd)
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Categorical Combinators in Haskell

A + B = {0} × A ∪ {1} × B ∪ {⊥}

inl x = (0, x)

inr x = (1, x)

(f O g) x =

 f (snd x) if fst x = 0
g (snd x) if fst x = 1
⊥ otherwise

f + g = (inl ◦ f) O (inr ◦ g)
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Categorical Combinators in Haskell

• Sums are implemented by the Either data type.

inl :: a -> Either a b
inl = Left

inr :: b -> Either a b
inr = Right

(\/) :: (b -> a) -> (c -> a) -> Either b c -> a
(\/) f g (Left x) = f x
(\/) f g (Right x) = g x

(-|-) :: (a -> b) -> (c -> d) -> Either a c -> Either b d
f -|- g = (inl . f) \/ (inr . g)
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Categorical Combinators in Haskell

BA = {f | f : A → B}

ap (f, x) = f x

f x y = f (x, y)

f• = f ◦ ap
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Categorical Combinators in Haskell

• Exponentials are implemented by Haskell functions. Notice that these
aren’t also true functions: λx.⊥ 6= ⊥

• Function exponentiation is implemented by the left sectioning of the
composition combinator.

app :: (a -> b, a) -> b
app (f, x) = f x

-- curry :: ((a, b) -> c) -> a -> b -> c
-- curry f x y = f (x, y)

-- (.) :: (b -> c) -> (a -> b) -> a -> c
-- (f .) = curry (f . app)
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Categorical Combinators in Haskell

• Postfix operators for constants and guards are simulated by using left-
sectionings of binary operators.

(!) :: a -> b -> a
(!) = const

(?) :: (a -> Bool) -> a -> Either a a
p ? x = if p x then inl x else inr x

• Since the bottom element will be used frequently, we also define the
following alias.

_L :: a
_L = undefined
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Recursive Data Types

• A recursive data type is modeled by the least fixed point of a base functor
that captures the recursive structure of its constructors.

• For a regular functor F , the data type µF , together with two strict
functions inF : F (µF ) → µF and outF : µF → F (µF ), are guaranteed
to exist [Rey77, FM91].

Nat = µ(1! + Id)

in = zero! O succ

out = (1! + pred) ◦ iszero?

List A = µ(1! + A! × Id)

in = nil! O cons

out = (1! + (head M tail)) ◦ null?
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Hylomorphisms

• Given a functor F , a function g : F B → B, and a function h : A → F A,
a hylomorphism [MFP91] is defined by the following recursive function
of type A → B.

[[g, h]]F = µ(λf.g ◦ Ff ◦ h)

• The recursion pattern of the hylomorphism is characterized by the
functor F . Function h handles all computations prior to recursion, and
g combines the results of the recursive calls in order to determine the
output.

fact : Nat → Nat
fact = [[succ ◦ zero! O mult, (id + succ M id) ◦ out]]1!+Nat!×Id
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Recursion Patterns as Hylomorphisms

• Folds and unfolds are simple restrictions of hylomorphisms.

(|g|)F = [[g, outF ]]F bd(h)ceF = [[inF , h]]F

• An alternative way to understand hylomorphisms results from the
following law.

[[g, h]]F = (|g|)F ◦ bd(h)ceF

• Paramorphisms [Mee92]. Given g : F (A × µF ) → A we get 〈|g|〉F :
µF → A as follows.

〈|g|〉F = [[g, F (id M id) ◦ outF ]]F◦(Id×µF !)

• The virtual intermediate data structure stores at each node a copy of the
recursive values, that are passed intact to the fold.

Point-free Programming with Hylomorphisms 11



Generic Programming with Explicit Functors

• This method is known at least since [MH95]. First, define the explicit
fixpoint operator and the in and out isomorphisms.

newtype (Functor f) => Mu f = Mu {unMu :: f (Mu f)}

• Types are declared as expected.

newtype FNat x = FNat {unFNat :: Either () x}

instance Functor FNat
where fmap f = FNat . (id -|- f) . unFNat

type Nat = Mu FNat
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Generic Programming with Explicit Functors

• We can have polytypic definitions of the fundamental recursion patterns.

hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b
hylo g h = g . fmap (hylo g h) . h

cata :: Functor f => (f a -> a) -> Mu f -> a
cata g = hylo g unMu

ana :: Functor f => (a -> f a) -> a -> Mu f
ana h = hylo Mu h

• The definition of the factorial is not so straightforward.

fact = hylo g h
where h = FList . (id -|- succ /\ id) . unFNat . unMu

g = (succ . (zero!) \/ mult) . unFList
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Generic Programming with Explicit Functors

• If a definition involves a functor change we need to explicitly define
higher-order functors.

newtype FPara f x = FPara {unFPara :: f (x, Mu f)}

instance Functor f => Functor (FPara f)
where fmap f = FPara . fmap (f >< id) . unFPara

para :: Functor f => (f (a, Mu f) -> a) -> Mu f -> a
para g = hylo (g . unFPara) (FPara . fmap (id /\ id) . unMu)

• This approach has some disadvantages:

– Extensive use of coercing constructors and destructors;
– Recursion operators can not be used with the standard Haskell types;
– The Functor instances must be defined explicitly.
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The PolyP Approach

• Relating types to functors using a multi-parameter type class [JJM97]
with a functional dependency [Jon00] (we use a simplified version).

class (Functor f) => FunctorOf f d | d -> f
where inn’ :: f d -> d

out’ :: d -> f d

• We can now use the standard Haskell types.

instance FunctorOf FNat Int
where inn’ = ((0!) \/ succ) . unFNat

out’ = FNat . ((()!) -|- pred) . (iszero?)
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The PolyP Approach

• We can still use data types declared explicitly as fixed points of functors.

instance (Functor f) => FunctorOf f (Mu f)
where inn’ = Mu

out’ = unMu

• Polytypism is achieved through a typed representation for functors.

newtype Id x = Id {unId :: x}
newtype Const t x = Const {unConst :: t}
data (g :+: h) x = Inl (g x) | Inr (h x)
data (g :*: h) x = g x :*: h x
newtype (g :@: h) x = Comp {unComp :: g (h x)}
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The PolyP Approach

instance Functor Id
where fmap f (Id x) = Id (f x)

instance Functor (Const t)
where fmap f (Const x) = Const x

instance (Functor g, Functor h) => Functor (g :+: h)
where fmap f (Inl x) = Inl (fmap f x)

fmap f (Inr x) = Inr (fmap f x)

instance (Functor g, Functor h) => Functor (g :*: h)
where fmap f (x :*: y) = (fmap f x) :*: (fmap f y)

instance (Functor g, Functor h) => Functor (g :@: h)
where fmap f (Comp x) = Comp (fmap (fmap f) x)
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The PolyP Approach

• Now we must use this functor representation in the FunctorOf instances.

instance FunctorOf (Const () :+: (Const a :*: Id)) [a]
where inn’ (Inl (Const ())) = []

inn’ (Inr (Const x :*: Id xs)) = x:xs
out’ [] = Inl (Const ())
out’ (x:xs) = Inr (Const x :*: Id xs)

• Unfortunately, the price to pay for polytypism is an enormous growth
in the use of coercing constructors, rendering point-free programming
almost impossible.

• Our solution is to mix PolyP with a limited form of implicit coercion.
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Implicit Coercions

• Again, we use a multi-parameter type class to relate elements defined
using the functor combinators and the standard (sums of products)
Haskell types.

class Rep a b | a -> b
where to :: a -> b

from :: b -> a

• Similar to Hinze’s embedding-projection pairs [CH02].

• The functional dependency restricts the implementation to at most one
standard type, but makes the type-checking feasible.
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Implicit Coercions

• Since in the context of the instance declaration, we do not have simple
type variables, -fallow-undecidable-instances is necessary.

instance Rep (Id x) x
where to (Id x) = x

from x = Id x

instance (Rep (g x) y,Rep (h x) z) => Rep ((g :+: h) x) (Either y z)
where to (Inl a) = Left (to a)

to (Inr a) = Right (to a)
from (Left a) = Inl (from a)
from (Right a) = Inr (from a)

instance (Rep (g x) y,Rep (h x) z) => Rep ((g :*: h) x) (y,z)
where to (a :*: b) = (to a, to b)

from (a, b) = from a :*: from b
...
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Implicit Coercions

• A possible interaction with a Haskell interpreter could now be

> to (Id ’a’ :*: Const ’b’)
(’a’,’b’)
> from (’a’,’b’) :: (Id :*: Const Char) Char
Id ’a’ :*: Const ’b’
> from (’a’,’b’) :: (Id :*: Id) Char
Id ’a’ :*: Id ’b’

• To enable type-checking, polytypic functions are annotated with the
functor (indirectly through the corresponding type) to which they should
be instantiated (thus, mimicking the theoretical notation).

• This is done through the use of a “dummy” variable and scoped type
variables [JS02].
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Implicit Coercions

pmap :: (FunctorOf f d, Rep (f a) fa, Rep (f b) fb) =>
d -> (a -> b) -> (fa -> fb)

pmap (_::d) f =
to . (fmap :: (FunctorOf f d) => (a -> b) -> (f a -> f b)) f . from

hylo :: (FunctorOf f d, Rep (f b) fb, Rep (f a) fa) =>
d -> (fb -> b) -> (a -> fa) -> a -> b

hylo (_::d) g h = g . pmap (_L::d) (hylo (_L::d) g h) . h

out :: (FunctorOf f d, Rep (f d) fd) => d -> fd
out = to . out’

inn :: (FunctorOf f d, Rep (f d) fd) => fd -> d
inn = inn’ . from
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Using the Library

• Now we can program in a true point-free style.

fact :: Int -> Int
fact = hylo (_L :: [Int]) f g

where g = (id -|- succ /\ id) . out
f = (1!) \/ mult

• Since we can still use explicit fixed points to model data types, we don’t
have to define neither the type of intermediate data structure, nor the
respective instance of the FunctorOf class.

fib :: Int -> Int
fib = hylo (_L :: Mu (Const () :+: (Id :*: Id))) f g

where g = ((()!) -|- pred /\ (pred . pred)) . (iszeroorone?)
f = (1!) \/ plus
iszeroorone = (<=1)
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Using the Library

• Folds (and unfolds) are defined as expected.

cata :: (FunctorOf f d, Rep (f a) fa, Rep (f d) fd) =>
d -> (fa -> a) -> d -> a

cata (_::d) g = hylo (_L::d) g out

• And for paramorphisms we no longer need to define the higher-order
functors, due to the ability to explicitly define the intermediate data type
as a fixed point of a functor.

para (_::d) g =
hylo (_L :: FunctorOf f d => Mu (f :@: (Id :*: Const d)))

g (pmap (_L::d) (id /\ id) . out)
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Using the Library

preorder :: Rose a -> [a]
preorder = cata (_L::Rose a) (cons . (id >< aux))

where aux = cata (_L::[[a]]) (([]!) \/ cat)

fact :: Int -> Int
fact = para (_L::Int) g

where g = (1!) \/ (mult . (id >< succ))

plus :: (Int,Int) -> Int
plus = accum (_L::Int) g t

where t = (fst -|- id >< succ) . distl
g = (snd \/ fst) . distl
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Visualization of Intermediate Data Structures

• The visualization uses GHood [Rei01], a graphical animation tool built
on top of Hood (Haskell Object Observation Debugger) [Gil00].

• Hood introduces a combinator that returns the second argument, and as
a side-effect stores it into some persistent structure for later rendering.

observe :: (Observable a) => String -> a -> a

• Likewise to Functor, we defined a generic instance for the Observable
class.

• The hylo-split law allows us to expose the intermediate virtual data
structure of the hylomorphisms.

hyloO (f::d) g h = cata (f::d) g . (observe "Tree") . ana (f::d) h
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Visualization of Intermediate Data Structures

• The intermediate binary shape tree of fib 5 is
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Derivation of Hylomorphisms

• DrHylo - a tool that derives (pointwise) hylomorphisms from explicit
recursive definitions. Essentially, it implements the algorithm of [HIT96].

fact 0 = 1
fact n = n * fact (n-1)

fact = hylo (_L :: Mu (Const () :+: (Const v2 :*: Id))) g h
where g (Left (())) = 1

g (Right (((n), v1))) = n * v1
h 0 = Left (())
h n = Right (((n), (n - 1)))

• Together with the previous tool it can be used to visualize the recursion
tree of a recursive definition.
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Derivation of Point-free Definitions

• We also have a prototype of a tool that derives point-free definitions
from pointwise ones. It still has many limitations:

– It only handles user defined data-types;
– The pattern matching clauses must be exhaustive and disjunct;
– . . .

• It will be incorporated in DrHylo in order to derive point-free
hylomorphisms.

• It’s being implemented in a rather heuristic way, but we are also studying
the similar transformation of the Categorical Abstract Machine [Cur93]
in order to achieve a more formally justified implementation.
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Conclusions

• Pointless is a Haskell library that can be used to program with recursion
patterns in a point-free style. It is also supported by a growing set of
useful tools.

• Built on top of existing techniques ideas from the generic programming
community.

• It uses some extensions to the Haskell type system.

• The type annotations introduced in order to make inference possible were
precisely the same that were already used in the theoretical notation,
namely the functors that characterize recursion.

• Unfortunately, the error messages obtained when programming with the
library are of limited help for the programmer.
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Future Work

• We are starting to implement an equational reasoning tool for point-free
expressions.

• Based on rewrite systems for lambda calculus with categorical sums and
pairs [dCK93, Dou93].

• Together with DrHylo it will be used as the basis for a program
transformation tool for Haskell programs (similar to MAG [dMS03]).

• For more information visit the PURe project website.

http://www.di.uminho.pt/pure
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