
Point-free Programming with Hylomorphisms

Alcino Cunha

Departamento de Informática, Universidade do Minho
4710-057 Braga, Portugal
alcino@di.uminho.pt

WDGP’04, June 3rd

Introduction

• Pointless - a Haskell library for point-free programming with recursion
patterns:

– Categorical combinators + Hylomorphisms;
– Types as fixed points of functors;
– Mimics the theoretical notation;
– Mainly built on top of PolyP’s ideas [NJ03].

• Examples of how to implement some of the standard recursion patterns
using hylomorphisms.

• Some related tools: visualization of intermediate data structures,
derivation of hylomorphisms and point-free definitions.

Point-free Programming with Hylomorphisms 1

Categorical Combinators in Haskell

A × B = {(x, y) | x ∈ A, y ∈ B}

fst (x, y) = x

snd (x, y) = y

(f M g) x = (f x, g x)

f × g = (f ◦ fst) M (g ◦ snd)

Point-free Programming with Hylomorphisms 2

Categorical Combinators in Haskell

• Products are implemented by Haskell pairs, even if these aren’t true
products: (⊥,⊥) 6= ⊥.

-- fst :: (a, b) -> a
-- fst (x, y) = x

-- snd :: (a, b) -> b
-- snd (x, y) = y

(/\) :: (a -> b) -> (a -> c) -> a -> (b,c)
(/\) f g x = (f x, g x)

(><) :: (a -> b) -> (c -> d) -> (a,c) -> (b,d)
f >< g = (f . fst) /\ (g . snd)

Point-free Programming with Hylomorphisms 3

Categorical Combinators in Haskell

A + B = {0} × A ∪ {1} × B ∪ {⊥}

inl x = (0, x)

inr x = (1, x)

(f O g) x =

 f (snd x) if fst x = 0
g (snd x) if fst x = 1
⊥ otherwise

f + g = (inl ◦ f) O (inr ◦ g)

Point-free Programming with Hylomorphisms 4

Categorical Combinators in Haskell

• Sums are implemented by the Either data type.

inl :: a -> Either a b
inl = Left

inr :: b -> Either a b
inr = Right

(\/) :: (b -> a) -> (c -> a) -> Either b c -> a
(\/) f g (Left x) = f x
(\/) f g (Right x) = g x

(-|-) :: (a -> b) -> (c -> d) -> Either a c -> Either b d
f -|- g = (inl . f) \/ (inr . g)

Point-free Programming with Hylomorphisms 5

Categorical Combinators in Haskell

BA = {f | f : A → B}

ap (f, x) = f x

f x y = f (x, y)

f• = f ◦ ap

Point-free Programming with Hylomorphisms 6

Categorical Combinators in Haskell

• Exponentials are implemented by Haskell functions. Notice that these
aren’t also true functions: λx.⊥ 6= ⊥

• Function exponentiation is implemented by the left sectioning of the
composition combinator.

app :: (a -> b, a) -> b
app (f, x) = f x

-- curry :: ((a, b) -> c) -> a -> b -> c
-- curry f x y = f (x, y)

-- (.) :: (b -> c) -> (a -> b) -> a -> c
-- (f .) = curry (f . app)

Point-free Programming with Hylomorphisms 7

Categorical Combinators in Haskell

• Postfix operators for constants and guards are simulated by using left-
sectionings of binary operators.

(!) :: a -> b -> a
(!) = const

(?) :: (a -> Bool) -> a -> Either a a
p ? x = if p x then inl x else inr x

• Since the bottom element will be used frequently, we also define the
following alias.

_L :: a
_L = undefined

Point-free Programming with Hylomorphisms 8

Recursive Data Types

• A recursive data type is modeled by the least fixed point of a base functor
that captures the recursive structure of its constructors.

• For a regular functor F , the data type µF , together with two strict
functions inF : F (µF) → µF and outF : µF → F (µF), are guaranteed
to exist [Rey77, FM91].

Nat = µ(1! + Id)

in = zero! O succ

out = (1! + pred) ◦ iszero?

List A = µ(1! + A! × Id)

in = nil! O cons

out = (1! + (head M tail)) ◦ null?

Point-free Programming with Hylomorphisms 9

Hylomorphisms

• Given a functor F , a function g : F B → B, and a function h : A → F A,
a hylomorphism [MFP91] is defined by the following recursive function
of type A → B.

[[g, h]]F = µ(λf.g ◦ Ff ◦ h)

• The recursion pattern of the hylomorphism is characterized by the
functor F . Function h handles all computations prior to recursion, and
g combines the results of the recursive calls in order to determine the
output.

fact : Nat → Nat
fact = [[succ ◦ zero! O mult, (id + succ M id) ◦ out]]1!+Nat!×Id

Point-free Programming with Hylomorphisms 10

Recursion Patterns as Hylomorphisms

• Folds and unfolds are simple restrictions of hylomorphisms.

(|g|)F = [[g, outF]]F bd(h)ceF = [[inF , h]]F

• An alternative way to understand hylomorphisms results from the
following law.

[[g, h]]F = (|g|)F ◦ bd(h)ceF

• Paramorphisms [Mee92]. Given g : F (A × µF) → A we get 〈|g|〉F :
µF → A as follows.

〈|g|〉F = [[g, F (id M id) ◦ outF]]F◦(Id×µF !)

• The virtual intermediate data structure stores at each node a copy of the
recursive values, that are passed intact to the fold.

Point-free Programming with Hylomorphisms 11

Generic Programming with Explicit Functors

• This method is known at least since [MH95]. First, define the explicit
fixpoint operator and the in and out isomorphisms.

newtype (Functor f) => Mu f = Mu {unMu :: f (Mu f)}

• Types are declared as expected.

newtype FNat x = FNat {unFNat :: Either () x}

instance Functor FNat
where fmap f = FNat . (id -|- f) . unFNat

type Nat = Mu FNat

Point-free Programming with Hylomorphisms 12

Generic Programming with Explicit Functors

• We can have polytypic definitions of the fundamental recursion patterns.

hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b
hylo g h = g . fmap (hylo g h) . h

cata :: Functor f => (f a -> a) -> Mu f -> a
cata g = hylo g unMu

ana :: Functor f => (a -> f a) -> a -> Mu f
ana h = hylo Mu h

• The definition of the factorial is not so straightforward.

fact = hylo g h
where h = FList . (id -|- succ /\ id) . unFNat . unMu

g = (succ . (zero!) \/ mult) . unFList

Point-free Programming with Hylomorphisms 13

Generic Programming with Explicit Functors

• If a definition involves a functor change we need to explicitly define
higher-order functors.

newtype FPara f x = FPara {unFPara :: f (x, Mu f)}

instance Functor f => Functor (FPara f)
where fmap f = FPara . fmap (f >< id) . unFPara

para :: Functor f => (f (a, Mu f) -> a) -> Mu f -> a
para g = hylo (g . unFPara) (FPara . fmap (id /\ id) . unMu)

• This approach has some disadvantages:

– Extensive use of coercing constructors and destructors;
– Recursion operators can not be used with the standard Haskell types;
– The Functor instances must be defined explicitly.

Point-free Programming with Hylomorphisms 14

The PolyP Approach

• Relating types to functors using a multi-parameter type class [JJM97]
with a functional dependency [Jon00] (we use a simplified version).

class (Functor f) => FunctorOf f d | d -> f
where inn’ :: f d -> d

out’ :: d -> f d

• We can now use the standard Haskell types.

instance FunctorOf FNat Int
where inn’ = ((0!) \/ succ) . unFNat

out’ = FNat . ((()!) -|- pred) . (iszero?)

Point-free Programming with Hylomorphisms 15

The PolyP Approach

• We can still use data types declared explicitly as fixed points of functors.

instance (Functor f) => FunctorOf f (Mu f)
where inn’ = Mu

out’ = unMu

• Polytypism is achieved through a typed representation for functors.

newtype Id x = Id {unId :: x}
newtype Const t x = Const {unConst :: t}
data (g :+: h) x = Inl (g x) | Inr (h x)
data (g :*: h) x = g x :*: h x
newtype (g :@: h) x = Comp {unComp :: g (h x)}

Point-free Programming with Hylomorphisms 16

The PolyP Approach

instance Functor Id
where fmap f (Id x) = Id (f x)

instance Functor (Const t)
where fmap f (Const x) = Const x

instance (Functor g, Functor h) => Functor (g :+: h)
where fmap f (Inl x) = Inl (fmap f x)

fmap f (Inr x) = Inr (fmap f x)

instance (Functor g, Functor h) => Functor (g :*: h)
where fmap f (x :*: y) = (fmap f x) :*: (fmap f y)

instance (Functor g, Functor h) => Functor (g :@: h)
where fmap f (Comp x) = Comp (fmap (fmap f) x)

Point-free Programming with Hylomorphisms 17

The PolyP Approach

• Now we must use this functor representation in the FunctorOf instances.

instance FunctorOf (Const () :+: (Const a :*: Id)) [a]
where inn’ (Inl (Const ())) = []

inn’ (Inr (Const x :*: Id xs)) = x:xs
out’ [] = Inl (Const ())
out’ (x:xs) = Inr (Const x :*: Id xs)

• Unfortunately, the price to pay for polytypism is an enormous growth
in the use of coercing constructors, rendering point-free programming
almost impossible.

• Our solution is to mix PolyP with a limited form of implicit coercion.

Point-free Programming with Hylomorphisms 18

Implicit Coercions

• Again, we use a multi-parameter type class to relate elements defined
using the functor combinators and the standard (sums of products)
Haskell types.

class Rep a b | a -> b
where to :: a -> b

from :: b -> a

• Similar to Hinze’s embedding-projection pairs [CH02].

• The functional dependency restricts the implementation to at most one
standard type, but makes the type-checking feasible.

Point-free Programming with Hylomorphisms 19

Implicit Coercions

• Since in the context of the instance declaration, we do not have simple
type variables, -fallow-undecidable-instances is necessary.

instance Rep (Id x) x
where to (Id x) = x

from x = Id x

instance (Rep (g x) y,Rep (h x) z) => Rep ((g :+: h) x) (Either y z)
where to (Inl a) = Left (to a)

to (Inr a) = Right (to a)
from (Left a) = Inl (from a)
from (Right a) = Inr (from a)

instance (Rep (g x) y,Rep (h x) z) => Rep ((g :*: h) x) (y,z)
where to (a :*: b) = (to a, to b)

from (a, b) = from a :*: from b
...

Point-free Programming with Hylomorphisms 20

Implicit Coercions

• A possible interaction with a Haskell interpreter could now be

> to (Id ’a’ :*: Const ’b’)
(’a’,’b’)
> from (’a’,’b’) :: (Id :*: Const Char) Char
Id ’a’ :*: Const ’b’
> from (’a’,’b’) :: (Id :*: Id) Char
Id ’a’ :*: Id ’b’

• To enable type-checking, polytypic functions are annotated with the
functor (indirectly through the corresponding type) to which they should
be instantiated (thus, mimicking the theoretical notation).

• This is done through the use of a “dummy” variable and scoped type
variables [JS02].

Point-free Programming with Hylomorphisms 21

Implicit Coercions

pmap :: (FunctorOf f d, Rep (f a) fa, Rep (f b) fb) =>
d -> (a -> b) -> (fa -> fb)

pmap (_::d) f =
to . (fmap :: (FunctorOf f d) => (a -> b) -> (f a -> f b)) f . from

hylo :: (FunctorOf f d, Rep (f b) fb, Rep (f a) fa) =>
d -> (fb -> b) -> (a -> fa) -> a -> b

hylo (_::d) g h = g . pmap (_L::d) (hylo (_L::d) g h) . h

out :: (FunctorOf f d, Rep (f d) fd) => d -> fd
out = to . out’

inn :: (FunctorOf f d, Rep (f d) fd) => fd -> d
inn = inn’ . from

Point-free Programming with Hylomorphisms 22

Using the Library

• Now we can program in a true point-free style.

fact :: Int -> Int
fact = hylo (_L :: [Int]) f g

where g = (id -|- succ /\ id) . out
f = (1!) \/ mult

• Since we can still use explicit fixed points to model data types, we don’t
have to define neither the type of intermediate data structure, nor the
respective instance of the FunctorOf class.

fib :: Int -> Int
fib = hylo (_L :: Mu (Const () :+: (Id :*: Id))) f g

where g = ((()!) -|- pred /\ (pred . pred)) . (iszeroorone?)
f = (1!) \/ plus
iszeroorone = (<=1)

Point-free Programming with Hylomorphisms 23

Using the Library

• Folds (and unfolds) are defined as expected.

cata :: (FunctorOf f d, Rep (f a) fa, Rep (f d) fd) =>
d -> (fa -> a) -> d -> a

cata (_::d) g = hylo (_L::d) g out

• And for paramorphisms we no longer need to define the higher-order
functors, due to the ability to explicitly define the intermediate data type
as a fixed point of a functor.

para (_::d) g =
hylo (_L :: FunctorOf f d => Mu (f :@: (Id :*: Const d)))

g (pmap (_L::d) (id /\ id) . out)

Point-free Programming with Hylomorphisms 24

Using the Library

preorder :: Rose a -> [a]
preorder = cata (_L::Rose a) (cons . (id >< aux))

where aux = cata (_L::[[a]]) (([]!) \/ cat)

fact :: Int -> Int
fact = para (_L::Int) g

where g = (1!) \/ (mult . (id >< succ))

plus :: (Int,Int) -> Int
plus = accum (_L::Int) g t

where t = (fst -|- id >< succ) . distl
g = (snd \/ fst) . distl

Point-free Programming with Hylomorphisms 25

Visualization of Intermediate Data Structures

• The visualization uses GHood [Rei01], a graphical animation tool built
on top of Hood (Haskell Object Observation Debugger) [Gil00].

• Hood introduces a combinator that returns the second argument, and as
a side-effect stores it into some persistent structure for later rendering.

observe :: (Observable a) => String -> a -> a

• Likewise to Functor, we defined a generic instance for the Observable
class.

• The hylo-split law allows us to expose the intermediate virtual data
structure of the hylomorphisms.

hyloO (f::d) g h = cata (f::d) g . (observe "Tree") . ana (f::d) h

Point-free Programming with Hylomorphisms 26

Visualization of Intermediate Data Structures

• The intermediate binary shape tree of fib 5 is

Point-free Programming with Hylomorphisms 27

Derivation of Hylomorphisms

• DrHylo - a tool that derives (pointwise) hylomorphisms from explicit
recursive definitions. Essentially, it implements the algorithm of [HIT96].

fact 0 = 1
fact n = n * fact (n-1)

fact = hylo (_L :: Mu (Const () :+: (Const v2 :*: Id))) g h
where g (Left (())) = 1

g (Right (((n), v1))) = n * v1
h 0 = Left (())
h n = Right (((n), (n - 1)))

• Together with the previous tool it can be used to visualize the recursion
tree of a recursive definition.

Point-free Programming with Hylomorphisms 28

Derivation of Point-free Definitions

• We also have a prototype of a tool that derives point-free definitions
from pointwise ones. It still has many limitations:

– It only handles user defined data-types;
– The pattern matching clauses must be exhaustive and disjunct;
– . . .

• It will be incorporated in DrHylo in order to derive point-free
hylomorphisms.

• It’s being implemented in a rather heuristic way, but we are also studying
the similar transformation of the Categorical Abstract Machine [Cur93]
in order to achieve a more formally justified implementation.

Point-free Programming with Hylomorphisms 29

Conclusions

• Pointless is a Haskell library that can be used to program with recursion
patterns in a point-free style. It is also supported by a growing set of
useful tools.

• Built on top of existing techniques ideas from the generic programming
community.

• It uses some extensions to the Haskell type system.

• The type annotations introduced in order to make inference possible were
precisely the same that were already used in the theoretical notation,
namely the functors that characterize recursion.

• Unfortunately, the error messages obtained when programming with the
library are of limited help for the programmer.

Point-free Programming with Hylomorphisms 30

Future Work

• We are starting to implement an equational reasoning tool for point-free
expressions.

• Based on rewrite systems for lambda calculus with categorical sums and
pairs [dCK93, Dou93].

• Together with DrHylo it will be used as the basis for a program
transformation tool for Haskell programs (similar to MAG [dMS03]).

• For more information visit the PURe project website.

http://www.di.uminho.pt/pure

Point-free Programming with Hylomorphisms 31

References

[CH02] James Cheney and Ralf Hinze. A lightweight implementation of generics and

dynamics. In Proceedings of the ACM SIGPLAN 2002 Haskell Workshop, pages

90–104, 2002.

[Cur93] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms, and

Functional Programming. Birkhäuser, 2nd edition, 1993.

[dCK93] Roberto di Cosmo and Delia Kesner. A confluent reduction for the extensional

typed lambda-calculus with pairs, sums, recursion and terminal object. In

Andrzej Lingas, editor, Proceedings of the International Conference on Automata,

Languages and Programming, volume 700 of LNCS, pages 645–656. Springer-

Verlag, 1993.

[dMS03] Oege de Moor and Ganesh Sittampalam. Mechanising fusion. In J. Gibbons

and O. de Moor, editors, The Fun of Programming, chapter 5, pages 79–104.

Palgrave Macmillan, 2003.

[Dou93] Daniel Dougherty. Some lambda calculi with categorical sums and products.

In Claude Kirchner, editor, Proceedings of the 5th International Conference on

Rewriting Techniques and Applications, volume 690 of LNCS, pages 137–151.

Springer-Verlag, 1993.

Point-free Programming with Hylomorphisms 32

[FM91] Maarten Fokkinga and Erik Meijer. Program calculation properties of continuous

algebras. Technical Report CS-R9104, CWI, Amsterdam, January 1991.

[Gil00] Andy Gill. Debugging Haskell by observing intermediate data structures. In

G. Hutton, editor, Proceedings of the 4th ACM SIGPLAN Haskell Workshop,

2000.

[HIT96] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Deriving structural

hylomorphisms from recursive definitions. In Proceedings of the ACM SIGPLAN

International Conference on Functional Programming (ICFP’96), pages 73–82.

ACM Press, 1996.

[JJM97] Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: exploring the

design space. In Proceedings of the Haskell Workshop, 1997.

[Jon00] Mark Jones. Type classes with functional dependencies. In Proceedings of the 9th

European Symposium on Programming, volume 1782 of LNCS. Springer-Verlag,

2000.

[JS02] Simon Peyton Jones and Mark Shields. Lexically-scoped type variables. To be

submitted to The Journal of Functional Programming, March 2002.

[Mee92] Lambert Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413–

424, 1992.

[MFP91] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with

Point-free Programming with Hylomorphisms 33

bananas, lenses, envelopes and barbed wire. In J. Hughes, editor, Proceedings of

the 5th ACM Conference on Functional Programming Languages and Computer

Architecture (FPCA’91), volume 523 of LNCS. Springer-Verlag, 1991.

[MH95] Erik Meijer and Graham Hutton. Bananas in space: Extending fold and unfold

to exponential types. In Proceedings of the 7th ACM Conference on Functional

Programming Languages and Computer Architecture (FPCA’95). ACM Press,

1995.

[NJ03] Ulf Norell and Patrik Jansson. Polytypic programming in haskell. In Draft

proceedings of the 15th International Workshop on the Implementation of

Functional Languages (IFL’03), 2003.

[Rei01] Claus Reinke. GHood - graphical visualisation and animation of Haskell object

observations. In Ralf Hinze, editor, Proceedings of the 2001 ACM SIGPLAN

Haskell Workshop, volume 59 of ENTCS. Elsevier, 2001.

[Rey77] J.C. Reynolds. Semantics of the domain of flow diagrams. Journal of the ACM,

24(3):484–503, July 1977.

Point-free Programming with Hylomorphisms 34

