
Chapter 1

Generic proofs for
combinator-based generic
programs
Ferḿın Reig1

Abstract: Generic programming can bring important benefits to software engi-
neering. In particular, it reduces the burden of verification, since generic proofs
can be instantiated at many types. Reasoning about programs that use type classes
does not enjoy the benefits of generic reasoning, as it requires providing proofs
for an arbitrary number of type instances. This makes the process very impracti-
cal. We describe a useful method to reason about a class of programs that use type
classes, based on the idea that generic functions implemented using overloading
can also be expressed polytypically. We demonstrate the method on functions
from the ’scrap-your-boilerplate’ library, a collection of combinators for generic
programming that has been proposed and implemented recently.

1.1 INTRODUCTION

Generic programming enables concise definitions of functions over many types.
In the case of parametric polymorphism, the code of the function is the same at
every type. In the case of polytypism, the code is different at each type, but it can
be derived mechanically from a single polytypic definition (Jeuring 1996; Hinze
2000a).

If similar functions have to be written over and over again for many types, then
source code becomes larger. Programming errors increase with program size, and
so does the cost of verifying, maintaining and documenting code. Two important
benefits of generic programming are smaller programs and smaller proofs.

Two systems for generic programming have been developed recently. In Generic

1School of Computer Science and I.T., University of Nottingham.

1

Haskell (Hinze 2000b), generic functions are defined by induction on the structure
of types. To define a generic function, the programmer provides cases for basic
types and for structured types built from sums and products. From this informa-
tion, a compiler or specialiser can generate instances of the generic function for
arbitrary types. Here is an example:

add〈Bool〉 = (∨)
add〈Int〉 = (+)
add〈A×B〉 (x,y) (x′,y′) = (add〈A〉 x x′,add〈B〉 y y′)
add〈A+B〉 (inl x) (inl y) = inl (add〈A〉 x y)
add〈A+B〉 (inr x) (inr y) = inr (add〈B〉 x y)
add〈A+B〉 = error "shape mismatch"

This function does point-wise addition of two structures (lists, trees, matri-
ces,. . .) of the same type and shape. The structures may contain booleans and
integers. This style of generic programming has been implemented in Generic
Haskell (Hinze and Jeuring 2003; Löh 2004) and in Clean (Alimarine and Plas-
meijer 2001). Because generic functions take types as parameters in this style,
they are also called type-indexed functions. The second proposal, the ’scrap-your-
boilerplate’ library, (L̈ammel and Peyton Jones 2003, 2004) provides a collection
of combinators for traversing values of arbitrary datatypes, together with combi-
nators to simulate dynamic type case. A function similar to the one given above
can be written like this:

add x y= gzipWith((mkTT(+) ‘extTT‘ (mkTT(∨)))) x y

Here,gzipWithpairs matching values inx andy, and fails if the shapes are dif-
ferent. Then, a dynamic type check on matching values is performed, followed by
’or’, addition, or failure if the corresponding types are respectively both boolean,
both integer, or something else.

The two approaches support different styles of generic programming and are
not comparable in terms of the class of generic functions that can be defined.

Little is known about the formal properties of the ’boilerplate’ combinators.
Lämmel and Peyton Jones (2003) state the following laws about the combinators
gmapTandgmapQ:

gmapT id = id
(gmapT t) ◦ (gmapT t′) = gmapT(t ◦ t′)
(gmapQ q)◦ (gmapT t) = gmapQ(q◦ t)

Since it is not explained in the paper, we can interpret this in two ways. One
is that their implementation satisfies these laws. The other one is that any im-
plementation of these functions is required to satisfy them. In either case, they
provide no proof that their implementation satisfies them. But there is a good rea-
son for this omission: their library is built using Haskell type classes, and there
are currently no established methods for reasoning about overloaded functions in

2

Haskell. Class functions share only a common type schema, but the implemen-
tation (and any laws that it might satisfy) at two different types need have no
relation. It would be possible to prove the laws for specific instances, but this
does not scale. What we really need aregenericproofs that cover all possible
instantiations.

In this paper, we give generic proofs of the above laws. The insight is that
gmapTandgmapQcan be defined polytypically, instead of using type classes. We
implement them in Generic Haskell, which supports proofs about generic func-
tions (by induction on the structure of the type cases) (Hinze 2000a). In addition,
we calculatea condition for the fusion of traversals that use more complex com-
binators thangmapTandgmapQ. This result can be used (by programmers or
compilers) to transform code for improved efficiency. To our knowledge, this rep-
resents the first published account of formal reasoning about programs that use
the ’boilerplate’ combinators.

1.2 ’BOILERPLATE’ COMBINATORS AS GENERIC FUNCTIONS

The ’boilerplate’ library is of help when writing programs that do traversals of
data built from elaborate, mutually-recursive types. By using a few simple com-
binators, programmers can avoid writing most of the traversal code by hand. The
approach is based on basic combinators that implement one-level, non-recursive
traversals. From them, it is possible to implement more complex traversals, such
as exhaustive top-down or bottom-up traversal. There are combinators for trans-
forming values and for querying them; and there are purely functional and monadic
versions of the combinators.

The basic combinators aregmapT, which applies a generic transformation to
the top-level children of a value, andgmapQ, which applies a generic query to the
top-level children of a value and returns a list of the results. For instance, letx be
the value(’a’ ,(’b’ , ’c’)) andt the transformation that converts characters to
upper case and is the identity transformation at any other type. ThengmapT t x
evaluates to(’A’ ,(’b’ , ’c’)). That is, the mapping is not recursive. (x has two
top-level children,’a’ and the pair(’b’ , ’c’); t is the identity on pairs.) Let
q be the query that gets the ASCII number of a character and returns−1 for any
other type. ThengmapQ q xevaluates to the list[97,−1].

Because of the regularity of their behaviour, instances ofgmapTandgmapQ
can be generated automatically for every type2. Alternatively,gmapTandgmapQ
can be defined as generic functions. By doing so, we gain the possibility of us-
ing existing reasoning principles for generic programs (Hinze 2000a). Here is
a polytypic implementation ofgmapT. Later, we use this version to prove the
equivalence(gmapT t)◦ (gmapT t′) = gmapT(t ◦ t′).

gmapT〈Unit〉 u = u
gmapT〈Int〉 i = i

2In the current implementation, the combinatorgfoldl is generated, andgmapTand
gmapQare defined in terms of it (L̈ammel and Peyton Jones 2004).

3

gmapT〈A+B〉 t (inl l) = inl (gmapT〈A〉 t l)
gmapT〈A+B〉 t (inr r) = inr (gmapT〈B〉 t r)
gmapT〈A1×·· ·×An〉 t (x1, ...,xn) = (t〈A1〉 x1, ..., t〈An〉 xn)

Two comments about this definition are in order. First, note thatt, the first
argument togmapT, is itself a generic function: it is applied at different types
(A1,. . . , An) in the last equation. Not all implementations of polytypism support
first-class generic functions. Hinze’s recent version, based on type classes (Hinze
2004), allows them, since generic functions are ordinary Haskell functions3. On
the other hand, implementations based on translation by specialisation do not sup-
port them, although it is the topic of current research (Löh 2004). Second, in lan-
guages like Generic Haskell, generic functions are defined by providing type cases
for binary sums and products. Before generic functions are applied, a translation
based on type isomorphisms takes place (Hinze 2000a). In all the generic func-
tions we have seen so far, the behaviour forn-ary products can be derived from
the behaviour for nested binary products. Interestingly, this is not the case for
gmapTandgmapQ: their definition at typeT1×·· ·×Tn−1×Tn is different from
their definition at typeT1× (· · ·× (Tn−1×Tn) · · ·). This is why we have written a
case forn-ary products (using an ellipsis as informal syntax). However, support-
ing n-ary products raises technical difficulties with the types and implementation
of generic functions. Fortunately, they are not strictly necessary to implement our
combinators. Holdermans et al. (2005) give an alternative translation for Generic
Haskell that lets us implementgmapTandgmapQdescribing only the case for
binary products. The code would be almost identical; only the last line would
need to be changed to the following:

gmapT〈A×B〉 t (x,y) = (gmapT〈A〉 t x, t〈B〉 y)

In this paper, though, we prefer to usen-ary products, since the resulting def-
initions correspond more naturally to the English description of the behaviour,
namely “apply to all immediate children”. If we used binary products only,
together with the alternative translation, our proofs would require only minor
changes, just like the code.

Here is our polytypic implementation ofgmapQ. Later, we will use this defi-
nition to prove the equivalence(gmapQ q)◦ (gmapT t) = gmapQ(q◦ t).

gmapQ〈Unit〉 = []
gmapQ〈Int〉 = []
gmapQ〈A+B〉 q (inl l) = gmapQ〈A〉 q l
gmapQ〈A+B〉 q (inr r) = gmapQ〈B〉 q r
gmapQ〈A1×·· ·×An〉 q (x1, ...,xn) = [q〈A1〉 x1, ..., q〈An〉 xn]

3In fact, Hinze uses Haskell98. First-class generic functions require rank-2
polymorphism, which is not Haskell98. However, popular Haskell implementations
support this extension.

4

1.3 GENERIC PROOFS FOR ’BOILERPLATE’ COMBINATORS

Generic functions are defined by induction on the structural representation of
types. A suitable proof method for such definitions is fixed-point induction (Hinze
2000a). The main advantage of these proofs is that they are generic, in the sense
that a single, type-indexed proof covers all its type instantiations. To construct a
proof of a predicateP about generic functions, we first write it as a type-indexed
predicateP〈T〉 . Then, we need to show that it holds for basic types, and that it is
preserved by type constructors:

P (Unit)
P (Int)
∀A B.P (A) ∧ P (B)⇒ P (A+B)
∀A1 ...An.P (A1) ∧ ... ∧ P (An)⇒ P (A1×·· ·×An)

Two additional technical requirement for proofs by fixed-point induction are
thatP〈0〉 must hold (where 0 is the type that contains⊥ as its only element) and
thatP must be built from equalities and inequalities using universal quantification,
conjunction and (finite) disjunction.P〈0〉 is typically satisfied by requiring that
functions be strict. (For readers familiar with fixed-point induction, these require-
ments guarantee thatP is a pointed and chain-complete relation (Hinze 2000a).)

1.4 A PROOF OF THE FUSION LAW FOR gmapT

This law says that two consecutive one-level traversals can be fused into one.

Theorem 1.1.〈∀t t′ :: (gmapT t)◦ (gmapT t′) = gmapT(t ◦ t′)〉

This law allows a program transformation that reduces the number of traver-
sals over a data structure. We prepare for the proof by stating the fusion law
as a type-indexed predicate, i.e. with explicit type parameters in applications of
generic functions:4

〈∀t t′ :: (gmapT〈T〉 t)◦ (gmapT〈T〉 t′) = gmapT〈T〉 (t ◦ t′)〉

We now have to show that this holds for all possible typesT. The base case
are primitive types.

• CaseT = Unit / Int

gmapT〈T〉 t (gmapT〈T〉 t′ x)
= { definition ofgmapT〈Unit / Int〉 }

gmapT〈T〉 t x

= { definition ofgmapT〈Unit / Int〉 }
4In Haskell a type parameter is still there, but as an implicit parameter in the form of a

class dictionary (Augustsson 1993).

5

x

= { definition ofgmapT〈Unit / Int〉 }
gmapT〈T〉 (t ◦ t′) x

The induction steps are sums and products. For sums, we need to invoke
the induction hypothesis. (We only show the case forinl; the case forinr is
symmetric.)

• CaseT = A+B,x = inl a

gmapT〈T〉 t (gmapT〈T〉 t′ x)
= { definition ofgmapT〈A+B〉 , x = inl a }

gmapT〈T〉 t (inl (gmapT〈A〉 t′ a))
= { definition ofgmapT〈A+B〉 }

inl (gmapT〈A〉 t (gmapT〈A〉 t′ a))
= { induction}

inl (gmapT〈A〉 (t ◦ t′) a)
= { definition ofgmapT〈A+B〉 , x = inl a }

gmapT〈T〉 (t ◦ t′) x

For tuples, we don’t even need the induction hypothesis; we only make use of
the definitions ofgmapTand the function composition operator.

• CaseT = A1×·· ·×An,x = (x1, ...,xn)

gmapT〈T〉 t (gmapT〈T〉 t′ x)
= { definition ofgmapT〈A1×·· ·×An〉 }

gmapT〈T〉 t (t′〈A1〉 x1, ..., t′〈An〉 xn)
= { definition ofgmapT〈A1×·· ·×An〉 ; function composition}

((t ◦ t′)〈A1〉 x1, ..., (t ◦ t′)〈An〉 xn)
= { definition ofgmapT〈A1×·· ·×An〉 }

gmapT〈T〉 (t ◦ t′) x

Finally, we need to check that our predicate holds for the empty type 0. This
is the case ifgmapTis strict.

• CaseT = 0,x =⊥

gmapT〈T〉 t (gmapT〈T〉 t′ x)
= { gmapTstrict, hencegmapT〈T〉 t′ ⊥=⊥ }

gmapT〈T〉 t ⊥
= { gmapTstrict}
⊥

= { gmapTstrict}

6

gmapT〈T〉 (t ◦ t′) x

The other fusion theorem says that a one-level traversal followed by a one-
level query can be fused into a one-level query.

Theorem 1.2.〈∀q t :: (gmapQ q)◦ (gmapT t) = gmapQ(q◦ t)〉

The proof proceeds in a similar way to the one shown above. We include it as
an appendix. We omit the proof ofgmapT id= id, since it is similar to these two.

In the next section, we give a function over lists and a theorem about that
function. We then generalise to a generic function over arbitrary types, and a
corresponding theorem. Finally, we construct a generic proof of the theorem.

1.5 A THEOREM ABOUT occurs

Consider the following polymorphic function that counts the number of occur-
rences of a value in a list:

occursList∈ (Eq a)⇒ a→ [a]→ Int
occursList v= length◦filter (≡ v)

(This performs two list traversals. A version that makes only one is easy to
write, but the one shown here is slightly more concise; consider it a specification,
but one that is executable.) This function satisfies the following theorem:

Theorem 1.3.〈∀x xs f :: occursList x xs6 occursList(f x) (map f xs)〉

Similar functions for other data structures, such as trees, are likely to be useful
as part of a complete library. For each of them we would also state a similar
theorem. Even better is to write a single generic function, state a single theorem,
and write one proof only. Here is such a generic function, implemented with the
’boilerplate’ combinators.

occurs x xs= everything(+) (0 ‘mkQ‘ cnt) xs
where

cnt y= if y≡ x then 1 else0

This traverses every node ofxs, produces an integer for each one of them,
and adds them all together. We describe the code briefly, but refer the reader to
(Lämmel and Peyton Jones 2003) for the details of the combinatorseverythingand
mkQ. mkQturns functions into generic queries that can be applied to arguments
of any type. If a noden has the same type asx, thencnt is applied ton; otherwise,
the default value 0 is returned.everythingis defined as follows:everything k q x=
foldl k (q x) (gmapQ(everything k q) x)

7

A generic theorem

The theorem that the generic function satisfies is the following:

Theorem 1.4.〈∀x xs f :: fusable(f)⇒occurs x xs6 occurs(f x) (everywhere(mkT f) xs)〉

everywheredoes a bottom-up traversal, applying the generic transformation
(mkT f) to every node ofxs. Its definition is:

everywhere t= t ◦gmapT(everywhere t)

mkT makes a generic transformation from a function, that is, it extends the
function to arguments of any type. Its specification is:

(mkT f) x = f x, if the type of x is the same as the domain of f
(mkT f) x = x ,otherwise

The predicatefusablesays that aneverywheretransformation followed by an
everythingquery, can be performed as a single traversal:

fusable(f) = 〈∀xs q : : everything(+) q (everywhere(mkT f) xs) =
everything(+) (q◦ (mkT f)) xs〉

This generalises Theorem 1.2 from one-level traversals to full bottom-up traver-
sals. We believe (but have not proved yet) that this predicate is satisfied for trans-
formations that do not alter the shape of the valuexs.

The reader may wonder why the generic theorem includes this condition, mak-
ing it weaker than the specific theorem about lists. The ’boilerplate’ implementa-
tion of occursis more general and can be used to count occurrences of a valuex of
typea, not only in a container ofas, but in a structure of arbitrary type. Similarly,
aneverywheretransforamtion is more general thanmapover a container type. For
instance, the transformation can remove elements from a container, whichmapis
guaranteed not to do. These more general functions satisfy weaker properties.

A generic proof

Our first attempt at a generic proof resulted in a long, complex proof by induction
on types. (Just like large programs, long proofs written by hand are more likely
to contain errors.) Subsequently, we managed to produce a concise proof where
only a few lemmas require proofs by induction on types. (In the proof, we use a
version of the code where the functioncnt has been lambda-lifted because having
x as a free variable incnt complicates things.)

occurs x xs= everything(+) (q x) xs
where

q x= (0 ‘mkQ‘ (cnt x))
cnt x= λy→ if x≡ y then 1 else0

We make use of a number of lemmas. The first two say thatgmapQand
everythingpreserve ordering.

8

Lemma 1.1.〈∀q q′ :: q 6̇ q′ ⇒ gmapQ q6̇ gmapQ q′〉

Lemma 1.2.〈∀q q′ :: q 6̇ q′ ⇒ everything(+) q 6̇ everything(+) q′〉

We use the symbol6̇ to denote point-wise ordering between functions:
f 6̇ g = 〈∀x :: f x 6 g x〉 .

For conciseness, we define the following shorthand.q′ f x=(q(f x))◦(mkT f),
whereq is the query from thewhere clause in the definition ofoccurs. It is used
in our last lemma.

Lemma 1.3.〈∀x xs f :: q x xs 6 q′ f x xs〉

Proofs of the lemmas are included in an appendix. Finally, with the help of all
this, we can give an equational proof of Theorem 1.4 that is simple and short.

occurs x xs

= { definition ofoccurs}
everything(+) (q x) xs

= { definition ofeverything}
foldl (+) (q x xs) (gmapQ(everything(+) (q x)) xs)

6 { Lemmas 1.1, 1.2, 1.3 ; definition offoldl }
foldl (+) (q x xs) (gmapQ(everything(+) (q′ f x)) xs)

6 { Lemma 1.3; definition offoldl }
foldl (+) (q′ f x xs) (gmapQ(everything(+) (q′ f x)) xs)

= { definition ofeverything}
everything(+) (q′ f x) xs

= { definition ofq′ }
everything(+) ((q (f x))◦ (mkT f)) xs

= { condition (fusable(f)) }
everything(+) (q (f x)) (everywhere(mkT f) xs)

= { definition ofoccurs}
occurs(f x) (everywhere(mkT f) xs)

1.6 A FUSION LAW FOR everywhere

In the previous sections we have used generic reasoning to prove theorems about
generic functions. Here we use it tocalculatethe weakest condition needed for a
statement to hold. The statement in question is a generalisation of Theorem 1.1
from a one-layer transformation to a full bottom-up transformation.

Statement.〈∀t t′ :: (everywhere t)◦ (everywhere t′) = everywhere(t ◦ t′)〉

9

As with other fusion laws, its practical importance is that it can be used to
optimise programs. When this is done reliably and consistently, programmers are
encouraged to write simple functions, and let the compiler turn them into efficient
ones. (Like ouroccursListfunction in§ 1.5.)

Alas, it is not the case that two arbitraryeverywheretransformations can be
fused. For instance, lett be a transformation that prepends a fixed character,
say ’a’ , to a string and is the identity at other types. It can be defined ast =
mkT(λs→ ’a’ : s). Then we have thateverywhere(t ◦ t) applied to the empty
string returns"aa" , while (everywhere t)◦ (everywhere t) returns"aaa" .5

What happens here is that the first transformation creates new nodes where
the second transformation is applicable —in our case, new substrings. That is, it
changes the structure. A (too strong) condition for fusion is that the first traversal
does not change the structure. A weaker condition is that at any nodes that are
created or deleted, the second transformation is the identity. What we do in this
section is turn this informal description into a precise statement aboutt and t′,
via formal calculation. In fact, it is possible that the informal condition is not the
weakest one —This is the problem with informal statements. However, the one
we calculate is guaranteed to be, by construction, the weakest condition.

The calculation is more interesting than the proofs we have shown so far, in
the sense that straightforward induction on the structure of types is not enough to
complete the proof.

1.6.1 Calculating a condition for fusion

We proceed as if we were writing a proof, even though we know the statement is
not a theorem. Then, when a step cannot be justified, we make it a condition of
the statement. The statement is already provable for basic types:

• CaseT = Unit / Int

everywhere〈T〉 t (everywhere〈T〉 t′ x)
= { definitions ofeverywhereandgmapT〈Unit / Int〉 }

everywhere〈T〉 t (t′ x)
= { definitions ofeverywhereandgmapT〈Unit / Int〉 }

(t ◦ t′)〈T〉 x

= { definitions ofeverywhereandgmapT〈Unit / Int〉 }
everywhere〈T〉 (t ◦ t′) x

For both sums and products we get, by calculation, the condition thatt′ com-
mute withgmapT(everywhere t). This results in the following theorem:

Theorem 1.5.〈∀t t′ :: (everywhere t)◦ (everywhere t′) = everywhere(t ◦ t′)

5The first application of(everywhere t) returns’a’ : []. If ’a’ is prepended,
bottom-up, to all nodes of type string in’a’ : [], we get"aaa" .

10

⇐
t′ ◦ (gmapT(everywhere t)) = (gmapT(everywhere t))◦ t′〉

Let us see the rest of the proof. The case for sums shows that straightforward
induction is not sufficient to complete the proof.

• CaseT = A+B,x = inl a

everywhere〈T〉 (t ◦ t′) x

= { definition ofeverywhere}
(t ◦ t′)〈T〉 (gmapT〈T〉 (everywhere(t ◦ t′)) x)

= { definition ofgmapT〈A+B〉 }
(t ◦ t′)〈T〉 (inl (gmapT〈A〉 (everywhere(t ◦ t′)) a))

At this point in the calculation, in order to proceed towards the goal, we would
like to use the fusion law (backwards) to split the traversal(everywhere(t ◦ t′))
into two traversals. But we may not invoke the induction hypothesis as a jus-
tification, since here it isgmapT that takes a type argument, and our induction
hypothesis is abouteverywhere, not gmapT. The solution is to strengthen the
induction hypothesis and construct a proof by mutual induction. Thus, the new
induction hypothesis is:

〈∀t t′ :: everywhere t◦everywhere t′ = everywhere(t ◦ t′) ∧
gmapT(everywhere t◦everywhere t′) = gmapT(everywhere(t ◦ t′))〉

The calculation continues as follows.

(t ◦ t′)〈T〉 (inl (gmapT〈A〉 (everywhere(t ◦ t′)) a))
= { (mutual) induction}

(t ◦ t′)〈T〉 (inl (gmapT〈A〉 (everywhere t◦everywhere t′) a))
= { definition ofgmapT〈A+B〉 }

(t ◦ t′)〈T〉 (gmapT〈T〉 (everywhere t◦everywhere t′) x)
= { gmapTfusion}

(t ◦ t′)〈T〉 ((gmapT〈T〉 (everywhere t))◦ (gmapT〈T〉 (everywhere t′)) x))

This is close to the definition of ofeverywhere t◦ everywhere t′ except that
t′〈T〉 should be applied before(gmapT〈T〉 (everywhere t)). That these two appli-
cations can be swapped is the condition that we require for our theorem to hold.

(t ◦ t′)〈T〉 ((gmapT〈T〉 (everywhere t))◦ (gmapT〈T〉 (everywhere t′)) x)
= { • condition}

t〈T〉 ((gmapT〈T〉 (everywhere t))◦ t′〈T〉 ◦ (gmapT〈T〉 (everywhere t′)) x)
= { definition ofeverywhere, twice}

everywhere〈T〉 t (everywhere〈T〉 t′ x)

11

The case forx = inr b is symmetric.
• CaseT = A1×·· ·×An,x = (x1, ...,xn)

everywhere〈T〉 t (everywhere〈T〉 t′ x)
= { definition ofeverywhere}

everywhere〈T〉 t (t′〈T〉 (gmapT〈T〉 (everywhere t′) x))
= { definition ofeverywhere}

t〈T〉 (gmapT〈T〉 (everywhere t) (t′〈T〉 (gmapT〈T〉 (everywhere t′) x)))

Once again, we would like to swap the applicationst′〈T〉 and(gmapT〈T〉 (everywhere t)).
We may justify this step by making it a condition of the statement.

t〈T〉 (gmapT〈T〉 (everywhere t) (t′〈T〉 (gmapT〈T〉 (everywhere t′) x)))
= { • condition}

(t ◦ t′)〈T〉 ((gmapT〈T〉 (everywhere t)◦gmapT〈T〉 (everywhere t′)) x)
= { gmapTfusion}

(t ◦ t′)〈T〉 ((gmapT〈T〉 (everywhere t◦everywhere t′)) x)
= { definition ofgmapT〈A1×·· ·×An〉 }

(t ◦ t′)〈T〉 ((evW t◦evW t′)〈T1〉 x1, ..., (evW t◦evW t′)〈Tn〉 xn)
= { induction}

(t ◦ t′)〈T〉 (everywhere〈T1〉 (t ◦ t′) x1, ..., everywhere〈Tn〉 (t ◦ t′) xn)
= { definition ofgmapT〈A1×·· ·×An〉 }

(t ◦ t′)〈T〉 (gmapT〈T〉 (everywhere(t ◦ t′) x)
= { definition ofeverywhere}

everywhere〈T〉 (t ◦ t′) x

It remains that we prove the second conjunct of the induction hypothesis. This
part of the proof is in Appendix E.

1.7 CONCLUSIONS AND FURTHER WORK

The essence of this paper is the idea that reasoning about (a restricted class of)
overloaded functions can be practical, provided that those functions can be de-
scribed in a generic programming style that supports adequate proof methods.
When such a translation is not possible (because the function does not admit a
generic definition), reasoning is not impossible, but instead of a single generic
proof, proofs for every type instance must be provided (van Kesteren et al. 2004;
Paulson 2004).

We have looked at functions from the ’boilerplate’ library, but the principle is
general and is applicable to overloaded functions that can be generated mechani-
cally. (There exists a tool to generate class instances for Haskell (DrIFT).)

Our conviction that proofs are important for generic programs has been strength-
ened as a result of writing this paper. When we first set out to prove theorems 1.4

12

and 1.5, we believed that stronger versions of those theorems were true. After all,
they looked like straightforward generalisations of known theorems about func-
tions over lists. The confusion can arise because in many cases,everywherecom-
putes the same result as a genericmap. However,everywhereis a more general
function than a genericmap—for instance, its application can result in a change
of the structure of a container— and satisfies fewer properties. The danger of
this sort of mistake is that programmers might perform program transformations
(perhaps to improve performance) that are not meaning-preserving.

An interesting area for further work is the application of reasoning to pro-
gram transformation. A practical disadvantage of generic functions implemented
with the ’boilerplate’ combinators is the performance penalty caused by dynamic
type checks. When enough is known about the types of arguments, it is some-
times possible to replace calls to generic functions by calls to specialised func-
tions. For instance, assume thatf has typeInt → Int. Then, it is easy to prove
that everywhere(mkT f) xs= map f xsif xs is a list of Ints. We also have that
everywhere(mkT f) ys= ys if ys is a list of characters, or in general, a value
whose type does not containInts. These transformations eliminate the costs of
dynamic type checks and could be performed automatically by a compiler. Being
able to reason about generic functions is essential in order to justify the soundness
of such transformations.

Acknowlegments. I would like to thank Roland Backhouse for very helpful dis-
cussions and feedback. Ralf Lämmel pointed out several errors and suggested
improvements to a previous version of the paper. This work is fundend by EP-
SRC grant GR/S27078/01.

REFERENCES

Alimarine, A. and R. Plasmeijer (2001). A generic programming extension for Clean. In
Implementation of functional languages, Volume 2312 ofLNCS, pp. 168–185.

Augustsson, L. (1993, June). Implementing haskell overloading. InProceedings of the
Conference on Functional Programming Languages and Computer Architecture,
pp. 65–73.

DrIFT. http://repetae.net/john/computer/haskell/DrIFT .

Hinze, R. (2000a). Generic programs and proofs. Habilitationsschrift, Universität Bonn.

Hinze, R. (2000b, January 19–21,). A new approach to generic functional programming.
In Conference Record of POPL’00: The 27th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Boston, Massachusetts, pp. 119–132.

Hinze, R. (2004). Generics for the masses. InInternational Conference on Functional
Programming (ICFP 2004). ACM Press. ACM SIGPLAN Notices.

Hinze, R. and J. Jeuring (2003).Generic Programming: Advanced Lectures, Volume
2793 ofLecture Notes in Computer Science, Chapter Generic Haskell: Practice and
Theory, pp. 1–56. Springer-Verlag.

13

http://repetae.net/john/computer/haskell/DrIFT

Holdermans, S., J. Jeuring, and A. Löh (2005). Generic views on data types. In prepara-
tion.

Jeuring (1996).2nd Int. School on AFP, Chapter Polytypic programming.

Lämmel, R. and S. Peyton Jones (2003). Scrap your boilerplate: A practical design pat-
tern for generic programming. InACM SIGPLAN Workshop on Types in Language
Design and Implementation, pp. 26–37. ACM Press. ACM SIGPLAN Notices.

Lämmel, R. and S. Peyton Jones (2004). Scrap more boilerplate. InInternational Con-
ference on Functional Programming (ICFP 2004), pp. ?? ACM Press. ACM SIG-
PLAN Notices.

Löh, A. (2004).Exploring Generic Haskell. Ph. D. thesis, University of Utrecht.

Paulson, L. C. (2004). Organizing numerical theories using axiomatic type classes.Jour-
nal of Automated Reasoning. To appear.

van Kesteren, R., M. van Eekelen, and M. de Mol (2004). An effective proof rule for
general type classes. InWorkshop in Trends of Functional Programming.

A PROOF OF THE FUSION LAW FOR gmapQAND gmapT

〈∀q t :: (gmapQ q)◦ (gmapT t) = gmapQ(q◦ t)〉

We write the law as a type-indexed property and prove it by fixed-point induc-
tion.

〈∀q t :: (gmapQ〈T〉 q)◦ (gmapT〈T〉 t) = gmapQ〈T〉 (q◦ t)〉

• CaseT = Unit / Int

gmapQ〈T〉 q (gmapT〈T〉 t x)
= { definition ofgmapT〈Unit / Int〉 }

gmapQ〈T〉 q x

= { definition ofgmapQ〈Unit / Int〉 }
[]

= { definition ofgmapQ〈Unit / Int〉 }
gmapQ〈T〉 (q◦ t) x

• CaseT = A+B,x = inl a

gmapQ〈T〉 q (gmapT〈T〉 t x)
= { definition ofgmapT〈A+B〉 }

gmapQ〈T〉 q (inl (gmapT〈A〉 t a))
= { definition ofgmapQ〈A+B〉 }

gmapQ〈A〉 q (gmapT〈A〉 t a)
= { induction}

gmapQ〈A〉 (q◦ t) a

14

= { definition ofgmapQ〈A+B〉 }
gmapQ〈T〉 (q◦ t) x

• CaseT = A+B,x = inr b
Similar
• CaseT = A1×·· ·×An,x = (x1, ...,xn)

gmapQ〈T〉 q (gmapT〈T〉 t x)
= { definition ofgmapT〈A1×·· ·×An〉 }

gmapQ〈T〉 q (t〈A1〉 x1, ..., t〈An〉 xn)
= { definition ofgmapQ〈A1×·· ·×An〉 }

[(q◦ t)〈A1〉 x1, ..., (q◦ t)〈An〉 xn]
= { definition ofgmapQ〈A1×·· ·×An〉 }

gmapQ〈T〉 (q◦ t) x

CaseT = 0 is satisfied by requiring thatgmapQbe strict.

B PROOF OF LEMMA 1.1

〈∀q q′ :: q 6̇ q′ ⇒ gmapQ q6̇ gmapQ q′〉

By fixed-point induction on the structure of the type argument.
• CaseT = Unit / Int

gmapQ〈T〉 q x

= { definition ofgmapQ〈Unit / Int〉 }
[]

= { definition ofgmapQ〈Unit / Int〉 }
gmapQ〈T〉 q′ x

• CaseT = A+B,x = inl a

gmapQ〈T〉 q x

= { definition ofgmapQ〈A+B〉 }
gmapQ〈A〉 q a

6 { induction}
gmapQ〈A〉 q′ a

= { definition ofgmapQ〈A+B〉 }
gmapQ〈T〉 q′ x

• caseT = A1×·· ·×An,x = (x1, ...,xn)

gmapQ〈T〉 q x

15

= { definition ofgmapQ〈A1×·· ·×An〉 }
[q〈A1〉 x1, ..., q〈An〉 xn]

6 { assumption}
[q′〈A1〉 x1, ..., q′〈An〉 xn]

= { definition ofgmapQ〈A1×·· ·×An〉 }
gmapQ〈T〉 q′ x

We also have to prove the caseT = 0. It is easy to show that this is satisfied
if gmapQis strict, in a similar way as in the proof of the fusion law forgmapTin
§ 1.4.

C PROOF OF LEMMA 1.2

〈∀q q′ :: q 6̇ q′ ⇒ everything(+) q 6̇ everything(+) q′〉

By fixed-point induction on the structure of the type argument. The proof is
by mutual induction using the following induction hypothesis:

〈∀q q′ :: q 6̇ q′ ⇒ (everything(+) q 6̇ everything(+) q′ ∧
gmapQ(everything(+) q) 6̇ gmapQ(everything(+) q′))〉

D PROOF OF LEMMA 1.3

〈∀x xs f :: q x xs6 q′ f x xs〉

• Casex andxshave different type.

q x xs

= { x, xshave different type; definition ofq }
0

= { (f x),((mkT f) xs) have different type; definition ofmkQ}
(0 ‘mkQ‘ (f x)) ((mkT f) xs)

= { definition ofq′ }
q′ f x xs

• Casex andxshave the same type.
We distinguish two cases. Whenx 6= xs, thenx ’occurs’ 0 times inxs.

q x xs

= { x 6= xs; definition ofq }
0

6 { definition ofq′ }

16

q′ f x xs

If x = xs, thenx ’occurs’ once inxs, and bothq andq′ f return 1.

q x xs

= { x = xs; definition ofq }
1

= { definition ofq }
q (f x) (f x)

= { (f x) well typed; definition ofmkT}
q (f x) ((mkT f) x)

= { x = xs; definition ofq′ }
q′ f x xs

E PROOF OF THEOREM 1.5 (CONTINUED)

Below is the proof, by fixed-point induction, of the second conjunct of the induc-
tion hypothesis:

〈∀t t′ :: everywhere t◦everywhere t′ = everywhere(t ◦ t′) ∧
gmapT(everywhere t◦everywhere t′) = gmapT(everywhere(t ◦ t′))〉

• CaseT = Unit / Int

gmapT〈T〉 (everywhere(t ◦ t′)) x

= { definition ofgmapT〈Unit / Int〉 }
x

= { definition ofgmapT〈Unit / Int〉 }
gmapT〈T〉 (everywhere t◦everywhere t′) x

• CaseT = A+B,x = inl a

gmapT〈T〉 (everywhere(t ◦ t′)) x

= { definition ofgmapT〈A+B〉 }
inl (gmapT〈A〉 (everywhere(t ◦ t′)) a)

= { induction}
inl (gmapT〈A〉 (everywhere t◦everywhere t′) a)

= { definition ofgmapT〈A+B〉 }
gmapT〈T〉 (everywhere t◦everywhere t′) x

• CaseT = A+B,x = inr b

17

Similar
• CaseT = A1×·· ·×An,x = (x1, ...,xn)

gmapT〈T〉 (everywhere t◦everywhere t′) x

= { definition ofgmapT〈A1×·· ·×An〉 }
((evW t◦evW t′)〈T1〉 x1, ..., (evW t◦evW t′)〈Tn〉 xn)

= { (mutual) induction}
(everywhere〈T1〉 (t ◦ t′) x1, ..., everywhere〈Tn〉 (t ◦ t′) xn)

= { definition ofgmapT〈A1×·· ·×An〉 }
gmapT〈T〉 (everywhere(t ◦ t′)) x)

18

	Generic proofs for combinator-based generic programs
	Introduction
	'Boilerplate' combinators as generic functions
	Generic proofs for 'boilerplate' combinators
	A proof of the fusion law for gmapT
	A theorem about occurs
	A fusion law for everywhere
	Calculating a condition for fusion

	Conclusions and further work

	References
	Proof of the fusion law for gmapQ and gmapT
	Proof of lemma 1.1
	Proof of lemma 1.2
	Proof of lemma 1.3
	Proof of theorem 1.5 (continued)

